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Abstract. We consider a semilinear Robin problem driven by the Laplacian plus an
indefinite and unbounded potential. The reaction term is a Carathéodory function
which is resonant with respect to any nonprincipal eigenvalue both at ±∞ and 0. Using
a variant of the reduction method, we show that the problem has at least two nontrivial
smooth solutions.
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1 Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study the
following semilinear Robin problem: −∆u(z) + ξ(z)u(z) = f (z, u(z)) in Ω,

∂u
∂n

+ β(z)u = 0 in ∂Ω .

 (1.1)

In this problem, the potential function ξ(·) is unbounded and indefinite (that is, sign-
changing). So, in problem (1.1) the differential operator (on the left-hand side of the equation),
is not coercive. The reaction term f (z, x) is a Carathéodory function (that is, for all x ∈ R, z 7→
f (z, x) is measurable and for almost all z ∈ Ω, x 7→ f (z, x) is continuous) and f (z, ·) exhibits
linear growth as x → ±∞. In fact, we can have resonance with respect to any nonprincipal
eigenvalue of −∆ + ξ(z)I with the Robin boundary condition. This general structure of the
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reaction term makes using variational methods problematic. To overcome these difficulties,
we develop a variant of the so-called “reduction method”, originally due to Amann [1] and
Castro & Lazer [3]. However, in contrast to the aforementioned works, the particular features
of our problem lead to a reduction on an infinite dimensional subspace and this is a source
of additional technical difficulties. In the boundary condition, ∂u

∂n is the normal derivative
defined by extension of the continuous linear map

u 7→ ∂u
∂n

= (Du, n)RN for all u ∈ C1(Ω),

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β ∈ W1,∞(∂Ω)

satisfies β(z) ≥ 0 for all z ∈ ∂Ω. We can have β ≡ 0, which corresponds to the Neumann
problem.

Recently, there have appeared existence and multiplicity results for semilinear elliptic
problems with general potential. We mention the works of Hu & Papageorgiou [9], Kyritsi
& Papageorgiou [10], Papageorgiou & Papalini [12], Qin, Tang & Zhang [17] (Dirichlet prob-
lems), Gasinski & Papageorgiou [6], Papageorgiou & Rădulescu [13,15] (Neumann problems),
and for Robin problems the works of Shi & Li [18] (superlinear reaction), D’Aguì, Marano &
Papageorgiou [4] (asymmetric reaction), Hu & Papageorgiou (logistic reaction), and Papageor-
giou & Rădulescu [16] (reaction with zeros). In all the aforementioned works the conditions
are in many respects more restrictive or different and consequently, the mathematical tools
are different. It seems that our present paper is the first to use this variant of the reduction
method on Robin problems.

2 Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality brackets
for the pair (X∗, X). Given ϕ ∈ C1(X, R), we say that ϕ satisfies the “Cerami condition” (the
“C-condition” for short), if the following property holds

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and

(1 + ‖un‖)ϕ′(un)→ 0 in X∗,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ϕ and is more general that the
usual Palais–Smale condition. The two notions are equivalent when ϕ is bounded below (see
Motreanu, Motreanu & Papageorgiou [11, p. 104]).

Our multiplicity result will use the following abstract “local linking” theorem of Brezis &
Nirenberg [2].

Theorem 2.1. Let X be a Banach space such that X = Y ⊕ V with dim Y < +∞. Assume that
ϕ ∈ C1(X, R) satisfies the C-condition, and is bounded below, ϕ(0) = 0, inf

X
ϕ < 0, and there exists

ρ > 0 such that

ϕ(y) ≤ 0 for all y ∈ Y with ‖y‖ ≤ ρ,

ϕ(v) ≥ 0 for all v ∈ V with ‖v‖ ≤ ρ

(that is, ϕ has a local linking at u = 0 with respect to the direct sum Y⊕V). Then ϕ has at least two
nontrivial critical points.
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Remark 2.2. The result is true even if one of the component subspaces Y or V is trivial.
Moreover, if dim V = 0, then we can allow Y to be infinite dimensional.

We will use the following spaces:

• the Sobolev space H1(Ω);

• the Banach space C1(Ω); and

• the “boundary” Lebesgue spaces Lr(∂Ω) 1 ≤ r ≤ ∞.

The Sobolev space H1(Ω) is a Hilbert space with the following inner product

(u, v) =
∫

Ω
uvdz +

∫
Ω
(Du, Dv)RN dz for all u, v ∈ H1(Ω).

By ‖ · ‖ we denote the norm corresponding to this inner product, that is,

‖u‖ =
[
‖u‖2

2 + ‖Du‖2
2
]1/2

for all u, v ∈ H1(Ω).

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure denoted by
σ(·). Using this measure on ∂Ω, we can define in the usual way the Lebesgue spaces Lr(∂Ω),
1 ≤ r ≤ ∞. From the theory of Sobolev spaces we know that there exists a unique continuous
linear map γ0 : H1(Ω)→ L2(∂Ω), known as the “trace map”, which satisfies

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

So, the trace map assigns “boundary values” to any Sobolev function (not just to the
regular ones). This map is compact into Lr(∂Ω) for all r ∈

[
1, 2(N−1)

N−2

)
if N ≥ 3 and into

Lr(∂Ω) for all r ≥ 1 if N = 1, 2. Also, we have

ker γ0 = H1
0(Ω) and im γ0 = H

1
2 ,2(∂Ω).

In what follows, for the sake of notational simplicity, we shall drop the use the trace
map γ0. The restrictions of all Sobolev functions on ∂Ω, are understood in the sense of traces.

Next, we recall some basic facts about the spectrum of the differential operator −∆ + ξ(z)I
with the Robin boundary condition. So, we consider the following linear eigenvalue problem: −∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,

∂u
∂n

+ β(z)u = 0 on ∂Ω

 (2.1)

Our conditions on the data of (2.1) are the following:

• ξ ∈ Ls(Ω) with s > N; and

• β ∈W1,∞(∂Ω) with β(z) ≥ 0 for all z ∈ ∂Ω.

Let γ : H1(Ω)→ R be the C1-functional defined by

γ(u) = ‖Du‖2
2 +

∫
Ω

ξ(z)u2dz +
∫

∂Ω
β(z)u2dσ for all u ∈ H1(Ω).

By D’Aguì, Marano & Papageorgiou [4], we know that there exists µ > 0 such that

γ(u) + µ‖u‖2
2 ≥ c0‖u‖2 for all u ∈ H1(Ω), and some c0 > 0. (2.2)
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Using (2.2) and the spectral theorem for compact self-adjoint operators on a Hilbert space,
we produce the spectrum σ0(ξ) of (2.1) such that σ0(ξ) = {λ̂k}k≥1 is a sequence of distinct
eigenvalues with λ̂k → +∞ as k → +∞. By E(λ̂k) (for all k ∈ N), we denote the eigenspace
corresponding to the eigenvalue λ̂k. We know that E(λ̂k) is finite dimensional. Moreover, the
regularity theory of Wang [19] implies that E(λ̂k) ⊆ C1(Ω) for all k ∈ N. The Sobolev space
H1(Ω) admits the following orthogonal direct sum decomposition

H1(Ω) = ⊕
k≥1

E(λ̂k).

The elements of σ0(ξ) have the following properties:

• λ̂1 is simple (that is, dim E(λ̂1) = 1);

• λ̂1 = inf
[

γ(u)
‖u‖2

2
: u ∈ H1(Ω), u 6= 0

]
; and (2.3)

• λ̂m = inf
[

γ(u)
‖u‖2

2
: u ∈ ⊕

k≥m
E(λ̂k), u 6= 0

]
= sup

[
γ(u)
‖u‖2

2
: u ∈

m
⊕

k=1
E(λ̂k), u 6= 0

]
for m ≥ 2. (2.4)

The infimum in (2.3) is realized on E(λ̂1), while both the infimum and supremum in (2.4)
are realized on E(λ̂m). It follows that the elements of E(λ̂1) have fixed signs, while those
of E(λ̂m) (m ≥ 2) are nodal (sign-changing). The eigenspaces have the so-called “Unique
Continuation Property” (UCP for short) which says that if u ∈ E(λ̂k) and u(·) vanishes on
a set of positive Lebesgue measure, then u ≡ 0. As a consequence of the UCP, we get the
following useful inequalities (see D’Aguì, Marano & Papageorgiou [4]).

Lemma 2.3.

(a) If η ∈ L∞(Ω), η(z) ≥ λ̂m for almost all z ∈ Ω, m ∈ N and η 6= λ̂m, then there exists c1 > 0
such that

γ(u)−
∫

Ω
η(z)u2dz ≤ −c1‖u‖2 for all u ∈

m
⊕

k=1
E(λ̂k).

(b) If η ∈ L∞(Ω), η(z) ≤ λ̂m for almost all z ∈ Ω, m ∈ N and η 6= λ̂m then there exists c2 > 0
such that

γ(u)−
∫

Ω
η(z)u2dz ≥ c2‖u‖2 for all u ∈ ⊕

k≥m
E(λ̂k).

Given m ∈ N, let H− =
m
⊕

k=1
E(λ̂k), H0 = E(λ̂m+1), H+ = ⊕

k≥m+2
E(λ̂k). We have the

following orthogonal direct sum decomposition

H1(Ω) = H− ⊕ H0 ⊕ H+.

So, every u ∈ H1(Ω) admits a unique sum decomposition of the form

u = ū + u0 + û with ū ∈ H−, u0 ∈ H0, û ∈ H+.

Also, we set
V = H0 ⊕ H+.
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Finally, let us fix our notation. By | · |N we denote the Lebesgue measure on RN and by
A ∈ L(H1(Ω), H1(Ω)∗) the linear operator defined by

〈A(u), h〉 =
∫

Ω
(Du, Dh)RN dz for all u, h ∈ H1(Ω)

(by 〈·, ·〉 we denote the duality brackets for the pair (H1(Ω)∗, H1(Ω))). Also, given a measur-
able function f : Ω×R→ R (for example a Carathéodory function), we set

N f (u)(·) = f (·, u(·)) for all u ∈ H1(Ω)

(the Nemytski map corresponding to f ). Evidently, z 7→ N f (u)(z) is measurable. For ϕ ∈
C1(X, R), we set

Kϕ = {u ∈ X : ϕ′(u) = 0}

(the critical set of ϕ).

3 Pair of nontrivial solutions

The hypotheses on the data of (1.1) are the following:

• H(ξ): ξ ∈ Ls(Ω) with s > N; and

• H(β): β ∈W1,∞(∂Ω) with β(z) ≥ 0 for all z ∈ ∂Ω.

Remark 3.1. We can have β ≡ 0 and this case corresponds to the Neumann problem.

H( f ): f : Ω×R→ R is a Carathéodory function such that f (z, 0) = 0 for almost all z ∈ Ω
and

(i) | f (z, x)| ≤ a(z)(1 + |x|) for almost all z ∈ Ω, and all x ∈ R with a ∈ L∞(Ω)+;

(ii) there exist m ∈N and η ∈ L∞(Ω) such that

η(z) ≥ λ̂m for almost all z ∈ Ω, η 6≡ λ̂m,

( f (z, x)− f (z, x′))(x− x′) ≥ η(z)(x− x′)2 for almost all z ∈ Ω, and all x, x′ ∈ R;

(iii) if F(z, x) =
∫ x

0 f (z, s)ds, then lim supx→±∞
2F(z,x)

x2 ≤ λ̂m+1 and

lim
x→±∞

[ f (z, x)x− 2F(z, x)] = +∞ uniformly for almost all z ∈ Ω;

(iv) there exist l ∈N, l ≥ m + 2, a function ϑ ∈ L∞(Ω) and δ > 0 such that

ϑ(z) ≤ λ̂l for almost all z ∈ Ω, ϑ 6≡ λ̂l ,

λ̂l−1x2 ≤ f (z, x)x ≤ ϑ(z)x2 for almost all z ∈ Ω, and all |x| ≤ δ.

Let ϕ : H1(Ω)→ R be the energy (Euler) functional for problem (1.1) defined by

ϕ(u) =
1
2

γ(u)−
∫

Ω
F(z, u)dz for all u ∈ H1(Ω).

Evidently, ϕ ∈ C1(H1(Ω)).
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Recall that
H1(Ω) = H− ⊕ H0 ⊕ H+

with H− =
m
⊕

k=1
E(λ̂k). H0 = E(λ̂m+1), H+ = ⊕

k≥m+2
E(λ̂k) and

V = H0 ⊕ H+.

The next proposition is crucial for the implementation of the reduction method.

Proposition 3.2. If hypotheses H(ξ), H(β), H( f ) hold, then there exists a continuous map
τ : V → H− such that

ϕ(v + τ(v)) = max[ϕ(v + y) : y ∈ H−] for all v ∈ V.

Proof. We fix v ∈ V and consider the C1-functional ϕv : H1(Ω)→ R defined by

ϕv(u) = ϕ(v + u) for all u ∈ H1(Ω).

By iH− : H− → H1(Ω) we denote the embedding of H− into H1(Ω). Let

ϕ̂v = ϕv ◦ iH− .

By the chain rule, we have
ϕ̂′v = pH∗− ◦ ϕ′v, (3.1)

with pH∗− being the orthogonal projection of the Hilbert space H1(Ω) onto H∗−. By 〈·, ·〉H− we
denote the duality brackets for the pair (H∗−, H−). For y, y′ ∈ H−, we have〈

ϕ̂′v(y)− ϕ̂′v(y
′), y− y′

〉
H−

=
〈

ϕ′v(y)− ϕ′v(y
′), y− y′

〉
(see (3.1))

= γ(y− y′)−
∫

Ω
( f (z, v + y)− f (z, v + y′))(y− y′)dz

≤ γ(y− y′)−
∫

Ω
η(z)(y− y′)2dz (see hypothesis H( f ) (ii))

≤ − c1‖y− y′‖2 (see Lemma 2.3). (3.2)

This implies that

− ϕ̂′v is strongly monotone and therefore − ϕ̂v is strictly convex. (3.3)

We have 〈
ϕ̂′v(y), y

〉
H−

=
〈

ϕ′v(y), y
〉

=
〈

ϕ′v(y)− ϕ′v(0), y
〉
+
〈

ϕ′v(0), y
〉

≤ −c1‖y‖2 + c3‖y‖ for some c3 > 0 (see (3.2)),

⇒ − ϕ̂′v is coercive. (3.4)

The continuity and monotonicity of −ϕ̂′v (see (3.3)), imply that

− ϕ̂′v is maximal monotone. (3.5)
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However, a maximal monotone and coercive map is surjective (see, for example, Hu &
Papageorgiou [8, p. 322]). So, we infer from (3.4) and (3.5) that there is a unique y0 ∈ H− such
that

ϕ̂′v(y0) = 0 (see (3.3)). (3.6)

Moreover, y0 is the unique maximizer of the function ϕ̂v. So, we can define the map
τ : V → H− by setting τ(v) = y0. Then we have

ϕ(v + τ(v)) = max[ϕ(v + y) : y ∈ H−], (3.7)

⇒ pH∗−ϕ′(v + τ(v)) = 0 (see (3.6) and (3.1)). (3.8)

We need to show that the map τ : V → H− is continuous. To this end, let vn → v in V.
First, note that if ū ∈ H−, then

ϕ(ū) =
1
2

γ(ū)−
∫

Ω
F(z, ū)dz

≤ 1
2

γ(ū)− 1
2

∫
Ω

η(z)ū2dz (see hypothesis H( f ) (ii))

≤ −c1‖ū‖2 (see Lemma 2.3),

⇒ τ(0) = 0.

Since ϕ ∈ C1(H1(Ω)) and ϕ′(u) = γ′(u)−N f (u), it follows that ϕ′ is bounded on bounded
sets of H1(Ω). Therefore

‖ϕ′(vn)‖∗ ≤ c4

with c4 > 0 independent of n ∈N (recall that vn → v in H1(Ω)).
Then we have

0 =
〈

ϕ′(vn + τ(vn)), τ(vn)
〉

(see (3.8))

=
〈

ϕ′(vn + τ(vn))− ϕ′(vn + τ(0)), τ(vn)
〉
+
〈

ϕ′(vn + τ(0)), τ(vn)
〉

≤ −c1‖τ(vn)‖2 + c4‖τ(vn)‖, for all n ∈N (see (3.2))

⇒ {τ(vn)}n≥1 ⊆ H− is bounded.

By passing to a suitable subsequence if necessary and using the finite dimensionality of
H−, we can infer that

τ(vn)→ ŷ in H1(Ω), ŷ ∈ H−. (3.9)

We have

ϕ(vn + τ(vn)) ≤ ϕ(vn + y) for all y ∈ H−, all n ∈N (see (3.7)),

⇒ ϕ(v + ŷ) ≤ ϕ(v + y) for all y ∈ H− (see (3.9) and recall that ϕ is continuous),

⇒ ŷ = τ(v).

By the Urysohn convergence criterion (see, for example, Gasinski & Papageorgiou
[7, p. 33]), we have for the original sequence

τ(vn)→ τ(v) in H−,

⇒ τ(·) is continuous.

Consider the functional ϕ̃ : V → R defined by

ϕ̃(v) = ϕ(v + τ(v)) for all v ∈ V.
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Proposition 3.3. If hypotheses H(ξ), H(β) and H( f ) hold, then ϕ̃ ∈ C1(V, R) and ϕ̃′(v) =

pV∗ϕ
′(v+ τ(v)) for all v ∈ V (here, pV∗ denotes the orthogonal projection of the Hilbert space H1(Ω)∗

onto V∗).

Proof. Let v, h ∈ V and t > 0. We have

1
t
[ϕ̃(v + th)− ϕ̃(v)]

≥ 1
t
[ϕ(v + th + τ(v))− ϕ(v + τ(v))] (see (3.7)),

⇒ lim inf
t→0+

1
t
[ϕ̃(v + th)− ϕ̃(v)] ≥

〈
ϕ′(v + τ(v)), h

〉
. (3.10)

Also, we have

1
t
[ϕ̃(v + th)− ϕ̃(v)]

≤ 1
t
[ϕ(v + th + τ(v + th))− ϕ(v + τ(v + th))]

⇒ lim sup
t→0+

1
t
[ϕ̃(v + th)− ϕ̃(v)] ≤

〈
ϕ′(v + τ(v)), h

〉
(3.11)

(recall that τ(·) is continuous, see Proposition 3.2 and that ϕ ∈ C1(H1(Ω), R)).

From (3.10) and (3.11) it follows that

lim
t→0+

1
t
[ϕ̃(v + th)− ϕ̃(v)] = 〈ϕ′(v + τ(v)), h〉 for all v, h ∈ V. (3.12)

Similarly we can show that

lim
t→0−

1
t
[ϕ̃(v + th)− ϕ̃(v)] =

〈
ϕ′(v + τ(v)), h

〉
for all v, h ∈ V. (3.13)

From (3.12) and (3.13) we conclude that

ϕ̃ ∈ C1(V, R) and ϕ̃′(v) = pV∗ϕ
′(v + τ(v)) for all v ∈ V.

Proposition 3.4. If hypotheses H(ξ), H(β), H( f ) hold, then v ∈ Kϕ̃ if and only if v + τ(v) ∈ Kϕ.

Proof. ⇐ Follows from Proposition 3.3.
⇒ Let v ∈ Kϕ̃. Then

0 = ϕ̃′(v) = pV∗ϕ
′(v + τ(v)) (see Proposition 3.3),

⇒ ϕ′(v + τ(v)) ∈ H∗− (recall that H1(Ω)∗ = H∗− ⊕V∗). (3.14)

On the other hand, from (3.8) we have

pH∗−ϕ′(v + τ(v)) = 0,

⇒ ϕ′(v + τ(v)) ∈ V∗. (3.15)

But H∗− ∩V∗ = {0}. So, it follows from (3.14) and (3.15) that

ϕ′(v + τ(v)) = 0,

⇒ v + τ(v) ∈ Kϕ.
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Proposition 3.5. If hypotheses H(ξ), H(β), H( f ) hold, then ϕ̃ is coercive.

Proof. Let ψ = ϕ|V . Evidently, ψ ∈ C1(V, R) and by the chain rule we have

ψ′ = pV∗ ◦ ϕ′. (3.16)

Claim 3.6. ψ satisfies the C-condition.

Let {vn}n≥1 ⊆ V be a sequence such that

|ψ(vn)| ≤ M1 for some M1 > 0, and all n ∈N, (3.17)

(1 + ‖vn‖)ψ′(vn)→ 0 in V∗ as n→ ∞. (3.18)

From (3.18) we have

|
〈
ψ′(vn), h

〉
V | ≤

εn‖h‖
1 + ‖vn‖

for all h ∈ V, n ∈N, with εn → 0+,

⇒ |
〈

ϕ′(vn), h
〉
| ≤ εn‖h‖

1 + ‖vn‖
for all h ∈ V, n ∈N (see (3.16)). (3.19)

In (3.19) we choose h = vn ∈ V and obtain

γ(vn)−
∫

Ω
f (z, vn)vndz ≤ εn for all n ∈N. (3.20)

We show that {vn}n≥1 ⊆ V is bounded. Arguing by contradiction, suppose that

‖vn‖ → ∞ . (3.21)

Let ŵn = vn
‖vn‖ , n ∈ N. Then ŵn ∈ V, ‖ŵn‖ = 1 for all n ∈ N. By passing to a suitable

subsequence if necessary, we may assume that

ŵn
w→ ŵ in H1(Ω) and ŵn → ŵ in L2(Ω) and L2(∂Ω). (3.22)

Hypotheses H( f ) imply that

| f (z, x)| ≤ c5|x| for almost all z ∈ Ω, all x ∈ R, and some c5 > 0. (3.23)

By (3.19) we have∣∣∣∣〈γ′(ŵn), h
〉
−
∫

Ω

N f (vn)

||vn||
hdz
∣∣∣∣ ≤ εn‖h‖

(1 + ‖vn‖)‖vn‖
for all n ∈N, h ∈ H1(Ω). (3.24)

From (3.23) and (3.22) we see that{
N f (vn)

‖vn‖

}
n≥1
⊆ L2(Ω) is bounded. (3.25)

So, if in (3.24) we choose h = ŵn − ŵ ∈ H1(Ω), pass to the limit as n → ∞ and use (3.21),
(3.22) and (3.25), then

lim
n→∞
〈A(ŵn), ŵn − ŵ〉 = 0,

⇒ ‖Dŵn‖2 → ‖Dŵ‖2,

⇒ ŵn → ŵ in H1(Ω)

(by the Kadec–Klee property, see Gasinski & Papageorgiou [5, p. 911]),

⇒ ‖ŵ‖ = 1 and so ŵ 6= 0.
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Let Ω0 = {z ∈ Ω : ŵ(z) 6= 0}. Then |Ω0|N > 0 and

vn(z)→ ±∞ for almost all z ∈ Ω0 (see (3.21)).

Hypothesis H( f ) (iii) implies that

f (z, vn(z))vn(z)− 2F(z, vn(z))→ +∞ for almost all z ∈ Ω0. (3.26)

From (3.26) via Fatou’s lemma (hypothesis H( f ) (iii) permits its use), we have∫
Ω0

[ f (z, vn)vn − 2F(z, vn)]dz→ +∞. (3.27)

Using hypothesis H( f ) (iii), we see that we can find M2 > 0 such that

f (z, x)x− 2F(z, x) ≥ 0 for almost all z ∈ Ω, and all |x| ≥ M2. (3.28)

So, we have∫
Ω\Ω0

[ f (z, vn)vn − 2F(z, vn)]dz

=
∫
(Ω\Ω0)∩{|vn|≥M2}

[ f (z, vn)vn − 2F(z, vn)]dz

+
∫
(Ω\Ω0)∩{|vn|<M2}

[ f (z, vn)vn − 2F(z, vn)]dz

≥
∫
(Ω\Ω0)∩{|vn|<M2}

[ f (z, vn)vn − 2F(z, vn)]dz (see (3.28))

≥ −M3 for some M3 > 0, and all n ∈N (see hypothesis H( f ) (i)).

Then ∫
Ω
[ f (z, vn)vn − 2F(z, vn)]dz

=
∫

Ω0

[ f (z, vn)vn − 2F(z, vn)]dz +
∫

Ω\Ω0

[ f (z, vn)vn − 2F(z, vn)]dz

≥
∫

Ω0

[ f (z, vn)vn − 2F(z, vn)]dz−M3 for all n ∈N

⇒
∫

Ω
[ f (z, vn)vn − 2F(z, vn)]dz→ +∞ as n→ ∞ (see (3.27)). (3.29)

From (3.19) with h = vn ∈ H1(Ω), we have

− γ(vn) +
∫

Ω
f (z, vn)vndz ≤ εn for all n ∈N. (3.30)

Also, from (3.17) we have

γ(vn)−
∫

Ω
2F(z, vn)dz ≤ 2M1 for all n ∈N. (3.31)

We add (3.30) and (3.31) and obtain∫
Ω
[ f (z, vn)vn − 2F(z, vn)]dz ≤ M4 for some M4 > 0, and all n ∈N. (3.32)
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Comparing (3.29) and (3.32), we get a contradiction. This proves that {vn}n≥1 ⊆ V is
bounded. So, we may assume that

vn
w→ u in H1(Ω) and vn → u in L2(Ω) and L2(∂Ω). (3.33)

In (3.19) we choose h = vn − u ∈ H1(Ω), pass to the limit as n→ ∞ and use (3.33). Then

lim
n→∞
〈A(vn), vn − u〉 = 0,

⇒ vn → u in H1(Ω) (as before via the Kadec–Klee property).

This proves Claim 3.6.

Claim 3.7. λ̂m+1x2 − 2F(z, x)→ +∞ as x→ +∞ uniformly for almost all z ∈ Ω.

Hypothesis H( f ) (iii) implies that given any λ > 0, we can find M5 = M5(λ) > 0 such
that

f (z, x)x− 2F(z, x) ≥ λ for almost all z ∈ Ω, and all |x| ≥ M5. (3.34)

For almost all z ∈ Ω, we have

d
dx

(
F(z, x)
|x|2

)
=

f (z, x)x− 2F(z, x)
|x|2x

{
≥ λ

x2 if x ≥ M5

≤ λ
|x|2x if x ≤ −M5

(see (3.34)),

⇒ F(z, y)
|y|2 − F(z, v)

|v|2 ≥ λ

2

[
1
|v|2 −

1
|y|2

]
for all |y| ≥ |v| ≥ M5. (3.35)

We let |y| → ∞ and use hypothesis H( f ) (iii). Then

λ̂m+1|v|2 − 2F(z, v) ≥ λ for almost all z ∈ Ω, and all |v| ≥ M5.

Since λ > 0 is arbitrary, we conclude that

λ̂m+1|v|2 − 2F(z, v)→ +∞ as v→ +∞ uniformly for almost all z ∈ Ω.

This proves Claim 3.7.
For every v ∈ V, we have

ψ(v) = ϕ(v) =
1
2

γ(v)−
∫

Ω
F(z, v)dz

≥
∫

Ω

[
1
2

λ̂m+1v2 − F(z, v)
]

dz (see (2.4))

≥ −c6 for some c6 > 0 (see Claim 3.7 and hypothesis H( f ) (i))

⇒ ψ is bounded below. (3.36)

From (3.36) and Claim 3.6 it follows that

ψ is coercive

(see Motreanu, Motreanu & Papageorgiou [11, p. 103]).
We have

ψ(v) = ϕ(v) ≤ ϕ(v + τ(v)) = ϕ̃(v) for all v ∈ V (see (3.7)),

⇒ ϕ̃ is coercive.



12 N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš

From Proposition 3.4, we deduce the following corollary.

Corollary 3.8. If hypotheses H(ξ), H(β), H( f ) hold, then ϕ̃ is bounded below and satisfies the C-
condition.

Next, we show that ϕ̃ admits a local linking (see Theorem 2.1) with respect to the orthog-

onal direct sum decomposition V = W ⊕ Ê, where W =
l−1
⊕

i=m+1
E(λ̂i), Ê = ⊕

i≥l
E(λi).

Proposition 3.9. If hypotheses H(ξ), H(β), H( f ) hold, then ϕ̃ has a local linking at u = 0 with
respect to the decomposition

V = W ⊕ Ê.

Proof. From hypotheses H( f ) (i), (iv), we see that given r > 2, we can find c7 = c7(r) > 0 such
that

F(z, x) ≤ ϑ(z)
2

x2 + c7|x|r for almost all z ∈ Ω, and all x ∈ R. (3.37)

For v̂ ∈ Ê we have

ϕ̃(v̂) = ϕ(v̂ + τ(v̂))

≥ ϕ(v̂) (see Proposition 3.2)

=
1
2

γ(v̂)−
∫

Ω
F(z, v̂)dz

≥ 1
2

γ(v̂)− 1
2

∫
Ω

ϑ(z)v̂2dz− c8‖v̂‖r for some c8 > 0 (see (3.37))

≥ c9‖v̂‖2 − c8‖v̂‖r for some c9 > 0 (see Lemma 2.3(b)).

Since r > 2, we see that we can find ρ1 ∈ (0, 1) small such that

ϕ̃(v̂) > 0 for all v̂ ∈ Ê with 0 < ‖v̂‖ ≤ ρ1. (3.38)

The space Y = H− ⊕W is finite dimensional and so all norms are equivalent. Hence we
can find ε0 > 0 such that

y ∈ Y and ‖y‖ ≤ ε0 ⇒ |y(z)| ≤ δ for all z ∈ Ω (recall that Y ⊆ C1(Ω)). (3.39)

By Proposition 3.2 we know that τ(·) is continuous. So, we can find ρ2 > 0 such that

ũ ∈W and ‖ũ‖ ≤ ρ2 ⇒ ‖ũ + τ(ũ)‖ ≤ ε0. (3.40)

From (3.39) and (3.40) it follows that

ϕ̃(ũ) = ϕ(ũ + τ(ũ))

=
1
2

γ(ũ + τ(ũ))−
∫

Ω
F(z, ũ + τ(ũ))dz

≤ 1
2

λ̂l−1‖ũ + τ(ũ)‖2
2 −

1
2

λ̂l−1‖ũ + τ(ũ)‖2
2 (see hypothesis H( f ) (iv))

= 0.

So, we have that
ϕ̃(ũ) ≤ 0 for all ũ ∈W with ‖ũ‖ ≤ ρ2. (3.41)

If ρ = min{ρ1, ρ2}, then from (3.38) and (3.41) we conclude that ϕ has a local linking at
u = 0 with respect to the decomposition V = W ⊕ Ê.
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Now we are ready for proving our multiplicity theorem.

Theorem 3.10. If hypotheses H(ξ), H(β), H( f ) hold, then problem (1.1) admits at least two nontrivial
solutions

u0, û ∈ C1(Ω).

Proof. From Proposition 3.9 we know that

inf
V

ϕ̃ ≤ 0.

If infV ϕ̃ = 0, then by Proposition 3.9 all ũ ∈ W with 0 < ‖ũ‖ ≤ ρ are nontrivial critical
points of ϕ̃. Hence ũ + τ(ũ) are nontrivial critical points of ϕ (see Proposition 3.4).

If infV ϕ̃ < 0, then we can apply Theorem 2.1 (see Corollary 3.8) and produce two nontriv-
ial critical points ũ0 and ũ∗ of ϕ̃. Then

u0 = ũ0 + τ(ũ0) and û = ũ∗ + τ(û∗)

are two nontrivial critical points of ϕ (see Proposition 3.4).
For u = u0 or u = û, we have

− ∆u(z) + ξ(z)u(z) = f (z, u(z)) for almost all z ∈ Ω, (3.42)
∂u
∂n

+ β(z)u = 0 on ∂Ω (see Papageorgiou & Rădulescu [14, 16]).

Evidently, hypotheses H( f ) imply that

| f (z, x)| ≤ c10|x| for almost all x ∈ R, and some c10 > 0. (3.43)

We set

b(z) =

{ f (z,u(z))
u(z) if u(z) 6= 0

0 if u(z) = 0.

From (3.43) it follows that b ∈ L∞(Ω). From (3.42) we have{
−∆u(z) = (b− ξ)(z)u(z) for almost all z ∈ Ω,
∂u
∂n + β(z)u = 0 on ∂Ω.

Note that b − ξ ∈ Ls(Ω), s > N (see hypothesis H(ξ)). Then Lemmata 5.1 and 5.2 of
Wang [19] imply that

u ∈W2,s(Ω),

⇒ u ∈ C1,α(Ω) with α = 1− N
s
> 0 (by the Sobolev embedding theorem).

Therefore u0, û ∈ C1(Ω).
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References

[1] H. Amann, Saddle points and multiple solutions of differential equations, Math. Z.
169(1979), No. 2, 127–166. MR0550724; https://doi.org/10.1007/BF01215273

[2] H. Brezis, L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math.
44(1991), No. 8–9, 939–963. MR1127041; https://doi.org/10.1002/cpa.3160440808

[3] A. Castro, A. Lazer, Critical point theory and the number of solutions of a nonlinear
Dirichlet problem, Ann. Mat. Pura Appl. (4) 120(1979), 113–137. MR0551063; https://doi.
org/10.1007/BF02411940

[4] G. D’Aguì, S. Marano, N. S. Papageorgiou, Multiple solutions to a Robin problem with
indefinite weight and asymmetric reaction, J. Math. Anal. Appl. 433(2016), No. 2, 1821–
1845. MR3398793; https://doi.org/10.1016/j.jmaa.2015.08.065

[5] L. Gasinski, N. S. Papageorgiou, Nonlinear analysis, Series in Mathematical Analysis and
Applications, Vol. 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR2168068

[6] L. Gasinski, N. S. Papageorgiou, Multiplicity of solutions for Neumann problems with
an indefinite and unbounded potential, Commun. Pure Appl. Anal. 12(2013), No. 5, 1985–
1999. MR3015667; https://doi.org/10.3934/cpaa.2013.12.1985

[7] L. Gasinski, N. S. Papageorgiou, Exercises in analysis, Part 1, Problem Books in Mathe-
matics, Springer, Heidelberg, 2014. MR3307732

[8] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, Volume I: Theory, Mathematics
and its Applications, Vol. 419, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1997. MR1485775

[9] S. Hu, N. S. Papageorgiou, Positive solutions for Robin problems with general potential
and logistic reaction, Comm. Pure. Appl. Anal. 15(2016), No. 6, 2489–2507. MR3565951;
https://doi.org/10.3934/cpaa.2016046

[10] S. Kyritsi, N. S. Papageorgiou, Multiple solutions for superlinear Dirichlet prob-
lems with an indefinite potential, Ann. Mat. Pura Appl. (4) 192(2013), No. 2, 297–313.
MR3035141; https://doi.org/10.1007/s10231-011-0224-z

[11] D. Motreanu, V. Motreanu, N. S. Papageorgiou, Topological and Variational Methods with
Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. MR3136201

[12] N. S. Papageorgiou, F. Papalini, Seven solutions with sign information for sublinear
equations with unbounded and indefinite potential and no symmetries, Israel J. Math.
201(2014), No. 2, 761–796. MR3265302; https://doi.org/10.1007/s11856-014-1050-y
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