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COMBINED EFFECTS FOR FRACTIONAL SCHRODINGER-KIRCHHOFF
SYSTEMS WITH CRITICAL NONLINEARITIES

XIANG MINGQI', VICENTIU D. RADULESCU?? AND BINLIN ZHANG"*

Abstract. In this paper, we investigate the existence of solutions for critical Schrodinger—Kirchhoff
type systems driven by nonlocal integro—differential operators. As a particular case, we consider the
following system:

M ([(u, )] + (w0} ) (= A)pu+ V(@) [ul"~?u) = Au(@,u,0) + 35[0 [u* P in RY

M ([(u,v)]’s’,p + H(u,v)”?v) ((=A)pv+ V() |uP%u) = \H, (z,u,v) + %|u|a‘v|ﬁ‘72v in RV,

where (—A), is the fractional p—Laplace operator with 0 < s <1 <p < N/s, a, 8 > 1 with a+ 8 = p3,
M : Ry — R{ is a continuous function, V' : RY — R" is a continuous function, A\ > 0 is a real
parameter. By applying the mountain pass theorem and Ekeland’s variational principle, we obtain the
existence and asymptotic behaviour of solutions for the above systems under some suitable assumptions.
A distinguished feature of this paper is that the above systems are degenerate, that is, the Kirchhoff
function could vanish at zero. To the best of our knowledge, this is the first time to exploit the existence
of solutions for fractional Schrodinger—Kirchhoff systems involving critical nonlinearities in RY .
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1. INTRODUCTION

In this paper, we investigate the existence of solutions for an elliptic system of Schrédinger—Kirchhoff type
involving nonlocal integro—differential operators. More precisely, we first the following consider system:

M (|[(u, )[IP) (Lyu+ V(@) |uP"2u) = AHy(z,u,0) + ol [ul*?u in RN
' (S)
M ([[(u,0)[P) (Lo + V(@)[o[P~20) = AH,y(z,u,0) + 2 |ul*[v]*2v in RN,
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where [[(u, 0)[[7 = [fyan (ju(@) — u(m)l? + |o(x) — v(y)[*) K (¢ — y)dady+ [y V(@) ([ul? +]o]?)dz, a, 8 > 1 with
a + B = pk, the Kirchhoff functlon M Rar — R(J{ is continuous, the potentlal function V : RY — Rt is
continuous, A > 0 is a real parameter, the perturbed terms H,, H, are two Carathéodory functions satisfying
subcritical growth condition and £;, is a nonlocal fractional operator defined as

Lo = im 2 [ Jol) — P ) o) K~ )y

e—0+
for » € RY along all ¢ € C§°(RY) and K : RY \ {0} — R* is a measurable function with the property that
(@) vK € L*(RY), where ~(x)=min{|z[,1};
(b) there exists Ko >0 and se€(0,1) suchthat K(z)> Kolz| V™) forany zeRV\{0}.

Here B.(z) denotes the ball in RV of radius € > 0 at the center x € RY. Throughout the paper, without further
mentioning, we always assume that 0 < s < 1 < p < 00, sp < N, p¥ = Np/(N — sp) and K satisfies (a) and (b).

A typical example of K is given by K (z) = |2|~" ). In this case, system (S) becomes
M ([ 0)12, + 1w, 0)IE 3 ) (= A)g + V@)l ~2u) = Au(w,u,0) + & in RV

M ([, 0)]2, + 1, 0) 5 ) (D)0 + V@) lulp~2u) = My (2, 0,0) + Sl o2 in RY,

(1.1)

where (—A)7 is the fractional p—Laplace operator which (up to normalization factors) may be defined as

() — eI (p(@) — 2(y) 4
|z — y[Ntsp

(~A)3p(x) = 2 lim y

N0 JRN\ B ()

for € RN along all p € C5°(RY), see [17,37] and the references therein for further details on the fractional
Sobolev space W*P(R™) and some recent results on the fractional p—Laplacian. When s — 17 in (1.1), then
problem (1.1) reduces to

M([|(Vu, Vo)If + 1| (u, 0)ll} ) (= Apu + V(@) [ulP~?u) = AHy (2, u,0) + 5= o] [u]*?u in RY

M(I(Vu, Vo) |15+ [|(w, 0) [ 4 ) (=Apv + V(@) [o]P~2v) = AH, (2, u,0) + 5% P~?v in RY,

where A, is the p—Laplace operator, p* = Np/(N — p) is the critical exponent of the classical Sobolev space
WLP(RY), and

1/p
(Vu,Vv)|p:(/ Vup+|vU|de> .
RN

Much interest has grown on problems involving critical exponents, starting from the celebrated paper by Brézis
and Nirenberg [7], where the case p = 2 is considered. We refer the reader to [16,19, 28] and references therein
for the study of problems with critical exponents.

In recent years, a great attention has been focused on the study of problems involving fractional and non-
local operators. This type of operators arises in a quite natural way in many different applications, such as
optimization, finance, crystal dislocation, soft thin films, continuum mechanics, phase transition phenomena,
population dynamics, minimal surfaces and game theory, as they are the typical outcome of stochastically
stabilization of Lévy processes, see [8,15,21] and the references therein. The literature on non—local operators
and their applications is interesting and large, we refer the interested reader to [3,5,25-27] and the references
therein.
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Recently, Fiscella and Valdinoci in [18] studied the following single fractional Kirchhoff problem involving
critical exponent:

* .
2572y in 2

{M<|u||2>£Ku =M (@ u)+ Ju (1.2)

u=0 in RN\ (2,

where [[ul® = [[eon [u(z) — u(y)PK(z — y)dady, 2 € RY is a smooth bounded domain, N > 2s, 2} =
2N/(N — 2s) is the critical exponent of the fractional Sobolev space H*(RY), the function f is a subcritical
term, \ is a positive parameter and nonlocal fractional operator Lx is defined for any z € RN by

1
Lxp(@) =5 [ (oo +1)+ plo =) 20(a) Ky
along any ¢ € Cg°(RY), where the kernel K : RV \ {0} — R is a measurable function satisfying the following
property: there exists § > 0 and s € (0, 1) such that

Olz|~NH2) < K(z) < 07|42 for any x e RN\ {0},

and the Kirchhoff function M : Rj — RJ is continuous, increasing and M (0) > 0. In this paper, the authors
obtained the existence of solutions of problem (1.2) by using a truncation argument and the mountain pass
theorem. In the Appendix A in [18], the authors considered problem (1.2) as a stationary Kirchhoff variational
equation which models the nonlocal aspect of the tension arising from nonlocal measurements of the fractional
length of the string. In other words, problem (1.2) is a fractional version of a model, the so—called Kirchhoff
equation, introduced by Kirchhoff. It is worth pointing out that the Kirchhoff equation received much attention
only after Lions [23] proposed an abstract framework to the problem, see [4,5,29] for some recent results.

In [4], Autuori, Fiscella and Pucci proceeded to study problem (1.2) in the degenerate case, that is, this paper
covered a case that M (0) = 0. Here, we call the problem (1.2) associated with the Kirchhoff function to be non-
degenerate if M(0) > 0, and degenerate if M (0) = 0. For example, the existence of solutions of non—degenerate
Kirchhoff-type problems is treated in [14,36] and degenerate problems in [12,24,31,38,39]. Under some suitable
assumptions, the existence of nonnegative mountain pass solutions is established in [4] in the degenerate case.
However, the authors in [4] only obtained the above result under the condition 2s < N < 4s, thatis N € {1,2,3}.
A natural question is whether or not there exists nontrivial solutions of equation (1.2) in RV? Another question
is whether or not we can extend the existence results for single equation to the corresponding system? With
these questions, we start to work in the superlinear and sublinear cases. The main novelty of our paper is to
cover the degenerate case of system (S) in the setting of fractional p-Laplacian involving critical exponents.

Without further mentioning, we always assume that M : Rg — R(J{ is a continuous function satisfying the
following conditions:

(M) there exists 0 € [1,p?/p) such that M ()t < 0.4 (t) for all t € RY, where ./ (t) = ft

0
(M) for all 6 > 0 there exists k = k(d) > 0 such that M(t) > & for all t > §;
(M3) there exist mo > 0 and 6; > 0 such that M (t) > mt? for all ¢ € [0,1], where

M(7)dr;

0, € 0’ps—p) if p>2;
p

Py — 2

61 € |0, 2

) if max{1l,2N/(N +2s)} <p<2.

Obviously, (M1)—(Ms) cover the degenerate case that corresponds to M (0) = 0. Note that assumptions (A7) and
(My3) are first used to study the multiplicity of solutions of a class of higher order p—Kirchhoff equations in [12].
In order to obtain the existence of solutions to fractional problems of Kirchhoff type, a natural assumption that
M is a nondecreasing function on Rg was often employed, see for example [18,29]. However, under assumption
(M), we can also deal with cases in which M is not monotone as M (t) = (1 +t)* + (1 +¢)~! for t > 0, with
0<k<l
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Now we impose the following hypothesis on the potential function V:
(V1) V € C(RY) satisfies inf gy V(z) > Vo > 0, where Vj is a constant;
For the perturbed terms, we assume that
(Hy) H € C*RY xR2,R"), H,(x,0,0) = 0 for all x € R and there exist ¢ > 0 and ¢ € (fp, p}) such that
|H,(z,2)] <c(14]2/771), for each (z,2) € RN x R?,

where H,(z,z) = (Hy(x,2), Hy(2,z) and H,, H, stand for the partial derivatives of H with respect to
the second and third variable;

(Ha) H.(z,2) = o(|z|??7') as |z| — 0, uniformly for 2 € RY;

(Hj3) there exists p € (0p, p%) such that

0< puH(z,z) < H,(x,2)-2z, forall (z,z)eRY xR

Before giving our main result, we introduce some notations. Set

LP(RNV) = {u : RY — R measurable : /
RN

1/p
lulpyv = (/ Vu(x)|pdx) .
RN

Weh, (RY) = {u e (RN, V //RQN . y|N+p)s dzdy < oo}

endowed with the norm HapHW 2 @ny = ([pf, + |<,0|ZV)1/F7 where

o= ([, 1o - etpre- )dxdy)l/p.

Note that (a) assures that C5°(RY) € Wil (RY). Actually, when K (z) = W, Lemma 2.4 of [31] gives that
Cs°(RYN) is dense in Wik, (RY).
Let W = Wi, (RN) X Wil (RY), endowed with the norm

(o)l = ([, + )y )

Viu(z)Pdz < oo} )

endowed with the norm

Denote

for (u,v) € W, where

1/
[(U,U)]&p = ([u}g,p + [U]g,p) ? .
Then (W, || - [[w) is a uniformly convex Banach space, see [30] for more details.
Now we give the definition of weak solutions for problem (S§).

Definition 1.1. We say that (u,v) € W is a (weak) solution of problem (S), if
Ml ol?) | [ 1) = w2 ute) = at) (olo) - )~ )
+o(@) = o(y) P2 (u(z) — uly) (W(z) = Y(y)) K (x - y)dedy + /RN V([ulP~?up + [oP~2vgp)da

3 [ o 0pla) + oo opp@de+ [ Pl up + Sl osda,
RN RN Ps Ps

for all (p,9) € W.
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For the superlinear case, that is, ¢ € (0p, p¥), we state the first result of our paper as follows.

Theorem 1.2. Suppose that V satisfies (V1), M satisfies (My1)—(M3) and H satisfies (H1)—(Hs). Then there
exists \* > 0 such that system (S) admits at least one nontrivial solution in W for all X > \*.

For the sublinear case, that is, ¢ € (1,60p), we consider the separate case that H(z,u,v) = h(z)f(u,v). More
precisely, we study the following system

M (| (u, 0)[1P) (Lyu+ V(@) [ulP~u) = h(@) fulu,v) + A
M ([[(u,0)IIP) (Lo + V(@) |0 ~20) = h() fo(w,v) + A ul[o]* 20 in RN,

vl lu|*"?u in RV

(&)

where V satisfies (V1), A > 0 and f satisfies
(f1) f € CYR2,R*) and there exist C > 0 and g € (1,0p) such that

If2(2)] < Clz]97! forall zeR?

where f.(2) = (fu(2), fv(2)) and f.,, f, stand for the partial derivatives of f with respect to the first and
second variable;
(f2) there exist ag >0, d > 0 and ¢; € (1,p) such that

f(2) > aplz|™ forall zeR? with |z| <.

oo 1
Let n(t) :== i///(l)tep - pigtps for all ¢ > 0. Clearly, by p% > 6p, there exists yg = (%ﬁz))?ﬁ*% such that

Ps op
o) = maxizo n(t) = /(1)77 (L 5) T (3 = 5z > 0.

Throughout this paper, we assume that

(h1) 0 < he L (RV) (L7 (RY) and

loc

—__9
6p—q

op
q 6p—q
CCL|IR| ,
PE—a

where C' and ¢ are defined in (f1) and Cp« > 0 is the embedding constant of fractional Sobolev space

(cf. (2.1));

(ha) there exists an open bounded nonempty set 2 C RY such that inf,co h(z) > 0.

o) > (5 0)

Our second result reads as follows.

Theorem 1.3. Suppose that V' satisfies (V1), M satisfies (M) — (Ms), f satisfies (f1) — (f2) and h satisfies
(h1) — (hg2). Then there exists \** > 0 such that system (S") admits at least one nontrivial solution in W for
all A € (0, \**].

Finally, let us simply describe the main approaches to obtain Theorems 1.2 and 1.3. To show the existence
of at least one critical point of the energy functional, we shall use the mountain pass theorem of Ambrosetti
and Rabinowitz [2]. However, since system (S) contains a critical nonlinearity, it is difficult to get the global
Palais-Smale condition. To overcome the lack of compactness due to the presence of a critical nonlinearity, we
employ some tricks borrowed from the paper [4], where a critical Kirchhoff problem involving the fractional
Laplacian has been studied. We first show that the energy functional associated with system (S) satisfies the
Palais-Smale condition at suitable levels cy. In this process, the key point is to study the asymptotical behaviour
of ¢y as A — oo, see Lemma 3.4 for more details. For A small, we show that (S’) has at least one nontrivial
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solutions by using Ekeland’s variational principle. To the best of our knowledge, Theorems 1.2 and 1.3 are new
even in the study of fractional Laplacian.

This paper is organized as follows. In Section 2, we give some necessary definitions and properties of space W.
In Section 3, using the mountain pass theorem, we establish the existence of nontrivial solutions for system (S). In
Section 4, by using Ekeland’s variational principle, we obtain the existence of nontrivial solutions of system (S’).

2. VARIATIONAL FRAMEWORK

In this section we introduce the variational framework for problem (S), in which most of results can be found
in [35], see also [32-34]. It is worth pointing out that the functional setting was first introduced by Autuori and
Pucciin [5] as p = 2.

Let p be the fractional Sobolev critical exponent defined by p: = Np/(N — sp). Let D3F(RY) be the
completion of C§°(RY) with respect to the norm [p]s, for ¢ € C§°(RY). In the fractional Sobolev space
D3P (RY), the following fractional Sobolev inequality is well known: there is a constant Cp: > 0 such that

ull ot vy < Cpsluls,p for all w e DRP(RY), (2.1)

by Theorem 6.5 of [17] and (a). Furthermore, it follows by the Holder inequality that

a/p; B/p:
/ lu|®|v]Pdz < (/ |u > (/ |v|p5d:c>
RN RN RN

< CPE )2, )2, < OV [(u,0))25, (2.2)

s, p —

for all o, 8 > 1 with o + 5 = pZ.
A similar discussion as Lemma 2.4 of [35] gives that (D3P (R™),[]s,) is a uniformly convex Banach space,
so that a reflexive Banach space. Moreover, (W5, (RY), || - [wen (mvy) is a reflexive Banach space. Let W =

Wik (RN) x Wik, (RY), endowed with the norm

1/p
o)l = (), + w)ly)
for (u,v) € W, where

[, 0)]s.p = ([Wl?, + []2 )P and  |(u, 0)lp,v = (ful) y + o]} )7

Consequently, by Theorem 1.23 of [1], we know that (W, || - ||) is a reflexive Banach space.
For (u,v) € W, we define

1
I(u,v) == (||(u, v)||”) / H(z,u vdx——/ lu|®|v|? dz.
p

Obviously, under the assumption (Hy), the energy functional I : W — R associated with problem (S) is well
defined and I € C'(W,R) and

(w0 o) =21 (w1 | [ 1uto) = w2 uto) = u)pt2) - ol o )
+ o) =0(0) P (0(a) =) (0(e) ~0 () Ko —p)dady+ | VP g+ ol 2vu)do

_ )\/ Hu(:z:,u,v)gaJrHv(x,u,v)dezf%/ |u\a72u|v|ﬁdxfﬁ*/ |u\°‘|v|ﬂ72vdx
Q Ps JrN Ps JrN
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for all (u,v) € W and (¢,1) € W, see for example [30], (Lems. 2 3) and [35], (Lems. 3.1 and 3.2). It follows
that the critical points of functional I are weak solutions of system (S).

Lemma 2.1. (see [30], Lem. 1) Assume (V1). If v € [p,p}), then the embedding Wi, (RY) — L¥(RN) is
continuous, and there exists a constant C, > 0 such that

uly < Cyllullwes @y) forall ue Wi (RY).
Moreover, by Lemma 2.1, we have the following property.
Lemma 2.2. For each (u,v) € W and v € [p,p}), we have

[vi+e?

<C
ey < €l

where C = 2%01,,

Proof. By Lemma 2.1, for each (u,v) € W and v € [p, p¥), we get

H\/u2 +v2‘

< v
LNy = w4 vll v @)

< lull vy + ol Le @y

< Culllullwgr, @yy + Ivllwgn, @)

1

<27 Oyl (u,0)]-
Hence the desired conclusion follows. O

Theorem 2.3. Assume (V7). Let v € (p, p%) be a fized exponent and let {(un, vy)}n be a bounded sequence in W.
Then there exists (u,v) € W such that up to a subsequence, (un,v,) — (u,v) strongly in LY(RN) x L¥(RY) as
n— 0o.

Proof. The proof can be proved similarly as that of Lemma 2.2 in [11]. For completeness, here we give a short
proof. Since {(un, )}, is bounded in W, there exist a constant C' > 0 and (u,v) € W, and a subsequence of
{(tn,vn) }n, still denoted by {(un,vn)}n, such that ||(un,v,)|| < C, ||(u,v)| < C and

(Un,vn) = (u,v) weakly in W,
(u,v) ae in RN, (2.3)
(RN) x LY (RN).

(Una Un)
» Un loc

)

Thus, we obtain u, — u and v, — v in LY(Bg) for all R > 0. In the following, we prove that there exists
Ry > 0 such that for R > Ry,

%
— (w,v) in L}

(un loc

1711_{1 ||un||L"(B§%) = HUHLV(B}C%)’ (2.4)
HT_I} ||UnHL"(B,3) = ||U“LV(B§)~ (2.5)
We first prove (2.4). For this, it is enough to show that for any £ > 0 there exists Ry > 0 such that for R > Ry,

lirrl}sup Hun||zy(3%) <e. (2.6)
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Note that for any & > 0 there exist 0 < ag < by such that |a|” < elal? if |a| < ap and |a|” < elalPs if |a| > b,
thanks to p < v < p}. Hence,
lal” < e(laf” + |al”*) + X(ao.b01 (Ia])]al”,
where X|q,,5,] denotes the characteristic function associated with the interval [ag, bo]. Then,
/ [ty |V da < 5/ |, |P 4 |un|p;dm + bg/ Xlao,bo] ([un|)dz, Vn €N, (2.7)
B, B, A, N B

where A,, = {z € RY : ag < |u,| < bp}. Furthermore, it follows from (2.1) that there exists C' > 0 such that

/ P +
RN

tal < [l
R

Padz < C, VYneN. (2.8)

Therefore

Pide < C, VnéeN,

where |A,,| = meas(A,), this implies that sup,,cy |An| < Cag”. We claim that limp_, o | Ay, () B| = 0 uniformly
in n € N. To begin with, we show that
Jim |4, (Bzl =0, ¥neN. (2.9)

Indeed, if the assertion is not true, then there exist ng > 1, 6 > 0 and R; 1 oo such that
|An, () Bf,| 26, ¥neN. (2.10)

Clearly, |An, N Bf,| < |Ano| < Cay? Vn € N. Set 2; = Bf, \ Bf .y, Vj € N. Then 2, ()42, = 0, if m # k, and

B = 2. [An, (B, | = |An, (2| >0, VjeN (2.11)
k=1 k=j

and >~ [An, (N 2| = oo. This is a contradiction. Hence the limit (2.9) is proved. On the other hand, it follows
from (2.3) that u € WL (RY) and u, — u a.e. in RY. Hence, for any ¢ > 0 there exists By > 1 such that
R > R07

/B lu(z)Pde < e.

2
For fixed € > 0, we choose t; = Ry, t; T oo such that Dy = Bf, \ B§k+1, By, = Uy, Dy and

/ |u(x)[Pdz < 27%e, VkeN.
Dy,

Obviously, for each fixed k € N, Dy, is a bounded domain and Dy () Dy, = 0 (k # m). Moreover, ag < |u,| < bg
in D[ An. By the Fatou lemma, we have for each k € N,

lim sup/ |, [Pde < / lim sup |u,|Pdx
n—oo Dy, n A, Dy, ﬂ A, n—oo

:/ |u|Pdz g/ luPdz < 27%e.
DN A, Dy
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Then for any n € N, we obtain

bl (VB3| < [ s

NE

< lim sup/ |t |Pde < e. (2.12)
DN An

n—oo

ES
Il

1

Observe that for all R > Ry and n € N, we have (A, () Bg) C (A, () Bg,). Hence, using (2.9) and (2.12), we
deduce that limp_,o |4, () B| = 0 uniformly in n € N,

Then, for any & > 0 there exist Ry > 1 and dp € (0,e/(Cay”)) such that |4, " R%| < do for all n € N and
R > Ry, and

P
/ Xiao o ()2 < [ A, (VBE <60 < 22, Wnen. (2.13)
A, N BS C
Hence, from (2.7) and (2.8), we deduce that

which implies (2.6). Therefore, we get lim,_, Hunsz(RN) = ||lul

T (RN)- Moreover, by the Brézis-Lieb lemma

we obtain u, — u in L*(RY). Arguing as above, we conclude that v, — v in L”(R¥). Thus the proof is
complete. O

Lemma 2.4. Let (u,,v,) — (u,v) weakly in W and (un,v,) — (u,v) a.e. in RN, Then for fived a, B > 1 with
a+ 8 =pk, up to a subsequence,

lim |ty — u|*|v, — v|Pda = nlg%o/ || 0n| P d — / [u|*[v]da.
RN RN

n—roo RN

Proof. The proof is similar to [20], (Lem. 2.2), we give it here just for completeness. We first observe that

1
/ |t ||| Pda — / [t — u|*|v, —v|Pde = a/ / |ty — tu|® 2 (u, — tu)ulv, |’ dtdx
RN RN rY Jo

1
+ ﬁ/ / vy, — tv]P 2 (v, — tv)v|uy, — u|*dtdz
RN Jo
1 1
= a/ / fnudxdt+ﬁ/ / gnvdadt, (2.15)
RN JO RN Jo

Fn = |un — tu]®* 2 (u, — tu)|vn|ﬁ,gn = |, — tv|ﬁ72(vn —tv)|u, —u|®, te]0,1].

where

Since u,, — u and v, — v a.e. in R, we have
fn— (1=t Yu|*2ufv|’ and g, — 0 a.e. in RN x (0,1).

Moreover, by the Holder inequality, we get

1 s 1 ey 1 =T
/ / | fo| 57T dadt < (/ / [t — tu|°‘+ﬁdxdt> (/ / |vn°‘+ﬁdxdt) <C,
RN JO RN JO RN JO
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and

B—1

1 s 1 SFFoT 1 a1F—T
/ / |gn|oFF-Tdadt < (/ / |ty — u|(’+6dxdt> (/ / v, — tv|a+5) <
RN Jo rY Jo rY Jo

Thus, up to a subsequence, we deduce that

A
Q

frn— (1=t Y u|*2uv|® and g, — 0 weakly in Lt RN x (0,1)),

as n — 00. Therefore

1 1
a/ / frudzdt — a/ / (1 — ) Hul*|v|?dzdt = / lu|®|v|?dz (2.16)
RN Jo rY Jo RN

and

1
B/RN/O gnvdxdt — 0, (2.17)

as n — oo. Inserting (2.16) and (2.17) into (2.15), we get the desired result. O

In the sequel, we will make use of the mountain pass theorem of Ambrosetti-Rabinowitzin [2] which will be
used later.

Theorem 2.5. Let E be a real Banach space and J € C1(E,R) with J(0) = 0. Suppose that J satisfies (PS)
condition and:

(i) there exist p,a > 0 such that J(u) > « for all u € E, with ||u||g = p;
(ii) there exists e € E satisfying |le||g > p such that J(e) < 0.

Define
I'={ye (0,1 B) : 7(0) = 1,7(1) = e}.
Then

¢ Jehig Jow) z a

is a critical value of J.

3. PROOF OF THEOREM 1.2

In this section, we prove the first main result of this paper. To apply Theorem 2.5, we first verify the validness
of the conditions of Theorem 2.5. In what follows, we shortly denote by || - ||, the norm of the Lebesgue space
LA(RN).

Lemma 3.1. For any A € R, there exist g, po > 0 such that I(u,v) > ag > 0 for any (u,v) € W, with
[[(w, v)| = po-

Proof. By (M), we have
M) > A (D forall te[0,1]. (3.1)
By (Hz), for any € > 0 there exists 6 = () > 0 such that

|H. (2, 2)] < ]| (3.2)



COMBINED EFFECTS FOR FRACTIONAL SCHRODINGER-KIRCHHOFF SYSTEMS 1259

for all z € RY and |z| < §. Moreover, by (H;), we obtain
\H,(z,2)| < (c—|— ) Bk (3.3)
for any z € RY and all |z| > 6. From (3.2) and (3.3), we have
|H.(z,2)] <e|z|P71 + O]zt forall (x,2) € RY x R?, (3.4)
where C. = (c+ £). Note that H(z, z) fo L H(x,tz)dt = fo (z,t2) - zdt. It follows from (3.4) that
|H(z,2)| < €|z| + C.|2|9 for all (z,2) € RN x R2 (3.5)

Thus, by using (3.1), (3.4), Lemma 2.2 and (2.2), we obtain for all (u,v) € W with ||(u,v)| <1

1 1
I(u,v) > Eﬁg(lﬂKu,UNWp**Ab/‘ 503**19)””24*Cé(u24*v2Y”2d$**5;”“”%”” ﬁ
RN s s
1
>‘};4¢(1)H(U,U)H9p'— As29<p‘1’<73§H(u7v)H9p
ACRSIEE b
1
5///(1) = 220D || (u, )|
— AC; [ e (D]
Now we choose € > 0 small enough such that 1///( ) — A20(r— 1)00”6 > 0. Taking p := [|(u,v)]] < 1 small
enough, we get the desired result because of the fact that Op < ¢ < pS O

Lemma 3.2. For any A € R*, there exists (e1, e3) € C (RN ) x C5°(RY) independent of A such that (e, es) <
0 and ||(e1,e2)|| > po, where pg is the number given in Lemma 3.1.

Proof. The assumption (M7) implies that
M) < (D) forall t>1. (3.6)

By (Hy), we have H(x,z) = fol H.(x,tz) - zdt = fo z,t|z])|z|2dt > 0. Thus by 0p < pZ, (2.2) and (3.6), w
have

1 Py
I(tu, tv) = f///(Ht(u,v)Hp)—/\/ Hi(z, tu, tv)dz — L/ | |o|*da
p RN Ps JrN

*

P’
< A0 -2 [ Julolda
s JRN

*

tPs
= (1)t — 7/ lu|*|v|®dz
RN

*

Ps
— —0o0 ast — oo,

for (u,v) € C5°(RY) x Cg°(RYN) satisfying [|(u,v)|| = 1 and [y [u|*[v|’dz > 0. The lemma is proved by taking
(e1,e2) = T(u,v) with T' > 0 large enough. O
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Definition 3.3. Let X be a real Banach space and I : X — R be a functional of class C*(X). A sequence
{un}tn C X is said to be a Palais-Smale sequence of I, (PS) sequence for shortness, if {I(un)}n is bounded and
I'(up) — 0 as n — oo. The functional I satisfies (PS) condition, if any (PS) sequence admits a convergent
subsequence.

Now we discuss the compactness property for the functional I, given by the (PS) condition at a suitable level.
To this aim, we fix A > 0 and set

= inf I .
ex = inf max (v(®)), (3.7)

where
I'={yeC([0,1; W) : 7(0) = 0, y(1) =€}
Obviously, ¢y > 0 by Lemma 3.1. Moreover, we have the following result.

Lemma 3.4. Suppose that M satisfies (M;) and (Ms) and H satisfies (Hy) and (Hy). Then

li =

Jim e =0,

where cy is given by (3.7).

Proof. For (e1,eq2) given by Lemma 3.2, we have lim;_,, I(te1,tes) = —o0, then there exists ¢y > 0 such that

I(txe1,tre2) = max;>q I(teq,tes). Hence, by I'(treq,trez) = 0, we have

tf\_lM(Ht,\(el,62)||p)||(61,eg)\|p = /\/ H,(x,trer,trez)erdx
RN

+ )\/ Hv($7t)\€1,t)\€2)62d1'+t§:_1/ |€1|a|62|6d$.
RN RN

Furthermore,

M(|[tx(e1, e2)||P)|[ta(er, e2)||P = )\/ H,(x,trer,trea)trerdx
RN

+ A H,U(Z',t)\el,t)\EQ)t)\egdZE+t§:/ |el|°‘\eg|ﬂdx. (3.8)
]RN RN

In the following we prove that {¢)}, is bounded. Without loss of generality, we assume that ¢, > 1 for all A > 0.
By (M), we obtain that for all ¢ > 1

M) < (). (3.9)
Combining (3.8) with (3.9) and (M), we obtain

0.2 (1)||tr(e1, e2)||? = 0.2 (||tr(ex, e2)[|?) = M(|[tr(e1, e2)[1P)[IEa(er, e2) ]I

> Mty H,(x,trer, ez)erdx + Aty Hv(x,eg,t,\eg)ezdx—i—tf\:/ |el\°‘|eg|ﬁdx
RN RN RN

> tiz/ le1|*]e2| da, (3.10)
RN
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thanks to A > 0 and assumption (Hy). Therefore, we arrive at
-0
0aDlerea) = 677 [ fer|leaf

This, together with fp < p%, yields that {tx}x is bounded.

Fix arbitrarily a sequence {\,}, C RT such that A, — oo as n — co. Obviously {ty, }, is bounded. Thus,
there exist a subsequence, still denoted by {A,},, with A\, — oo, and to > 0 such that t), — to. Thus, there
exists C' > 0 such that

M(|[tx, (e1,e2)||P)|Ita, (e1,€2)||P < C for all n.

We claim that tg = 0. If t; > 0, then the above inequality combined with Lebesgue’s dominated convergence
theorem and relation (3.8) imply that

Anta, Hy(z,tx,e1,tr,e2)er + Hy(z, ty, e1,t, e2)eada
RN

+ti:/ le1|“Jea|?dz — 00 < O, as n — oo,
-

which is impossible, consequently ty = 0. Thus, we obtain £y — 0 as A — oo.
Let 7(t) = t(e1, ez). Clearly 7 € I', thus

1
0<er S maxI(7(0) = Htres tea) < 2t ([tr(erseP).
Then the desired assertion follows immediately from the fact that .# (||ta(e1,e2)||P) — 0 as A — oo, by the

continuity of .#. ]

Lemma 3.5. Let (Hy)—(Hy) hold and suppose that M satisfies (M) and (Mz). Then there exists A\* > 0 such
that for all A > X*, I satisfies the (PS)., condition on W.

Proof. For any sequence {(un,vn)}n C W such that I(uy,,vy) is bounded and I'(uy,,v,) — 0 as n — oo, there
exists C' > 0 such that [(I'(tn,vp), (tn, vp))| < C|[(tn, vn)]| and |I(un,v,)| < C. Two possible cases can arise:
either inf,, || (un, vn)|lw = d > 0 or inf, || (un, vy )||lw = 0, so that we distinguish the following two situations.

CX

Case 1. inf ||(upn, vn)|| = d > 0. We begin by proving that {(u,,v,)}, is bounded. Denote by k = k(d) the
n

number corresponding to o = dP in (M), so that
M(||(tn,vn)||P) >k for all n. (3.11)
By (Ms), (3.11) and (H3), we get

1
C + C||(un,vn) |l = L(tn,vn) — ;U/(umvn)a (Un,vn))
1 p 1 p p
= — (|| (un, v)[|7) = =M (| (wn, v) [|”) [ (n, v3) |
p H
1 1
- )\/ (H(a@un,vn) — —Hy (2, up, vp)uy — Hv(:v,umvn)vn> dz
RN 14 1%

1 1
+ < - *>/ |un|a‘vn|6dx
M Ds RN

> (553 ) Aol (3.12)

Hence we conclude from 1 < p that {(un,vy)}r is bounded in W.
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Furthermore, by the Holder inequality, we obtain

Ll

ph(a—1) ph(ph—a) . ph(a—1) pr(pl—a)

bt Mol < CRilunlsyT [a] T <C

g
Pot de < jup

Similarly,

pg
]RN

By applying the boundedness of {(un,vn)}n in W and [6], (Thm. 4.9), there exist (ux,vy) € W and ay > 0
such that up to a subsequence, still denoted by {(un, vp)}n, we have

(Un, V) — (ux,vy) weakly in W,

(Unsvn) = (ur,vy) ae in RY
||(unaUn)H — Qi) /N ‘Un — U)\|a|Un — ’U)\|ﬂd$ — Oy,
R

|2 0| — Jur|*2up|va|?  weakly in L(p:)’(RN)
[vn|? 200 |un | — [al?2up]|ua|*"  weakly in  LP(RY), (3.13)

where (p%) = p%/(pt — 1). By using (3.4), for any € > 0, we have

H, (U, vp)(Up — u) + Hy (2, U, v,) (v, —uw)de
]RN

= E/N |(un,vn)|0p71|(umvn) — (ux,v0)| + CE|(umUn)|q71|(UnaUn) — (ux,vy))|dz
R

< Ce+ C’CEH(un,vn) - (U)\,'U)\))”LQ(RN).

Since p < 0p < ¢ < p¥, we deduce by Theorem 2.3 that

H,(z,tp, vn)(Un — u) + Hy (2, U, v,) (v, —u)dz| < Ce.
RN

lim sup
n—oo

Since € > 0 is arbitrary, we deduce that

lim H, (2, U, vy)(ty — u) + Hy(x, tp, v,) (v, — uw)dz = 0. (3.14)

n—roo RN

Next we show limy_, o ay = 0. It follows from inf,,>1 || (tn, vn)lls,p = d > 0 that ax > 0. Hence M (|| (un, vn)||?) =
M(o/)’\) > 0 as n — o0, by the continuity of M. We claim that limy_, o, ay = 0. Otherwise, there exists sequence
Ak, with A\ — oo as k — oo, such that ay, — ag > 0 as k — oco. Note that

ox, = lim (1(%,@”) - i(]'(un,vn),(un,vn»).

n—oo

A similar discussion as in (3.12) gives that

1 1
Chy, Z (9}) — M) M(aﬁk)af\k
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Letting kK — oo in above inequality and using Lemma 3.3, we get

1 1
0> (9}7 - M) M(af)af >0,

which is impossible. Thus, we obtain that

lim ay =0. (3.15)

A—00

By (un,vn) — (ux,vx) weakly in W, we get ||(ux,vn)|| < limy,—oo [[(un,vn)]| = aa, this together with (3.15)
and (2.1) gives that

lim [|(ux,va)][px = lim |[(ux,vy)|| = 0. (3.16)
A—00 A—00

Now we introduce a simple notation. Let (¢,1) € W be fixed and denote by L(y,%) the linear functional on
W defined by

L (w17w2>>

/ / o2 (0(x) — p(4)) (@1 (2) — wa() K (z — y)dady + / V (@)l 2uwy de
RQN RN

/ / WP (6 (x) — () Ws(x) — w2) K (z — y)dady + / V(@) o] owada
]R2N RN

for all (w1,w2) € W. Evidently, by the Holder inequality, L(y, ) is also continuous, being

(L (p, %), (w1,w2))] < [0l wlsp + lllh v lwt oy + W15 wals,p + 1115 [l

p,V

< (Il + llellt! + Wt + 19125 ) liwr,wa)ll
Hence, the weak convergence of {(un,v,)}n in W gives that

lm (L(ux,vy), (Un — ux, vy, —vy)) = 0. (3.17)

n—oo

Moreover, {L(ty,v,)}y, is bounded in W*, where W* denotes the dual space of W. Furthermore, there exists
a subsequence of {(uy, vy)}n still denoted by {(un, vyn)}n and some functional £ such that

L(tup,v,) =& weakly in W™,
that is,

lim (L(tn,vn), (Wi, w2)) = (£, (w1,w2)),

n—oo

for all (wy,w2) € W. In particular, we have

m (L (tn, vy), (ux, v2)) = (€, (ux, v3)).

n—oo

Furthermore, by (3.13) and I’ (uy,v,) — 0, we get

«Q
M(aX)(E, (wr,wa)) = X [ Hu(z,ux, va)wr + Hy(x, ux, vx)wzdz + 7/ lux|*2up|vs|Pwrde
]RN

RN s

+£/ oAl 205 ux | wsda, (3.18)
Ps JrN
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for all (wy,ws) € W. Taking (wy,ws) = (ux,vy) in (3.18), we obtain

M(af\)({,(ux,mﬁ =\ Hy(x,ux,vx)uyde + A Hv(;c,uA7v>\)v)\dx+/

|ux|*[vx|’d,
RN RN RN

which together with (Hs) and (Ms) implies that

(& (ur,va)) = 0. (3.19)
Since {(tn,vn)}n is a (PS) sequence, we deduce from Lemma 2.4 and (3.14) that
o(1) = (I'(un,vn) — I}, (ux,v), (Un, vn) — (ux, v))
= M| (uns v) [P (wn, v ) [P + M ()] (ur, va) [P

= (L(un, vn), (ux, vx)) M (||t 0n) ) = (L(ux, ), (un, vn)) M ()

- )\/ [Hy (2, un, vn) — Hy(z,ux, v))](un — uy)da
RN

- A [Hy (2, U, vn) — Hy(z,ux, v2)](vn — vp)de

RN
o B a—2 a—2

_ [? N|Un| (|wn|* 2wy — |un|*ur)(un — uy)dx
s JR
5 @ B—2 B—2 d

- E . |tn|* (Jvn| Un — |Vl o) (v — vy)d
S

= M(aX)(L(up, vn) — L(ux, vr), (Un, v) — (ur,vr)) — /RN tn, — ux|¥|vn — valPdz 4 o(1), (3.20)

where I, is defined as follows:
1 » » 1 Y
I, (ux,vy) = =M (aX)||(ur,va)[|P — A H(z,uy,vx)dz — — [ux]|*|val” d.
p RN Dbs JrN

S

Here we use the following facts:

lun|* 2wy (ty, — uy) — 0 strongly in L%(RN)7

lua|*"2ux (v, —vy) — 0 strongly in L%(RN), (3.21)
and

lim |vn|ﬁ|u,\|a_2u,\(un —uy)dz =0,
n—oQ RN

lim |t |*[0r]|? =20 (v — vp)dz = 0. (3.22)
n—oo N
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Now we give a proof of (3.21). Notice that for any measurable subset U C R, we have

(a—=1)/(ap})
/ Al 2ua (un — up) [P/ *da < (/ |“A|p3d$> [|tn — ux
U U

((‘Y 1)/((¥Is)

(a=1)/a
2

.
Psdgx

)

and

* NS s
/ oAl P2 0x (v — 02) o/ Pda < (/ |UA|p"’d$> [[on = vallp:
U U ’

N B/
<C (/ |v,\|p5dw) .
U

It follows from (uy,vy) € LP* (RN) x LPX(RV) that |ux|® 2wy (un — u)| s and |ux]|? =20 (v, — v2)| 7 are equi-
integrable in RY. Clearly, [ux|*~2ux(u, —uy) — 0 and |vx|?~2vy (v, —vy) — 0 a.e. in RY. Hence (3.21) follows
from the Vitali convergence theorem.

Since {|v,|?}, is bounded in LP</#(RYN), we obtain by (3.21), a 4+ 8 = p’ and the Holder inequality that

Q‘f*

lim [on [P Jun |~ 2up (ty — uy)dz = 0.
n—oo N

Similarly,

lim |un|a|v>\|ﬁ72v,\(vn —wvy)dz = 0.
n—oo RN

Therefore, (3.22) holds.
It follows from (3.20) that

M(af) lim (L(up,vy) — L(ux, v2), (Un, vn) — (ur, v2))

n—oo

= lim |t — ux|*|vn — ve|?da. (3.23)
n—roo RN

Applying (3.20) and (3.23), we deduce that

6r = Tim [, — tal*[vn — valPde = M(a2)[0f, = (€, (ur, v2))] < M(a})ak,
n—oo RN

this together with (3.15) implies thatlimy_, ., 0y = 0.
Let us now recall the well-known Simon inequalities:

€ — a7 < {Cp (1€P72¢ = [nP~2n) - (€ =) for p>2
ol <

~ (3.24)
Cy [(1€17726 = 1nP2n) - (€ = )] " (P + InP)E P2 for 1< p<2,

for all £, € RY, where C)p and @, are positive constants depending only on p.
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According to the Simon inequalities (3.24), we divide the discussion into two cases. We first consider the case
p > 2. By (3.24) and (2.2), we have

1

(L, vn) = L(ux, va), (Un, vn) = (ux = va)) 2 5 ll(Un, va) = (ux = va)IIP
P

op P/}

> = (/ [tr, — un|*|vn — 1))\|5dac> . (3.25)
Cp \Jr~y

Combining (3.25) with (3.13) and (3.23), we get
c,.t 2
oy > %M(oﬂ;)é;’?. (3.26)
P

Define
A" =sup{\ > 0:3d, > 0}.

Now we claim that A* < oo. Otherwise there exists a sequence {A,}r, with Ay — oo as k — oo, such that
dx, > 0 and ay, € (0,1], thanks to ay — 0 as A — oo. Using (3.20) again, we obtain

M(O‘I;\k)[aik =& (u)\k’Il})\k)” =0,
which together with (3.26) implies that

Pp;—p py—p O_*l
[M(aX, ) (e}, — (& (un,,van)] =) 77 = Cp M(af, ). (3.27)
p

By (M3), we have M (t) > mgt? for all ¢ € [0, 1]. Therefore, we conclude from (3.27), (£,uy) > 0 and {ay, }x C
(0, 1] that

pew) wizn  Cpt p Gt o12”
Oy : 2 (akk - <§’ (uAk7v)\k)>) bs :

(M(af,))¥" > Cpp (mo)P¥ oy *

Y

Hence, we obtain

Z@—o+np) _ Oyt
ay, > C
p
thanks to o > 0 for all k. This contradicts with (3.15), since 0 < 61 < (p% — p)/p by assumption (Ms). In

conclusion, the assertions is proved.
Thus, for all A > \*

lim [y, — ux|*|vn — val?dz =0,
n—oo JpN

this together with (3.20) gives that (uy,v,) — (ux,vy) strongly in W as n — occ.
Finally, it remains to consider the case 1 < p < 2. Now by (3.24) and the Holder inequality

H(unvvn) - (UA,;L,UA)HP

IN

Cop (L (1, v0) = L1, 02), (1t 0) = (s w72 (1t 00) |7 + [[(a, 02)|7) E 77
Cop (Lt v) — L1t 02), (1 0) — (10, 03772 (1| (s 0) [PETP2 4 || (i, 0 [[PP/2)
C

[<L(’Lbn7 vn) - L(U)\, U)\), (una Un) - (’LL)\, 'U)\)>]p/27 (328)

IN

IN
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where C' is a positive constant. Combining (4.9) with (3.13) and (3.23), we have
L —2p7 ~—2p M 2
85 > €, O P MP ()63,

Now we claim that there exists A* > 0, which defined similarly as above, such that §, = 0 for all A > \*.
Otherwise there exist sequences {Ag}x, with Ay — 0o as k — oo, such that 05, > 0 and «,, € (0,1], thanks to
ay — 0 as A — oco. Using (3.20), we obtain

Mo}, )(@f, = (& (ur.,va0))) = Ox,-

Similar to the case p > 2, we have

p(ps—201—2) 2p; ~2pt 2
ay, >C,.cC Pi/P(myg)?,

which contradicts with the fact ay — 0 as A — oo, since 0; < (p% — 2)/2 by assumption. A similar discussion

as the case p > 2 gives that (u,,v,) — (ux,vy) strongly in W. In conclusion, we get (u,,v,) — (ux,vy) in W

as n — 0o.

Case 2. inf ||(un, vy,)|| = 0. Either 0 is an accumulation point of the sequence {(uy,vy)}, and so there exists a
n

subsequence of {(un, vy)}n strongly converging to (ux,vx) = (0,0), or (0,0) is an isolated point of the sequence
{(tun,vn)}n and so there exists a subsequence, still denoted by {(un, vn)}n, such that inf,, ||(u,, vy,)|| > 0. In the
first case we are done, while in the latter case we can proceed as Case 1. (]

Proof of Theorem 1.2. By Lemma 3.1, Lemma 3.2 and Lemma 3.5 we know that I satisfies all assumptions
in Theorem 2.5. Then for all A > A, > 0, there exists (ux,vy) € W such that (uy,vy) is a solution of system (S)
by Theorem 2.5. Furthermore, limy_, o ||(ux, vx)|| = 0. O

4. PROOF OF THEOREM 1.3

Let

1
T(u,v) = —.A(||(u,v)]|?) / h(zx)f(u,v)dx — %/ |u|*|v|?dz,
p Ps JrN

S

for all (u,v) € W.
By (M) and (Ms), (V1) and (f1), we deduce that Z is of class C! and a critical point of Z is a weak solution
of system (S').

Lemma 4.1. For any A € (0,1), there exist a1, p1 > 0 such that I(u,v) > a1 > 0 for any (u,v) € W, with
[I(w, v) || = pr.

Proof. By using (3.1), Lemma 2.2 and (2.2), we obtain for all (u,v) € W with ||(u,v)| <1

1
T(u,0) 2 2 A (V)]0 0) [ - 0/ ‘.
1 op A pg P
> )| = Iz w0l = = CH o).

By the Young inequality, we have for any € > 0
op

Op—q
M 3
Pi—a

C

ol < sl )| + =5 (cc,

P:—a
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thanks to g < fp. It follows that

5

6p .
T(uv) > (L e (CCL |k G v
(u,v) > ’ (1) =& ) [l(u, v)[|”P — e~ 7= e 1Pl oz A [[(w, ) [P

S

Now we choose € = ‘//gg). Then,

(1)

__4a Op Ds
Tu,v) > @l ol = (LY " (cenn) e )™ = L)
T2 ’ 2p N = Py

S

cry oL
since A € (0,1). Let n(t) := & (1)t% — —=tPs forallt > 0. Clearly, by p; > fp, there exists o = (

p
such that

i (0 \TT 1 g
n(uo)=max77(t)=///(1)‘“3‘9‘“< ) ( ) =0

120 207 % 2

Taking p1 := ||(u,v)|| = o > 0, we obtain from condition (h)

Z(u,v) > npo) — <//21(91))9q (CCS;

op
6p—q
hH Pt ) > 0,

PE—q
Therefore, the proof is finished.

Lemma 4.2. Set
cx o= inf {Z(u,v) : (u,v) € B, },

where B, = {(u,v) € W : ||(u,v)|| < p1} and p1 > 0 defined in Lemma 4.1. Then cx <0 for all X € (0,1).

1
)P:*BP

Proof. Let 29 € 2, 0 < R < 1 such that Bagr(zg) C 2. Choose ¢, € C3°(Bagr(xo)) satisfying 0 < ¢, 1 < 1,
l(p, )| < C(R), and fBR(zo) [(p,¥)|*dx > 0, where C'(R) > 0 only depending on R. Then for all ¢ € (0,1)

small enough, we have by (f2) and (Hs)

1 PI\
I(to,t0) = A ([t(o, D)) - /Q @) (b, t0)de = /Q ol [ de
< 1( max M(ﬁ)) Pl = [ ).t
=~ p \¢e€l0,C(R)] ’ Q ’
1
<2 (nm, M©) Pl 0l - a0 ot 1) [ [0 as

=) (5 max, M) o [ (el (inf he) ) oo

P €€l0.C(R
<0,

thanks to 1 < ¢; < p. Hence the lemma is proved.

O

By Lemmas 4.1-4.2 and the Ekeland variational principle, there exists a sequence (uw) C B,, such that
e < I(up,vn) < x4+ L and Z(u,v) > I(un, vn) — L|(u,v) = (upn,v,)|[for all (u,v) € B,,. Then a standard

procedure gives that (u,,v,) is a bounded (PS)., sequence of Z.

CX
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Lemma 4.3. There exists \** > 0 such that, up to a subsequence, {(un,vyn)}n strongly converges to some
(ux,vyr) in W for all A € (0, \*).

Proof. Since {(un,vn)}n C By, , there exists a subsequence of {(uy,, vy,)}» still denoted by {(uy, vp)}r, such that
(tns vn) = (ux,vy) in W and (up, v,) — (ux,vy) a.e. in RN,

Case 1. inf ||(un, v,)|| = d > 0. Reasoning as in Section 2, we obtain
n

/RN [ o]
ol e

By applying the boundedness of {(un,vn)}n in W and [6], (Thm. 4.9), there exist (ux,vy) € W, ay > 0 and
dx > 0 such that up to a subsequence, still denoted by {(un,vpn)}n,

ps/(P5—1) dz < C

and
Py /(ps—1) dz < C.

(Un,'l}n) — (’LL)\,’U)\) Weakly n VV7

(Un;vn) — ('U:)\,'U)\) a.e. in RN7
1ty )| = 5, / iy, — 10520 — w3 [Pz — 6y,
]RN

[t |2t [0 P — un|* 2uplva]?  weakly in L) (RY)
|vn\ﬁ_2vn|un\°‘ — |v)\|5_2v)\|\uA|“|" weakly in L(p:)’(]RN)7 (4.1)

where (p})" = pi/(p% — 1) )

v:
Now we show that [y h|(tn,vn) — (ux,vr)|?dz — 0. Since h € L?:-4(RY) and {(un,vn)}n is bounded in
W, there exists R > 0 such that

/ h|(tn, vn) — (ux,vy)|%da < / |
RN\ Bgr RN\Bgr

for any € > 0, where Bp is the ball in RV with radius R > 0 centered at point 0. By the boundedness of
{(tn,vn)}n in W, the compact embedding (see Cor. 7.2 of [17]), and h € LS (RY), for above € > 0, there exists

loc
ng > 0 such that fBR h|(tn,vn) = (ux,vr)|%d2 < § as n > ng. Therefore, we arrive at

<
27

(rs—a)/v;
pZ/(pZ—q)dx> | (e, vm) — (i, V) g* <

/ h|(tn, vn) — (ux,vy)|%da < / h|(wn,vn) — (ux,vy)|?de +/ Rl (tn,vn) — (ux,vy)|%de < e,
RN ]RN\BR BR

as n > ng. This means that lim, o [

h|(tn,vn) — (ux,vy)|?dz = 0. By (f1), we have

hfu(tn, Un) (U — ux) + A fy(Un, Un)(Un — uy)de
RN

<c / Bt )7~ 11, 0) — (102, 03)
]RN

1/q
so( h|<un,vn)—(ux,m>qu) |
RN
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which implies that

lim hfu(Un, U ) (U — ux) + A fy(tn, vn) (v, —vx)da = 0. (4.2)

n—oo RN
Similar to Section 3, in accordance to the weak convergence of {(un,v,)}, in W, we have

lim (L(ux,vy), (uy — ux, vy, —vy)) =0, (4.3)

n— oo

where the operator L is defined in Section 3. Moreover, {L(uy, vy)}n is bounded in W*, where W* denotes the
dual space of W. Furthermore, there exist a subsequence of {(un, v,)}n still denoted by {(uy,v,)}, and some
functional £ such that

L(up,v,) =& weakly in W™,
that is,

lim (L(un,vn), (W1,w2)) = (£, (Wi,w2)),

n—oo

for all (wy,w2) € W. In particular, we have

lim (L(tn, vn), (ux,vr)) = (& (ux,vr))-

n—oo

Since {(un, vn)}n is a (PS) sequence, by using the same discussion as Section 3, we deduce

0(1> = <Il(un’ Un) - It/n (UN’U/\)’ (unvvn) - (u,\,z))\)>

= M(@)i0f — (& Con o)) =X [ unl el +3 [ s fea P + o)
RN RN
= M(a})[eX — (& (ur,va))] — A/RN up — ur|*vy, — val?da + o(1)

- M(OZZ;\ML(’U,”,’U”) - L(U)\,’U)\), (unavn) - (U)\,’UA» - A/wv |un - u>\|a‘vn - ”U)\|’8d:L‘ + 0(1)7 (44)

where Z,,, is defined as follows:

1 A
Lo,y (un,vy) = fM(ozi)H(uA,v)\)Hp - )\/ hf(ux,vy)dz — —*/ \uA\a|vA|Bdm.
p RN Ps JrN

Here we apply (4.2) and the following facts (which can be proved by using the same discussion as Sect. 3):
[ux|*"2uy (up — uy) — 0 strongly in L%(RN),

lua|* 2w (v, —vy) = 0 strongly in L%S(RN),

and

lim |vn|ﬁ|u,\|o‘_2u,\(un —uy)dz =0,
n—oo RN

lim |t |*[0r]|? =20 (v — vp)dz = 0.
n—oo N
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It follows from (4.4) that

M (X)) lim (L(un,vy) — L(ux,v), (Un, vn) — (ux,vy))

n—oo

=) lim |1y, — ux|*|vp — ve|Pda. (4.5)
n—o0 RN

According to the Simon inequalities (3.24), we divide the discussion into two cases. We first consider the case
p > 2. By (3.24) and (2.2), we have

<L(unavn) — L(ux,vy), (um V) — (ux — UA)> > Cp_lH(umUn> - (UA - UA)HP

) 5 p/p;

—P— a

> C,C, (/RN [tr, — wn|%|vn — val dx> . (4.6)
Combining (4.6) with (4.5), we get

A6y > Cp_:lOlle(a’)’\)df%. (4.7)
Define
. inf{A\>0:0d) >0}, if d)\ #0,
A _{1, if 05 =0.

If 0 # 0, then A** = inf{\ > 0:J) > 0} > 0. Otherwise, there exists a sequence {\x}, with d5, > 0, such that
Ar — 0 as k — oo. Thus, (4.7) implies that
1-p/p: —1 4
Aeby PP > OO M (o). (4.8)

In view of Lemma 4.1, we know that {ay}, is uniformly bounded for A, since p; is independent of A. Clearly,
{x}x is also uniformly bounded for A. Hence, up to a subsequence, by (4.8) we can assume that ay, — 0 as
k — oo. Without loss of generality, we assume that {ay,} C (0, 1]. Then, using a similar discussion as Section 3,
we get

p—(01+1)p*/p: —1—1 *
> G5 mo)

which is a contradiction, and hence A** > 0. Thus Jy = 0 for all A € (0, \**), that is, for all A € (0, \**], we
obtain

lim [y, — ux|*|vn — val?dz =0,
n—oo JpN

this together with (4.4) gives that (u,,v,) — (ux,vy) strongly in W as n — oc.
Finally, it remains to consider the case: 1 < p < 2. Now by the Simon inequality and the Holder inequality

ORI RN
< G (Lt vn) — L, 02), (1) — (i, 03))JP/2 (|t o) [P 4 | (r 02 [7) 27772
< C [(L(un,vn) - L(U)\, ’U/\), (uruvn) - (u)\yv)\)>]p/2 ) (49)

where C' is positive constant. Combining (4.9) with (4.5) and (3.23), we have

(ABVPF > O O /P P ()63,
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Now we claim that there exists A** > 0, which defined similarly as above, such that d, = 0 for all A € (0, A\**).
A similar discussion as the case p > 2 gives that (uy,,v,) — (uy,vy) strongly in W.
In conclusion, we get (un,v,) — (ux,vy) in W as n — oo.

Case 2. inf ||(un,vs)|| = 0. Either 0 is an accumulation point of the sequence {(uy, vy,)}n and so there exists a
n

subsequence of {(un,vy,)}, strongly converging to (ux,vy) = (0,0), or (0,0) is an isolated point of the sequence
{(tn,vn)}n and so there exists a subsequence, still denoted by {(ws, vy)}n, such that inf, ||(w,, vy,)|| > 0. In the
first case we are done, while in the latter case we can proceed as in Case 1. O

Proof of Theorem 1.3. By Lemmas 4.1-4.2, there exists a (P.S)., sequence {(t, vp)}n, where ¢y < 0 defined
as in Lemma 4.2. Moreover, by Lemma 4.3, there exists A** > 0 such that, up to a subsequence, {(un, vn)}n
strongly converges to (ux,vy), and ¢y = Z(ux,vy) < 0 and Z'(uy,vy) = 0, for all 0 < A < A\**, which imply that
(ux,vy) is a nontrivial solution for system (S’). O

In conclusion, we give the following example to illustrate a simple application of our results.

Example 4.4. We consider the following system
(a+0)|(u, 0)[IP)[(=A)ju + V(@) |ulP~>u] = Ah(x)|(u, v)|7 2w + 5 [ul]*Pulv|® o RY
(a+b]|(w, v)[P)[(=A)g0 + V(@) [v|P~20] = An(@)|(u,0)[9720 + 70 20lul* in RN,

pg
where a > 0,b > 0,a+b> 0,1 <q¢g<pi,l<apfanda+p=p0<he Lm(RN)ﬂLOO(RN) with
inf cpn h(x) > 0, and v € (0,1). For this case, M (t) = a + bt, H(xz,u,v) = éh(m)|(u,v)|q and

b A
— | (u,)||? — */ h(z)|(u,v)|?dz — l*/ |u|*[v|’dz.
2p q Jry Dy Jry

Obviously, M satisfies (M1) with 6 = 2, (Ms), and (Ms) with mg = b and 0, = 1, H satisfies (Hy), (Hz) and
(M3) with pw = q. If ¢ € (0p,p%), Then by Theorem 1.2, for each v > 0 there exists \* > 0 such that for all
A > X* system (3.16) admits at least one nontrivial solution (ug,vg) in W with positive energy. If 1 < g < p,
then by Theorem 1.3, for each A > 0 there exists v* > 0 such that for all v € (0,7*] system (3.16) admits at
least one nontrivial solution (ug,vo) in W with negative energy.

a
—|

I(w,v) = ZllCwo)l” +
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