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Abstract. The content of this paper is at the interplay between function

spaces Lp(x) and Wk,p(x) with variable exponents and fractional Sobolev spaces
W s,p. We are concerned with some qualitative properties of the fractional

Sobolev space W s,q(x),p(x,y), where q and p are variable exponents and s ∈
(0, 1). We also study a related nonlocal operator, which is a fractional version
of the nonhomogeneous p(x)-Laplace operator. The abstract results estab-

lished in this paper are applied in the variational analysis of a class of nonlocal

fractional problems with several variable exponents.

1. Introduction and preliminary results. Fractional Sobolev spaces and the
corresponding nonlocal equations have major applications to various nonlinear prob-
lems, including phase transitions, thin obstacle problem, stratified materials, anoma-
lous diffusion, crystal dislocation, soft thin films, semipermeable membranes and
flame propagation, ultra-relativistic limits of quantum mechanics, multiple scatter-
ing, minimal surfaces, material science, water waves, etc. We refer to Di Nezza,
Palatucci and Valdinoci [9] for a comprehensive introduction to the study of nonlo-
cal problems. After the seminal papers by Caffarelli et al. [6, 7, 8], a large amount of
papers were written on problems involving the fractional diffusion operator (−∆)s

(0 < s < 1). The cited results turn out to be very fruitful in order to recover
an elliptic PDE approach in a nonlocal framework, and they have recently been
used very often, see [1, 2, 14, 17, 20, 21]. We also refer to the recent monographs
[15, 5, 10] for a thorough variational approach of nonlocal problems.

A natural question is to see what results can be recovered when the standard
Laplace operator is replaced by the fractional Laplacian. On the other hand, for
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some nonhomogeneous materials (such as electrorheological fluids, sometimes re-
ferred to as “smart fluids”), the standard approach based on Lebesgue and Sobolev
spaces Lp and W 1,p, is not adequate. This leads to the study of variable exponent
Lebesgue and Sobolev spaces, Lp(x) and W 1,p(x), where p is a real-valued function.
Variable exponent Lebesgue spaces appeared in the literature in 1931 in the paper
by Orlicz [16]. Zhikov [24] started a new direction of investigation, which created the
relationship between spaces with variable exponent and variational integrals with
nonstandard growth conditions. We also point out the important contributions of
Marcellini [13], who studied minimization problems with (p, q)-growth, namely

inf

∫
Ω

F (x, |∇u|)dx,

where tp ≤ F (x, t) ≤ tq + 1 for all t ≥ 0. The case corresponding to the variable
exponent corresponds to F (x, t) = tp(x), where p : Ω → (1,∞) is a bounded func-
tion. We refer to [18, 19] for the abstract treatment of function spaces with variable
exponent.

It is therefore a natural question to see what results can be “recovered” when
the p(x)-Laplace operator is replaced by the fractional p(x)-Laplacian. As far as we
know, the only result about the fractional Sobolev spaces with variable exponent
and the fractional p(x)-Laplacian is obtained in [12]. In particular, the authors
generalize p(x)-Laplace operator to the fractional case. They also introduce a suit-
able functional space to study an equation in which a fractional variable exponent
operator is present.

Let Ω be a smooth open set in RN . For any real s > 0 and for any functions q(x)
and p(x, y), we want to define the fractional Sobolev space with variable exponent.
We start by fixing 0 < s < 1 and q : Ω→ R and p : Ω× Ω→ R be two continuous
functions. We assume that p is symmetric and

1 < p− = min
(x,y)∈Ω×Ω

p(x, y) ≤ p(x, y) ≤ p+ = max
(x,y)∈Ω×Ω

p(x, y) <∞, (P )

p((x, y)− (z, z)) = p(x, y), ∀(x, y), (z, z) ∈ Ω× Ω, (P
′
)

and
1 < q− = min

x∈Ω
q(x) ≤ q(x) ≤ q+ = max

x∈Ω
q(x) <∞. (Q)

We define the fractional Sobolev space with variable exponents via the Gagliardo
approach as follows:

E = W s,q(x),p(x,y)(Ω)

=

{
u ∈ Lq(x)(Ω),

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dxdy <∞, for some λ > 0

}
.

Let

[u]s,p(x,y) = inf

{
λ > 0,

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dxdy < 1

}
be the corresponding variable exponent Gagliardo seminorm. If we equip E with
the norm

‖u‖E = [u]s,p(x,y) + |u|q(x),

(Lq(x)(Ω) and |.|q(x) will be introduced in the next section), then E becomes a
Banach space. Let E0 denote the closure of C∞0 (Ω) in E. Then E0 is a Banach
space with the norm

‖u‖ = [u]s,p(x,y).
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In [12], the authors prove the following basic theorem.

Theorem 1.1. Let Ω ⊂ RN be a smooth bounded domain and s ∈ (0, 1). Let q(x),
p(x, y) be continuous variable exponents with sp(x, y) < N for (x, y) ∈ Ω × Ω and
q(x) > p(x, x) for x ∈ Ω. Let (P ) and (Q) be satisfied. Assume that r : Ω→ (1,∞)
is a continuous function such that

p∗(x) =
Np(x, x)

N − sp(x, x)
> r(x) ≥ r− > 1,

for x ∈ Ω. Then there exists a constant C = C(N, s, p, q, r,Ω) such that for every
f ∈W s,q(x),p(x,y)(Ω),

|f |r(x) ≤ C‖f‖E .
Thus, the space W s,q(x),p(x,y)(Ω) is continuously embedded in Lr(x)(Ω) for any r ∈
(1, p∗). Moreover, this embedding is compact.

Remark 1.2. The above theorem remains true if we replace E by E0.

As an application of Theorem 1.1 in [12], the authors study the existence of
solutions to some nonlocal problems. Let us consider the operator L given by

Lu(x) = p.v.

∫
Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)
dy.

In the constant exponent case it is know as the fractional p-Laplacian. On the other
hand, we remark that L is a fractional version of the well known p(x)-Laplacian.

The main purpose of this paper is to present some further basic results both
on the function spaces E0, E and the fractional operator L. Then, we study the
existence of solutions to some nonlocal problems. This paper is organized as follows.
In Sect. 2, we give some definitions and fundamental properties of the spaces
Lp(x)(Ω) and Wm,p(x)(Ω). In Sect. 3, we study the reflexivity, separability, density
of E0 and E. Moreover, we prove some basic properties of operator L. Finally, in
Section 4, using a direct variational method, we give an application of our abstract
results.

2. Terminology and abstract setting. In this section, we recall some necessary
properties of variable exponent spaces. We refer to [11, 19] and the references
therein.

Consider the set

C+(Ω) = {p ∈ C(Ω), p(x) > 1 for all x ∈ Ω}.

For all p ∈ C+(Ω) we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u; u is measurable and

∫
Ω

|u(x)|p(x) dx <∞
}
.

This vector space is a Banach space if it is endowed with the Luxemburg norm,
which is defined by

|u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.
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We point out that if p(x) ≡ p ∈ [1,∞) then the optimal choice in the above
expression is µ = ‖u‖Lp .

Let Lq(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/q(x) = 1.
If u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) then the following Hölder-type inequality holds:∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x)|v|q(x) . (1)

Moreover, if pj ∈ C+(Ω) (j = 1, 2, . . . , k) and

1

p1(x)
+

1

p2(x)
+ · · ·+ 1

pk(x)
= 1

then for all uj ∈ Lpj(x)(Ω) (j = 1, . . . , k) we have∣∣∣∣∫
Ω

u1u2 · · ·uk dx
∣∣∣∣ ≤ ( 1

p−1
+

1

p−2
+ · · ·+ 1

p−k

)
|u1|p1(x)|u2|p2(x) · · · |uk|pk(x) . (2)

An important role in manipulating the generalized Lebesgue-Sobolev spaces is
played by the modular of the Lp(x)(Ω) space, which is the mapping ρ : Lp(x)(Ω)→ R
defined by

ρ(u) =

∫
Ω

|u|p(x)dx.

Proposition 2.1. We have:
(i) |u|p(x) < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1).

(ii) |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x)

(iii) |u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

Proposition 2.2. If u, un ∈ Lp(x)(Ω) and n ∈ N, then the following statements are
equivalent each other:
(1) lim

n→+∞
|un − u|p(x) = 0.

(2) lim
n→+∞

ρ(un − u) = 0.

(3) un → u in measure in Ω and lim
n→+∞

ρ(un) = ρ(u).

From Theorems 1.6, 1.8 and 1.10 of [11], we obtain the following proposition:

Theorem 2.3. Suppose that (Q) is satisfied.
(i) If Ω is a bounded open domain, (Lq(x)(Ω), |.|q(x)) is a reflexive uniformly convex
and separable space.
(ii) If Ω is an open subset, then C∞0 (Ω) is dense in the space (Lq(x)(Ω), |.|q(x)).

If k is a positive integer number and p ∈ C+(Ω), we define the variable exponent
Sobolev space by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), for all |α| ≤ k}.

Here α = (α1, . . . , αN ) is a multi-index, |α| =
∑N
i=1 αi and

Dαu =
∂|α|u

∂α1
x1 . . . ∂

αN
xN

.

On W k,p(x)(Ω) we consider the following norm

‖u‖k,p(x) =
∑
|α|≤k

|Dαu|p(x).
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Then W k,p(x)(Ω) is a reflexive and separable Banach space. Let W
k,p(x)
0 (Ω) denote

the closure of C∞0 (Ω) in W k,p(x)(Ω).

3. Basic results.

3.1. The spaces W s,q(x),p(x,y)(Ω).

Lemma 3.1. Suppose that Ω ⊂ RN is a bounded open domain. Furthermore,
assume that (P ) and (Q) hold. Then W s,q(x),p(x,y)(Ω) is a separable reflexive space.

Proof. We define the operator T : W s,q(x),p(x,y)(Ω)→ Lq(x)(Ω)×Lp(x,y)(Ω×Ω) by

T (u) = (u(x),
u(x)− u(y)

|x− y|
N

p(x,y)
+s

).

Clearly T is an isometry. Then, using Theorem 2.3, the rest of the proof is similar
to Theorem 8.1 of [3].

Lemma 3.2. Let (P ), (P
′
) and (Q) be satisfied. If Ω = RN , then the space C∞(Ω)

is a dense subspace of W s,q(x),p(x,y)(Ω).

Proof. Let u ∈ W s,q(x),p(x,y)(Ω) and η ∈ C∞0 (RN ) be such that η ≥ 0 in RN and

supp(η) ⊂ B1. We also assume that

∫
B1

η(x)dx = 1. We denote by uε the typical

mollifier of u, that is,

uε(x) =

∫
Ω

ηε(x− y)u(y)dy, x ∈ RN ,

with ηε(x) = ε−Nη(xε ). Since u ∈ Lq(x)(Ω), by Theorem 2.3, we know that

|uε − u|q(x) → 0 as ε→ 0. (3)

Hence, from Proposition 2.2, it suffices to prove that∫
Ω×Ω

|uε(x)− u(x)− uε(y) + u(y)|p(x,y)K(x, y)dxdy → 0, as ε→ 0, (4)

where K(x, y) = |x−y|−N−sp(x,y). Using the Hölder inequality in combination with
Tonelli’s and Fubini’s theorems, we obtain∫

Ω×Ω

|uε(x)− u(x)− uε(y) + u(y)|p(x,y)K(x, y)dxdy

=

∫
Ω×Ω

K(x, y)[

∫
RN

(u(x− z)− u(y − z))ηε(z)dz − u(x) + u(y)]p(x,y)dxdy

=

∫
Ω×Ω

K[

∫
B1

(u(x− εz)− u(y − εz)− u(x) + u(y))η(z)dz]p(x,y)dxdy

≤ |B1|p
−+p+−1

∫
Ω×Ω

K[

∫
B1

|u(x− εz)− u(y − εz)− u(x) + u(y)|p(x,y)ηp(x,y)(z)dz]dxdy

≤ |B1|p
−+p+−1

∫
Ω×Ω×B1

|u(x− εz)− u(y − εz)− u(x) + u(y)|p(x,y)Kη(z)p(x,y)dxdydz

≤ |B1|p
−+p+−1

∫
Ω×Ω×B1

|u(x− εz)− u(y − εz)− u(x) + u(y)|p(x,y)×

×K(x, y)(η(z)p
+

+ η(z)p
−
)dxdydz (5)



384 ANOUAR BAHROUNI AND VICENŢIU D. RĂDULESCU

We claim that

lim
ε→0

∫
Ω×Ω

|u(x− εz)− u(y − εz)− u(x) + u(y)|p(x,y)K(x, y)dxdy = 0. (6)

Fix z ∈ B1 and put w = (z, z) ∈ Ω× Ω. We define the function v : Ω× Ω→ R by

v(x, y) = (u(x)− u(y))(K(x, y))
1

p(x,y) , ∀(x, y) ∈ Ω× Ω.

Then v ∈ Lp(x,y)(Ω× Ω). If ε
′
> 0, by Theorem 2.3, there exists

g ∈ C∞0 (Ω× Ω) with |v − g|p(x,y) <
ε
′

3 , so

|v(.− εw)− v|p(x,y)

≤|v(.− εw)− g(.− εw)|p(x,y) + |g(.− εw)− g|p(x,y) + |v − g|p(x,y)

≤ε
′

3
+
ε
′

3
+
ε
′

3
= ε

′
,

with ε is sufficiently small. This proves our claim (6).
Moreover, for a.e. z ∈ B1, there exists a positive constant c such that

(η(z)p
+

+ η(z)p
−

)

∫
Ω×Ω

|u(x− εz)− u(y − εz)− u(x) + u(y)|p(x,y)Kdxdy

≤ c(η(z)p
+

+ η(z)p
−

)(

∫
Ω×Ω

|u(x− εz)− u(y − εz)|p(x,y)Kdxdy

+

∫
Ω×Ω

|u(x)− u(y)|p(x,y)K(x, y)dxdy)

≤ 2c(η(z)p
+

+ η(z)p
−

)

∫
Ω×Ω

|u(x)− u(y)|p(x,y)Kdxdy ∈ L∞(B1), (7)

for any ε > 0. Hence, using (6), (7) and the dominated convergence theorem, we
infer that∫
B1

η(z)p(x,y)

∫
Ω×Ω

|u(x− εz)− u(y − εz)− u(x) + u(y)|p(x,y)K(x, y)dxdydz → 0,

as ε→ 0. From the above assertion, we obtain (4). Using this fact in combination
with (3), we conclude our proof.

4. Properties of the fractional operator L. In this section, we give some basic
properties of the operator L. Let (P ) and (Q) be satisfied. In the sequel, we denote
by K(x, y) = |x− y|−N−sp(x,y).

Consider the following functionals:

I1(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy, ∀u ∈ E0,

I2(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy +

∫
Ω

|u|q(x)

q(x)
dx, ∀u ∈ E,

and L1 : E0 → E∗0 such that for all u, ϕ ∈ E0

〈L1(u), ϕ〉 =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy.
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Similarly, we consider L2 : E → E∗ such that

〈L2(u), ϕ〉 =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
Ω

|u|q(x)−2uϕ, ∀u, ϕ ∈ E.

Lemma 4.1. The functional I1 is well defined on E0. Moreover, I1 ∈ C1(E0,R)
with the derivative given by

〈I
′

1(u), ϕ〉 = 〈L1(u), ϕ〉, ∀u, ϕ ∈ E0,

Proof. The proof is standard, see [15, 19].

Lemma 4.2. (i) L1 is a bounded and strictly monotone operator.
(ii) L1 is a mapping of type (S+), i.e., if un ⇀ u in E0 and lim sup

n→+∞
〈L(un) −

L(u), un − u〉 ≤ 0, then un → u in E0.
(iii) L1 : E0 → E∗0 is a homeomorphism.

Proof. (i) Evidently, L1 is a bounded operator. Recall the Simon inequalities [22],
which imply the strict monotonicity of L1:|x− y|

p ≤ cp
(
|x|p−2

x− |y|p−2
y
)
· (x− y); p ≥ 2

|x− y|p ≤ Cp
[(
|x|p−2

x− |y|p−2
y
)
· (x− y)

] p
2

(|x|p + |y|p)
2−p
2 ; 1 < p < 2,

(8)
for all x, y ∈ RN , where cp = ( 1

2 )−p and Cp = 1
p−1 .

(ii) Let (un) ∈ E0 be a sequence such that un ⇀ u in E0 and lim sup
n→+∞

〈L1(un) −

L1(u), un − u〉 ≤ 0. Then, from (i), we deduce that

lim
n→+∞

〈L1(un)− L1(u), un − u〉 = 0. (9)

By Theorem 1.1, we obtain

un(x)→ u(x), a.e. x ∈ Ω. (10)

This along with Fatou’s lemma yield

lim inf
n→+∞

∫
Ω×Ω

|un(x)− un(y)|p(x,y)Kdxdy ≥
∫

Ω×Ω

|u(x)− u(y)|p(x,y)Kdxdy, (11)

On the other hand, we have

lim
n→+∞

〈L1(un), un − u〉 = lim
n→+∞

〈L1(un)− L1(u), un − u〉 = 0. (12)

Now using Young’s inequality, there exists a positive constant c such that

〈L1(un), un − u〉 =
∫

Ω×Ω

|un(x)− un(y)|p(x,y)K(x, y)dxdy

−
∫

Ω×Ω

|un(x)− un(y)|p(x,y)−2(un(x)− un(y))(u(x)− u(y))Kdxdy

≥
∫

Ω×Ω

|un(x)− un(y)|p(x,y)K(x, y)dxdy

−
∫

Ω×Ω

|un(x)− un(y)|p(x,y)−1|u(x)− u(y)|K(x, y)dxdy (13)
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≥ c
∫

Ω×Ω

|un(x)− un(y)|p(x,y)K(x, y)dxdy

− c
∫

Ω×Ω

|u(x)− u(y)|p(x,y)K(x, y)dxdy.

As a consequence of (11), (12) and (13), we get

lim
n→+∞

∫
Ω×Ω

|un(x)− un(y)|p(x,y)K(x, y)dxdy =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)Kdxdy. (14)

Now from (10), (14) and the Brezis-Lieb lemma [4], our result is proved.
(iii) By (i), L1 is an injection. In view of Proposition 2.1, we obtain

lim
‖u‖→+∞

〈L1(u), u〉
‖u‖

= +∞.

Therefore, L1 is coercive. Thus, in light of Minty-Browder theorem (see [23]), L1 is
a surjection. Hence L1 has an inverse mapping L−1

1 : E∗0 → E0.
It remains to show that L−1

1 is continuous. Indeed, let (fn), f ∈ E∗0 such that
fn → f in E∗0 . Let un = L−1

1 (fn), u = L−1
1 (f), then

L1(un) = fn and L1(u) = f.

In view of the coercivity of L1, (un) is bounded in E0. We may assume that un ⇀ u0

in E0. It follows that

lim
n→+∞

〈L1(un)− L1(u0), un − u0〉 = lim
n→+∞

〈fn, un − u0〉 = 0.

Using the fact that L1 is of type (S+), we conclude that un → u0 in E0. This
concludes the proof.

Remark 4.3. The above results still hold true if we replace L1 by L2.

5. Application to nonlocal fractional problems with variable exponent.
In this section, we work under the hypotheses of Theorem 1.1. We investigate the
existence of solutions of the following problem{

Lu(x) + |u(x)|q(x)−1u(x) = λ|u(x)|r(x)−1u(x), in Ω,

u(x) = 0 in ∂Ω ,
(15)

where λ > 0, 1 < r(x) < p−.
We say that u ∈ E0 is a weak solution of problem (15) if for all v ∈ E0∫

Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(v(x)− v(y))K(x, y)dxdy+∫
Ω

|u(x)|q(x)−1u(x)v(x)dx− λ
∫

Ω

|u(x)|r(x)−1u(x)v(x)dx = 0.

Theorem 5.1. For every λ > 0, problem (15) admits at least one nontrivial weak
solution.

Define the functional Jλ : E0 → R by

Jλ(u) = I1(u) +

∫
Ω

|u(x)|q(x)

q(x)
dx− λ

∫
Ω

|u(x)|r(x)

r(x)
dx, ∀u ∈ E.
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By Lemma 4.1, Jλ ∈ C1(E0,R) and

〈J
′

λ(u), v〉 =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(v(x)− v(y))K(x, y)dxdy

+

∫
Ω

|u(x)|q(x)−1u(x)v(x)dx− λ
∫

Ω

|u(x)|r(x)−1u(x)v(x)dx, ∀v ∈ E0.

Proof of Theorem 5.1. We first show that Jλ satisfies the Palais-Smale condition.
Let (un) ∈ E0 be a (PS)−sequence of Jλ. We claim that (un) is bounded in E0.
Arguing by contradiction, we suppose that (un) is unbounded in E0. Without loss
of generality, we can assume that ‖un‖ > 1 for all n ≥ 1. There exists a positive
constant c such that

c ≥ Jλ(un) = I1(un) +

∫
Ω

|un(x)|q(x)

q(x)
dx− λ

∫
Ω

|un(x)|r(x)

r(x)
dx

≥ I1(un)− λ
∫

Ω

|un(x)|r(x)

r(x)
dx

≥ ‖un‖p
−
− cλ

r−
‖un‖r

+

.

In the last inequality, we used Proposition 2.1 and Theorem 1.1. In view of r+ < p−,
it follows that (un) is bounded in E0. Thus, up to a subsequence and using Theorem
1.1, we can assume that

un ⇀ u in E0, un → u in Lr(x)(Ω) and un → u in Lq(x)(Ω).

We show in what follows that

un → u in E0.

Since (un) is a (PS)−sequence and using the above assertions, we get

〈J
′

λ(un)− J
′

λ(un), un − u〉 = 〈L1(un)− L1(u), un − u〉 = 0.

Now since L1 is an operator of type (S+), we conclude that un → u in E0, which
shows that the Palais-Smale condition is satisfied.

Next, we show that Jλ is coercive. Indeed, as we have observed, for any λ > 0
and u ∈ E0 with ‖u‖ > 1, we have

Jλ(u) ≥ ‖u‖p
−
− cλ

r−
‖u‖r

+

.

This implies the coercivity of Jλ. We deduce that Jλ ∈ C1(E0,R) is bounded from
below, coercive and satisfies the Palais-Smale condition. These facts in combination
with Ekeland’s variational principle show that there exists uλ ∈ E a global minimum
of Jλ. It remains to prove that uλ 6= 0. Fix φ ∈ E0, φ 6= 0 and φ ≥ 0 in Ω. Then,
for each t ∈ (0, 1), we have

Jλ(tφ) = I1(tφ) +

∫
Ω

tq(x)|φ(x)|q(x)

q(x)
dx− λ

∫
Ω

tr(x)|φ(x)|r(x)

r(x)
dx

≤ tp
+

I1(φ) + tq
+

∫
Ω

|φ(x)|q(x)

q(x)
dx− λtr

−
∫

Ω

|φ(x)|r(x)

r(x)
dx.

Taking into account r− < p+ and r− < q+, for t small enough, we infer that

Jλ(tφ) < 0.
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This completes the proof of our theorem.

Acknowledgments. The authors thank Professor Hichem Ounaies for comments
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