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1. Introduction. 

We study in this paper the existence of periodic functions v ß I• -• C 
which satisfy the equation 

(1) -v" - v(1 - Ivl). 

As observed in [2], the functions 

(2) Ae i•x", where k • 1R, A • C, A 2 + k 2 = 1, 
are such solutions. 

For fixed T, we also study the number of solutions of (1) with principal 
period T. The problem is that (1) has too many solutions, that is, if v is 
a solution, then c•v(xo q- x) is also a solution when Ic•l = 1 and x0 G 11•. 
In order to avoid redundancy, we shall first obtain a "canonical form" of 
solutions of (1). Namely, let V be a periodic solution of (1). We may 
suppose that x = 0 is a maximum point for IVI 2. Then one can find e 
obeying lel < 1 and c• • C, Ic•l = 1 such that v(x) = c•V(ex) satisfies (1) 
and the conditions 

(3) Vl(0) =a> 0, v•(0) =0, v2(0) =0, v•(0) :b_•0, 

where v = Vl + iv2 and a: max Ivl. It is clear that the system (1) together 
with (3) gives all the geometrically distinct solutions of (1); that is solutions 
that cannot be obtained from one another by the preceding procedure. 

In what follows, we shall simply write "T-periodic solutions" instead 
of "solutions of principal period T". Our first result concerns the existence 
and the multiplicity of "T-periodic solutions". 
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2. The main result. 

Our main result is the following 

Theorem. (i) If T _• 2•r, there are no T-periodic solutions of (1). 
(ii) If T > 27r, there is exactly one real solution v of (1) and (3), that 

is a solution for which v2 -- O. Moreover, v depends analytically on T. 
(iii) There is some T• • 27r such that, for 2• • T • T1, (1) and (3) 

has no other T-periodic solutions apart those given by (ii) above and 
wherek=2•T -1 A= •-k 2 

(iv) When T • T•, (1) and (3) has other T-periodic solutions besides 
those two. 

(v) For any T • 2•, the number of T-periodic solutions is finite. 
(vi) For large T, (1) and (3) has at least 5T2/8+O(T log T)T-periodic 

solutions. 

Remark. In fact, we shall find all the solutions of (1) and (3). More pre- 
cisely, we shall exhibit a set l] = • C I• 2 such that, roughly speaking, 

(i) if (a,b) • l], then the solution of (1) and (3) has a finite lifetime 
for positive or negative x. 

(ii) if (a, b) E cqi], we obtain the solutions given by (2) or (ii) of the 
theorem. 

(iii) if (a,b) E Int l], then v • 0, v has a global existence, v I and 
d v 

dx Ivl are periodic functions. For such (a, b), if To is the principal period of 
ß 

Ivl and %9 is (globally) defined so that v = e '• vl, then v is periodic if and 
only if •(To)-•(0) • 7rQ. Given q- • • Q, q > 0, (ra, n) = 1, the set 

(4) ((a,b) • Int f•; c2(To ) - c2(0 ) = 7rq} 

is a smooth curve, which for example can be parametrized as (a, b(a)), where 
a0 < a < 1 and a0 depends on q. If To(a) denotes the principal period of 
Ivl for the initial data (a,b(a)), then limT0(a) = oc and this curve raises 
a smooth curve of periodic solutions of (1) and (3), with principal period 
T(a) = nTo(a) ( if m is even ) or T(a) = 2nTo(a) ( if m is odd ). 

The bifurcation diagram of the distinguished solutions is depicted in 
Figure 1. 

At present we do not know whether the curves q -const. are similar to 
(1) or (2) in Figure 1. In other words, we do not know whether T increases or 
not along these curves. If the first possibility holds, the minimum number of 
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sohitions given by (35) is the exact one. After the proof of the theorem, we 
shall give a sufficient condition for this happens (see the Remarks following 
the proof). 

Finally, the last paragraph is devoted to the existence, in the whole 
ll• 2, of 2-periodic solutions which are geometrically distinct to the real ones. 
Some existence and non-existence results are obtained. 

v 

v=O 2• T• 

"Ae ikx "solutions 
q = const. 

re, solutions 
T3 T 

2 

Figure I 

3. Proof of Theorem. 

Let us note first that 

(5) a < 1. 

Suppose the contrary. Let M > 1 be such that rain Iv[ < M < max Iv . 
Let I be an interval such that Iv[ > M in I and Iv -- M on 0I. (Note 

that such an interval is necessarily finite). Since 

(Iv12)" 21vl(Ivl - 1) > 0 

in I, it follows that Ivl _< M in I, which contradicts our choice of I. 
Next we shall prove that 

(6) b 2 _< a2(1 - a2). 

Indeed, for small x we have 
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Vl (X) --- (2 -- •(1 - a2)x 2 + O(x3), v2(x) -- bx + O(x3), 
so that (6) follows from the fact that x = 0 is a local maximum. 

Now letQ={(a,b)ß(0,1]x[0,1]; b 2_<a2(1-a2)). 
We have obtained that if (1) and (3) raises a non-null periodic solution 

such that x = 0 is a local maximum, then necessarily (a, b) ß Q. 
We shall first study the case (a, b) ß 0Q. 

Case I ß If b = av/1- a 2, it follows that v(x) = ae ik•:, where k = 
v'1 - a 2 . Indeed, (2) provides a solution for (1) and (3) in this case. 

Case 2 ß If b = 0, one gets easily that v2 = 0. If a = 1, we get 
the trivial solution v(x) -- 1, so that in what follows we shall assume that 
a ß 

Note first that Vl cannot be positive (negative) on an infinite interval 
if v is periodic. For, otherwise, Vl would be a periodic concave (convex) 
function, that is a constant function. This is impossible for our choice of a 
and b. 

Let x•, x2 be two consecutive zeros of Vl. We may suppose that v(x) > 
0ifx• < x < x2, so that Vt(Xl) 7> 0, Vt(X2) < 0. Ifx3 is the smallest x > x2 
such that v(x3) = 0, it follows that v(x) < 0 if x2 < x < x3. 

If we prove that x2 - Xl > 7r, it will also follow that x3 - x• > 27r and 
that there is no x ß (x•,x3) such that v(x) - 0 and v•(x) > O. We will get 
that the principal period of v must be > 27r. This will be done in 

Lemma 1. Let f ß 1• -• [0,1] be such that {x; f(x) = 0orf(x) = 1} 
contains only isolated points. Let v be a tea1 function such that v(x• ) = 
v(x2): 0, add v(x) > 0 in (Xl, x2). Iœ, [or x ß [Xl,X2], 

(7) -v" -- v f, 

then x2 - x• > 7r. 

Proof. We may assume that Xl --- 0. Multiplying (7) by •(x) := sin x• and 
integrating by parts, we obtain that 

vc2 > v f 99 -- ( v• , 

that is x2 > •r. [] 
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Incidentally, this proves (i) of the Theorem. 
Returning to the Case 2, we shall explicitely integrate (1) and (3) as 

one usually does for the Weierstrass Elliptic Functions. Multiplying (1) by 
//1, we find 

(8) t2 1 4 a 2 1 4 V 1 ---- --//12 q- •V 1 q- -- •a . 

It follows that, as far as the solution of (1) and (3) exists, we have 

I//ll < a and v•l _< Fa 2 - «a 4. Hence the solution of (1) and (3) is globally 
defined. 

Note that v• (0) = 0, v•'(0) < 0, so that Vl decreases for small x > 0. 
Moreover, Vl(X ) < 0 for 0 < x < r, where 

r = sup{x > O; //i(Y) > 0 for all 0 < y < x}. 

Indeed, suppose the contrary. Then, using (8), we obtain the existence 
of some r0 > 0 such that vl(ro) = a, ro < r. If we consider the smallest 
r0 > 0 such that the above equality occurs, we have vl (x) < a if 0 < x < r0. 
Since vl (0) = vl (r0) = a, it follows that there exists some 0 < rl < r0 such 
that v•(rl) = 0, which is the desired contradiction. Hence we have 

(9) V/ _ 1 4 //• ---- -- •22 • •24 -- //12 q- 3//1 < 0 in (0, r). 

It follows that, if 0 < x < r, then 

(10) 

•v a 1 dt = x which gives (•,) V'«•4-•'+a'-« a' , 

/o a ,- = := 
From (1), we obtain //i(T 

//1 (4T q- X) --- //1 (X), SO it is easy to see that v is periodic of principal period 
T(a)=4r(a). 

Now (10) can be rewritten as 

•0 1 1 (11) r(a) '-- F(1_½•)[1__•_(1+½•)] 
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so that r increases with a and 

lira T(a)= lira T(a)= +C•. a'%0 •' a/1 

Since T'(a) > 0, it follows that the mapping T(a), , a := a(T) is 
analytic, so that (ii) is completely proved. Moreover, 

lim a(T)=O and lim a(T)-I T"•2•r T?• • 

so that the diagram of "real" solutions is that depicted in Figure 1. 
Next we return to the points (a, b) which are interior to •. 

Case 3' Let (a, b) E Int •. Write, for small x, 

(12) v(x) = ei•(X)w(x) with •2(0) - 0 and w > 0. 

Then w satisfies 

a2b 2 

(13) -w"= w(1 - w a) w3 , and 
w(O) = a, w'(O) = o, while is given by 

ab 
(15) c/= , = o. 

Hence, if the system (13) and (14) has a global positive solution, it 
follows that (12) is global. Moreover, if w is periodic of period To, then 

(16) v(nTo + x) = ei'•(Tø)ei•(X)w(x) for 0 < x < To, for n = 0, 1,... 

so that (1) and (3) gives a periodic solution if and only if c2(To ) 
We shall prove the global existence in 

Lemma 2. If (a,b) • Int f•, •hen (13) and (14) has a global positive 
periodic solution. 

Proof. Note that the assumption made on (a, b) implies that w"(0) < 0, so 
that, multiplying as above (13) by w', we obtain , for small x > 0, 

(17) 
1 4 a2b • w '2 --w 2 4- 5w w= 4-a 2 la 4 b 2 = -5 + , and 
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V/ _ 16/4 D2 (18) w'= -- __W 2 qt_ «W 4 __ 6/2b2w-2 qt_ 6/2 • qt_ . 

Now (17) implies that w and w' are bounded as far as the solution 
exists and, moreover, that inf{w(x); w exists ) > 0. 

It follows that w is a global solution. Let 

v-=sup{x>0; w'(y) <0 for all 0<y<x}. 

Note that (18) is valid if 0 < x < v-. Let c be the only root of 

1 4 X 2 a2b2x-2 + a2 1 a4 b • f(x) :- •x - - - • + -0 

which is positive and less than a. 
Since f(x) < 0 if 0 < x < c or x > a, x close to a, (17) implies that 

(19) c_<w(x)_<a for all xCI•. 

Claim 1. lira w(x) = c. 

Proof of Claim 1. If v- < oo, it follows that w'(v-) - 0. Now (17) together 
with the definitions of v- and c show that w(v-) = c. If v- = oc, then we 
have lira w(x) _> c. If we would have lira w(x) > c, there would exist 
a constant 34 ) 0 such that w•(x) _< -34 for each x ) 0. The latest 
inequality contradicts (19) for large x. 

As we did before, for 0 < x < v-, (18) gives 

(20) 

(21) 

It follows by a reflection argument that w(2v-) = w(0) -- a, w'(2v-) = 
w'(0) = 0, so that w is (2v-)-periodic. [] 

Next, in order to simply the following computations, it is useful to 
replace the (a, b)-coordinates by other ones. When (a,c) as above, asso- 
ciate with (a, b) the point (A,C), where A = a 2, C = c 2. This change of 
coordinates maps Int f• analytically into 
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•v'={(A,C); 0<C<A, 2A+C<2}(seeFigure2). 

2/3 

Figure 2 

It follows from the above discussion that to each (A, C) C w, there 
corresponds a solution (w, •) of (13)-(15) such that w and •' are periodic 
of period To given by ( after a suitable change of variables ) 

T O -- To(A,C ) = 2x• (y2 q_ 1)-1[(2_ 2A_C)y2 q_ (2- A- 2C)]-ldy. 

Moreover, •(0) = 0 and 

,-(A,C) (23) c?(To) = v/2AC(2 - A - C) w-2(y)-•dy, 
d0 

where r(A, C) = • •To(A, C). 
The change of variables w(y) = t yields, with •?(A, C) := •?(To (A, C)), 

(24) c?(A, C) = 

v/2AC(2-A-C) (2-2A-C)y 2+(2-A-2C) Ay 2+C' 
and (22), (24) show that (A, C). > (To,qv) is an analytic map. Moreover, 
(22) gives that 

(25) To > 7r, lim To(A, C)= 7r, inf To(A, C) > 
(A,C)•(O,O) I(A,C)[_>a>o 

A lower estimate for 9v is given by 
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Lemma 3. c 2 > • and lim c2(A , C)= . (A,C)-•(0,0) • 

Proof. If we put y = V/-•z in (24), we obtain 
(26) 

c2(n, C) =•2(2 - n - C) C(2 - 2A - C)z 2 + n(2 - n - 2C) z 2 + 1' 
so that the second assertion follows from the Lebesgue Dominated Conver- 
gence Theorem. 

For the first one, it is enough to show that for given 0 < k < 1, the 
function 

2 

(0, 
is increasing. 

A short computation, yields that 

V/2_(k+i)A [k(2_(k+2)A)y•+(2_(2k+l)A)]ady > O. [] 

Incidentally, this shows that ½v has no critical points and that the level 
curves ½v=const. are analytic and can be parametrized as 

(28) (A(k),kA(k)). 

Lemma 4. lira O(A) = oc. 

Proof. It follows from (26) that 

½(A)> •2(2 2(k+l) k+2 j•o øOV / k x 2 + 1 d z --) k(2_(k+2)A)z2+2_(2k+l)Az2+l , 
and this integral tends monotonically to +oo by the Beppo Levi Theo- 
rem. [] 

From the above Lemma, we see that the parametrization (28) is valid 
for k • (0, 1). Moreover, (27) shows that the mapping 

(29) k, , A(k) 
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is analytic. Of course, the level line •2 =const. is non-void if'and only if 

const.> •. This will be assumed in the sequel. We shall prove that (29) 
provides a decreasing mapping. Indeed, if we consider now 0 as O(A, k), 

o½ 
then it follows from (27) that •-• increases with k. Hence, if/q </½2, then 

O(A,k•) < O(A, k2); that is A(k) decreases with k. 

We obtain the existence of lim•/x A(k) := Ao and lim•%o A(k) := 
A• > Ao. From Lemma 3, Ao > 0. 

Claim 2. A• = 1. 

Proof of Claim 2. It follows from (26) and the Lebesgue Dominated Con- 
vergence Theorem that 

lim •2(A,C) = if 0 < A2 < 1 
(A,C)--•(A2,0) 

so that, taking Lemma 3 into account, we obtain that, given e > 0, there 
exists 5 > 0 such that 

ct < + 
if 0 < A < 1 - 5, 0 < C < 5. This completes the proof of the claim. [] 

At this stage of the proof, we know that the level lines •2=const. are 
analytic, all of them "end" at (1,0)and "begin" at (Ao, Ao) for some suitable 
0 < Ao < 1, Ao depending on the constant. Moreover, if q• < q2, the line 
•2 = q• lies below the line •2 = q2 (see Figure 3). 

Now Ao can be found implicitly, as •2 can be extended by continuity 
on the line segment MN. This shows that 

(30) q ½*(Ao Ao) 7r ,/_1 _- Ao : , = or , 
2 V2 - 3Ao 

Ao = Ao(q) = 12q2 _ 37r2. 



PERIODIC SOLUTIONS or THE EQUATION --Av _--v(1- [v[ •) 663 

N 
•-/3 

2/3 1 

Figure 3 

Returning to the proof of the theorem, note that (iii) and (iv) follow 
easily from the above calculation. Indeed, for small A and C, if 99(A, C) = 

TIZ . 
7r-- is a rational multiple of 7r, then r, _> 4, so that, taking into account the 

n 

fact that To(A, C) _> •r, it follows that for small A the period of v is at least 
4•r. Now the existence of T• follows from (25). 

In order to prove (v), note that the level line 99 = q contains a T- 
periodic solution if and only if 

(31) q = 7r'•, (m, n) = 1 andihere exists (A, C) on the level line •, if m is even 

such that T0(A,C) = •, if m is odd 
We shall prove that 

(32) lira T0(A C) = 2A+C/•2 ' 

Suppose (32) proved for the moment. Obviously, if c?(A,•, C,•) -• 
cx>, then 2A,• + C,• • 2. It follows from (32) that, for q large enough, 
To(A, C) > T if (A, C) is on the level line 99 = q, so that (31) cannot hold 
for such q. Hence, in order to prove v) it remains to show that, for given 
q, To , the set AA = { (A, C); c?(A, C) = q, To(A, C) = To } is finite. 

Let C• = {(A, C); 99(A, C) = q}. Since C• is an analytic curve, AA 
is finite provided that (1,0) and (Ao(q),Ao(q)) are not cluster points of 
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M. For (1,0), this follows from the fact that, according to (32), To(A, C) 
approaches +o• as A approaches 1 along ½•. In particular, To(A, C) is 
not constant along ½•. In order to see what happens in (Ao(q),Ao(q)), we 
perform the following trick: let 

•i:•U{(C,A); (A,C)•w}LJ{(A,A); O<A<I} 

(see Figure 4). 

Z/3 

,const. 

2/3 1 A 

Figure 4 

Obviously, (24) extends p to an analytic function p• in •v•. The change 
1 

of variables z = - in (24) shows that •(A,C) = ?(C,A). Note also that 

(27) continues to hold for k = 1. This shows that • has no critical points 
and that To(A, C) tends to +o• at the both ends of •=const. Hence, p 
can assume the same value only a finite number of times. 

All that remains to do to complete the proof of (v) is the following 

Proof of (32). Let A,• < 1, 0 < C,• < 1 be such that 2A,• + C,• / 2. Then 

f0 • d// (33) To(A,•, Cn) > 2x/• V/(V 2 + 1)[(2- 2An -C'•)V 2 + 2]' 
and the right hand side of (33) tends to +o• from the Beppo Levi Theo- 
rem. [] 
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Next we return to the proof of(vi) Takeq= 7rm (re, n) = 1 m > 
n/V•. Then the level line • - q is nonempty and smooth. If we put 

(34) 

/o ø• d y To(q) = 2vr• V/(y 2 + 1)[(2- 3Ao(q))y 2 + (2- 3A0(q))] 
24q2 - 67r 2 

- 
it follows from (32) that, along 90 = q, To assumes all the values between 
To(q) and +oc. Thus, for fixed T, (1) and (3) has at least one T-periodic 
solution corresponding to each q obeying 

T rn •, if m is even (35) q= 7r--, (re, n)= 1, m > n/x/'•, To(q) < 
n •r if m is odd 5-•, 

Hence it suffices to count, for large T, the number of elements of AUB, 
where 

(36) A= {(m,n);(m,n)= l,m iseven,m>n/vr•, 
24m2n 2 -- 6n 4 < (16m2n 2 -- 5n2)7r2T 2} and 

(37) B = {(m,n);(m,n)= 1,m is odd ,m > n/¾'•, 
96m2n 2 _ 24n 4 < (16m2n 2 _ 5n2)7r2T2}. 

Note that AUB D{(m,n); (m,n)--l, m_>n, rn<_ •-2-•2•7rT}. 
It follows that there are at least 

(38) Z (I) (m) 
l < m < v/-•-i •r T 

solutions, where ß is Euler's Function. Now a Theorem of Mettens (see [4]) 
asserts that the sum in (38) is 

(39) -rx 8 +O(TlogT). [] 
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Remarks. 1. It is obvious that (38) does not provide an accurate estimate. 
Nevertheless, one sees that the number of elements of A U B is O(T2). 

2. (35) counts all the T-periodic solutions if and only if To increases 
along 9o=q=const. as far as A increases from Ao(q) to 1. A sufficient 
condition is that (A, C), , (To(A, C), %o(A, C)) is a local diffeomorphism. 
This relies on the following fact: let w be an open connected set of lg: 2 and 
f ß w -• lit 2 a local diffeomorfism. If the level lines f2 =const. are connected, 
then f ' w -• f(w) is a global diffeomorfism. 

3. It follows from the proof that the diagram of bifurcation is, indeed, 
m 

as in Figure 1. For example, the level line •2 = q, q = •r--, raises a branch 
n 

of periodic solutions which starts from a solution of the form (2). Note 
that, on a level line, the solutions oscillate more and more as A / 1, in the 
sense that max Ivl and min Iv approach 1 and 0 as A approaches 1. It is 
also easy to see that, in Figure 1, the points T1,T2,Ta, ... are isolated. 

4. One may prove that, if a = max Ivl for a T-periodic solution, then 

(i) a 2 + (•_•)2 = 1 if v is given by (2); 
(ii) a 2 + (•)2 > 1 if v is a real solution; 
(iii) a 2 + (•_•)2 < 1 if v is a "complex" solution. 
5. We have seen that the solution of (1) and (3) is globally existent if 

(A, C) E W. The same happens if (A, C) E •T. There is nothing surprising 
in this, because starting with some (A, C) E Wl \ w means considering the 
"canonical form" of (1) with x = 0 a local minimum, this time. 

Let i21 be the inverse image of Wl with respect to the mapping (a, b), • 
(A, C). Considering some point (a, b), a _> 0, b >_ 0 such that (a, b) ½ f•l, 
it is easy to carry out once again (13)-(21) in order to prove that this time 
v has a finite left or right life time. 

4. Existence of non-trivial periodic solutions in 
We are concerned with the existence of double periodic solutions, that 

is of functions u ß ]•2 _• C solutions of 

(40) -Au = u(1 -I•1•), e 

such that there exist Wl, w2 E •2 linearly independent with 

(41) u(x-Fwj)-u(x), j- 1,2. 
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Of course, we have already obtained such solutions: take CO 1 = (2T, 0) 
with T > zr , co2 arbitrary and u a 2T-periodic real solution. Even simpler, 
one may take u=const., lul - 0 or 1. 

Therefore, we shall look for non-trivial solutions, that is solutions 
enjoying the property 

(42) there is no v ß Itl -• C solution of (1) such that u(x) = v(cqxl + c•2x•) for some c• • C, = 1. 

We start with a non-existence result. 

Proposition 1. If le01 , co2 are small enough, all the solutions of (40)-(41) 
are constant. 

We shall use in the proof 

Lemma 5. Let u be a solution of (40)-(41). Then 1•1 <_ 1 ( so that u is 
smooth ). 

Proof of Lemrna 5. We follow an idea from [2]. It follows easily from (40) 
that u • H11o½(I•2). Let 

P={XCOl+/•v2; 0_<X<_I,0_</•<_:}. 

Let 99 be a C•(I•2)-function such that ;v _> 0, ;v = 1 in a neighborhood 
of 0 and 9on(x) = 1 x , •c?(•) for r• _> 1. 

Multiplying (40) with (112 - • and integrating by parts, we get, 
as /g ---• cx3, 

n[l•l_>H n[l•l>_H n[l•l>H 

that is lul 5 1 a.e. It follows that u G L ø• , so that u may be supposed 
smooth. [] 

Proof of Proposition 1. Let (99n)n>O be an orthonormal basis of eigenfunc- 
tions of -A in Hpl(p) ( here "p" means periodic conditions on OP ) with 
corresponding eigenvalues (Xn)n>O. We may suppose ;v0 = 1, so that An > 0 
for all n _> 1. If Ill, M are small enough, then An > 2 if n _> 1. 
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Let u be a solution of (40)-(41) and write 

Integrating (40) over P, we find that co = do. Multiplying (40) by 
•,,, n _• 1 and integrating we obtain, if d,, • O, d,, = (•,, - 1) c,,] > [c,, . 
Since l u _• 1, we have 

Examining these formulae, 
constant. [] 

we see that cn = dn =Oifn_• 1 or uis 

Concerning the existence of solutions of (40)-(42), we have been able 
to prove it if P is a rectangle large enough. 

Proposition 2. Let P be large enough such that the first eigenvalue of 
1 -A in Ho1(R) is inferior to 1, where R = •P, then (40)-(42) has solutions. 

Proof. Let J ' Ho1(R) -• I41, be defined by 

1 Viii 2 -1- (l -- it 2)2. 

Then J is a Cl-function (see [3]), even and bounded from below. It 
is not difficult to see that it satisfies the (PS)-condition: 

(PS): if (u,•) C Ho1(R) is such that (J(u•)) is bounded and -• 0 in 
H-i(R), then (u,•) is relatively compact in Ho1(R). 

Now J(0) = 41- R and, if Cr91 is the first eigenfunction of -A in Ho1(R), 
then J(ekoi) < J(0) for small e. 

More generally, if the k-th eigenvalue is inferior to 1, one can easily 
see that there is some r > 0 such that J(u) < J(0) if u 
and I111- r. Here •2j denotes the eigenfunction corresponding to the k-th 
eigenvalue. 

It follows from Theorem 8.10 in [6] that J has at least k pairs (uj,-uj) 
of critical points which are different from 0. Let u0 be a critical point of J 
in R. Suppose R = (0, a) x (0, b).Define u: P -• C by 

= = = 
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where x = (Xl ,x2),x t = (2•/- X 1 ,X2),X tt --- (X 1 ,2b- x2),x'" = (2a- 
x• ,2b- x2). 

It is obvious that u satisfies (41). It is not hard to see that u0 is regular 
(see [5]). It follows then by a simple calculation that u satisfies (40). 

Finally, suppose (42) does not hold. Let /• = (a2,-c•) where c• = 
C•l + ic•2 is as in (42). Then u must be constant along each parallel to/•. 
Since any such line intersects the grid generated by P, it follows that u -_- 0, 
which is not the case. [] 
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