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ABSTRACT

In this article, we develop results on the behavior of �xed points
sets of set-valued pseudo-contractionmappings. Then, we inves-
tigate the notions related to the Aubin property and make use of
connectionsbetween the two involved set-valuednonnecessarily
Lipschitzian mappings to obtain results on the inverse of their
sum similar to those in the literature generalizing Lyusternik and
Graves theorems. By proximal convergence, we apply our results
to the sensitivity analysis of variational inclusions.
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1. Introduction

Studies about the inverse of sum of set-valued mappings have drawn in the last

years the attention ofmany authors and constitute today an important and active

research �eld. One of the principal motivations of such studies is related to the

existence of solutions of variational inclusions. Recall that a variational inclusion

(or a generalized equation) is a problem of the form

�nd x ∈ X such that y ∈ A (x) , (VI)

where A is a set-valued mapping acting between two Banach spaces X and Y ,

and y ∈ Y is a given point. In many cases, the point y could be of the form

f (x) where f is a single-valued function from X to Y or of the form f
(

p, x
)

with p a parameter leading to an important class of variational inclusions called

parameterized generalized equations.

It is well known that this problem serves as a general framework for describing

in a uni�ed manner various problems arising in nonlinear analysis and in

other areas in mathematics including optimization problems and variational

inequality problems; for more information on the subject with survey of old and

recent developments, we refer to [20] and the references therein.
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In the simple case of a single-valued mapping A, problem (VI) reduces to

a simply functional equation, and it is then related to the surjectivity of the

involved single-valuedmapping. From the same point of view, in the case of set-

valued mappings, the problem is also related to the surjectivity of the involved

set-valued mapping in the analog sense. The pioneering work in this direction

is the well-known Banach open mapping theorem which guarantees that a

continuous mapping acting between Banach spaces is open if and only if it is

surjective.

Among various advancements in this area, there are also the famous works

by Lyusternik [30] for nonlinear Fréchet di�erentiable functions and that of

Graves [24] for nonlinear operators acting between Banach spaces. It should

be emphasized that no di�erentiability assumption is made in the theorem

of Graves. Also, many investigations about the solution mappings by classical

di�erentiability or by the concepts of generalized di�erentiation have been

performed and several results for variational inclusions have been obtained. This

direction has given rise to the rich theory of what is known by the theory of

implicit functions for parameterized generalized equations, see [20, 25, 34] and

the references therein.

Another point of view having roots in the Milyutin’s covering mapping

theorem which, in turn, goes back to the theorem of Graves is what is known in

the literature under the nameof opennesswith linear rateor the covering property,

see [15]. This approachmakes use of a constant like that appearing in the Banach

open mapping theorem for studying the regularity properties of the inverse

of set-valued mappings and it has produced many results with applications to

di�erent kinds of variational inclusions in the in�nite-dimensional settings.

Recently, this direction has attracted a special attention of several authors, see,

for instance, [5, 14, 16, 17, 21, 22] and the references therein. One can also

consult, for instance, [6–9], to see the introduction of notion of locally covering

maps and its applications to study the distance to the set of coincidence points of

set-valuedmappings.Many deep and important results are obtained and applied

to di�erent areas of mathematics, including stability and continuous depen-

dence, system of di�erential inclusions, implicit function theorems, functional

equations, and existence of double �xed points.

In this article, we investigate the necessary conditions to deal with the

Lipschitzian property of the inverse of sum of two set-valued mappings. As

the inverse of the inverse of a set-valued mapping is the set-valued mapping

itself, and since the inverse of a Lipschitzian set-valued mapping need not be

Lipschitzian, we wonder why always consider set-valued Lipschitzian mappings

if we want to obtain that the inverse of their sum is Lipschitzian. This leads to

say that nothing can prevent a set-valued non-Lipschitzian mapping to have an

inverse set-valued mapping which is Lipschitzian. However, going back to the

Banach open mapping theorem, we understand that this question has roots in

the fact that the inverse of a surjective linear and continuous mapping acting
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between Banach spaces has some regularity properties, and by linearity, the

mapping itself is Lipschitzian. Of course, the situation is di�erent when dealing

with set-valued mappings. Motivated by this question, we investigate here the

property of being set-valued pseudo-Lipschitzian to study the Lipschitzian

property of the inverse of sum of two set-valued mappings.

The article is structured as follows. In the next section, we give the necessary

background to deal with set-valued mappings in the settings of metric spaces

and introduce some notions de�ned from the properties of set-valued pseudo-

Lipschitzianmappings. In Section 3, by new arguments, we obtain results on the

behavior of �xed points sets of set-valued pseudo-contraction mappings. Under

new conditions, our results are comparable with those obtained in the literature,

and more recently in [3, 10, 11, 32]. In Section 4, we make use of our results on

the behavior of �xed point sets of set-valued pseudo-contraction mappings to

deal, following some techniques inspired from [14], with the inverse of sum of

set-valued nonnecessarily Lipschitzian mappings. Under weakened conditions

of the Lipschitzian property but with additional conditions on the existence of

�xed points, we obtain that the inverse of sum of two set-valued mappings is

Lipschitzian. In the last section, we make use of the proximal convergence to

develop techniques and obtain results on the sensitivity analysis of variational

inclusions.

2. Notations and preliminary results

Throughout this article, (X, d) stands for ametric space. Given x ∈ X and r > 0,

we denote by B (x, r) (resp. B (x, r)) the open (resp. closed) ball around x with

radius r.

LetAbe a nonempty subset ofX. The distance fromapoint x ∈ X is de�ned by

d (x,A) := infy∈A d
(

x, y
)

, and, as usual, d(x,∅) = +∞. The open ball around

A with radius r is denoted by B (A, r) :=
⋃

u∈A B (u, r).

For two subsets A and B of X, the excess of A over B (with respect to d) is

denoted by e (A,B) and is de�ned by e (A,B) := supx∈A d (x,B). In particular,

we adopt the conventions e (∅,B) := 0 and e (A,∅) := +∞ if A 6= ∅.
The distance between A and B (with respect to d) is denoted by Haus (A,B)

and is de�ned by:

Haus (A,B) := max {e (A,B) , e (B,A)} .
Restricted to the closed subsets, Haus is a (extended real-valued) metric the

so-called Pompeiu–Hausdor� metric.

Let (X, dX) and (Y , dY) be two metric spaces. In the sequel, a set-valued

mapping T from X to Y will be denoted by T : X ⇉ Y . The domain of T is

the set dom (T) := {x ∈ X | T (x) 6= ∅}, and its graph is given by grph (T) :=
{(

x, y
)

∈ X × Y | y ∈ T (x)
}

. If the graph of T is closed, then T has closed
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values. The converse holds under additional conditions, in particular, if T is

upper semicontinuous, see for example [2, 12].

Recall that a set-valued mapping T : X ⇉ Y is said to be upper semicontinu-

ous at a point x0 ∈ X if for every open subset V of Y such that T (x0) ⊂ V ,

there exists an open neighborhood U of x0 such that T (x) ⊂ V , for every

x ∈ U. The set-valued mapping T is said to be upper semicontinuous if it is

upper semicontinuous at every point of X.

For a subset A of X, we denote by T (A) := ∪x∈AT (x), the image of

A by T. For a subset B of Y , the inverse image of B by T is T−1 (B) :=
{x ∈ X | B ∩ T (x) 6= ∅}, while T−1

(

y
)

stands for T−1
({

y
})

, if y ∈ Y . A set-

valued mapping T : X ⇉ Y is upper semicontinuous if and only if T−1 (B) is

closed, for every closed subset B of Y .

In the sequel, the �xed point set of a set-valued mapping T : X ⇉ X will be

denoted by Fix (T), that is, Fix (T) := {x ∈ X | x ∈ T (x)}.
The Lipschitz continuity (with respect to the Pompeiu–Hausdor� metric)

is one of the most popular properties of set-valued mappings. A set-valued

mapping T : X ⇉ Y is said to be L-Lipschitzian on M ⊂ dom (T) if it has

closed values onM and there exists L ≥ 0 such that

Haus (T (x1) ,T (x2)) ≤ LdX (x1, x2) ∀ x1, x2 ∈ M.

If X = Y and L ∈ [0, 1), then T is called L-contraction onM.

To deal with the properties of inverse of the sum of two set-valued map-

pings, it has been proved in [14, Lemma 2] the following result for set-valued

Lipschitzian mappings. If T : X ⇉ Y is L-Lipschitzian onM, then for every two

nonempty subsets A and B ofM,

e (T (A) ,T (B)) ≤ Le (A,B) .

This property being not adapted to our techniques, we develop here some

analog properties related to pseudo-Lipschitzian set-valued mappings.

Recall that a set-valuedmapping T : X ⇉ Y is said to be pseudo-Lipschitzian

around
(

x, y
)

∈ grph (T) if there exist a constant L ≥ 0 and neighborhoods

Mx ⊂ dom (T) of x andMy of y such that

e
(

T (x1) ∩ My,T (x2)
)

≤ LdX (x1, x2) ∀ x1, x2 ∈ Mx.

The notion of being pseudo-Lipschitzian around
(

x, y
)

is called the Aubin

property when Mx and My are closed balls around x and y, respectively. It is

well-known that the Aubin property of the set-valued mapping T turns out to

be equivalent to the metric regularity of the set-valued mapping T−1, see [19,

22, 25, 27, 28, 31, 35] for more details on the notion of metric regularity and its

applications to variational problems.

We extend the above de�nition to any two nonempty subsetsMx ⊂ dom (T)

and My ⊂ Y , and we say that T is L-pseudo-Lipschitzian on Mx with respect to
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My. When X = Y ,Mx = My = M, and L ∈ [0, 1), the set-valued mapping T is

called L-pseudo-contraction with respect toM, see [10].

Let M ⊂ dom (T) and N be two nonempty subsets of X, and S a nonempty

subset of Y . We say that T is fully L-pseudo-Lipschitzian on M for N with respect

to S if for any two nonempty subsets A and B ofM, we have

e (T (A) ∩ S,T (B)) ≤ Le (A ∩ N,B) .

It results immediately from the de�nition that any set-valued fully L-pseudo-

Lipschitzian on M for N with respect to S is L-pseudo-Lipschitzian on M with

respect to S. It is also fully L-pseudo-Lipschitzian onM forN′ with respect to S,
for any subset N′ containing N.

Conversely, any set-valued L-Lipschitzian mapping T : X ⇉ Y on a subset

M is fully L-pseudo-Lipschitzian onM forN with respect to any subset of Y , for

any subset N of X containingM.

More generally, we have the following result for set-valued pseudo-Lipschitzian

mappings which can be compared to [14, Lemma 2] where the proof is similar.

Proposition 2.1. Let T : X ⇉ Y be a set-valued L-pseudo-Lipschitzian on M

with respect to S. Then, for any nonempty subsets A and B of M, we have

e (T (A) ∩ S,T (B)) ≤ Le (A,B) .

In particular, T is fully L-pseudo-Lipschitzian onM for N with respect to S, for any

subset N containing M.

Proof. Let A and B be nonempty and contained in M. To avoid any confusion,

put A′ = {x ∈ A | T (x) ∩ S 6= ∅}. Then,
e (T (A) ∩ S,T (B)) = sup

u∈T(A)∩S
dY (u,T (B))

= sup
x1∈A′

sup
u∈T(x1)∩S

inf
x2∈B

dY (u,T (x2))

≤ sup
x1∈A′

inf
x2∈B

sup
u∈T(x1)∩S

dY (u,T (x2))

= sup
x1∈A′

inf
x2∈B

e (T (x1) ∩ S,T (x2))

≤ L sup
x1∈A′

inf
x2∈B

dX (x1, x2)

≤ L sup
x1∈A

dX (x1,B) = Le (A,B) .

Since e (A,B) = e (A ∩ N,B) whenever N contains M, then the set-valued

mapping T is fully L-pseudo-Lipschitzian onM for N with respect to S.
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Although the notion of being fully pseudo-Lipschitzian seems to �t very well

with the other existing notions such as those of being Lipschitzian and pseudo-

Lipschitzian, it may be interesting to look for conditions involving it for a subset

N which does not necessarily containM.

Proposition 2.2. Let T : X ⇉ Y be a set-valued L-pseudo-Lipschitzian on M

with respect to S, and let N be a subset of X such that T (x) ∩ S = ∅, whenever
x ∈ M\N. Then, T is fully L-pseudo-Lipschitzian on M for N with respect

to S.

Proof. LetA andB be nonempty and contained inM.We remark thatT (A)∩S =
T (A ∩ N) ∩ S. The proof then follows step by step that of Proposition 2.1.

The following example provides us with a set-valued non-Lipschitzian

mapping which is fully pseudo-Lipschitzianmapping, whereM is not contained

in N. We can also choose N in such a way that neitherM is contained in N nor

N is contained inM.

Example 1. Let T : R2
⇉ R

2 be the set-valued mapping de�ned by:

T
((

x, y
))

=







{2x} × ([0, 2 |x|] ∪ [3,+∞[) if ‖
(

x, y
)

‖ < 1,

{2x} ×
]

0, x2
]

if ‖
(

x, y
)

‖ ≥ 1.

Let M = S = B ((0, 0) , 1) and N =
{(

x, y
)

∈ M | |x| < 1
2

}

. In this example,

we have N ⊂ M. Clearly, the set-valued mapping T is not Lipschitzian on R
2.

However, T is 2
√
2-pseudo-Lipschitzian onM with respect to S. We remark that

for any x ∈ M\N, T (x) ∩ S = ∅. Then, we conclude by Proposition 2.2 that T

is fully 2
√
2-pseudo-Lipschitzian onM for N with respect to S.

If we take N′ = N ∪ N1 where N1\M 6= ∅, then T is still fully 2
√
2-pseudo-

Lipschitzian onM for N′ with respect to S. In this case, neitherM is contained

in N′ nor N′ is contained inM.

Finally, recall that if (Y , d) is a linear metric space, the distance d is said to be

shi�-invariant metric if

d
(

y + z, y′ + z
)

= d
(

y, y′) for all y, y′, z ∈ X.

Let A and B be two subsets of a linear metric space (Y , d) with shi�-invariant

metric d, and a, b, b′ ∈ Y . It is shown in [14] that

e (A + a,B + a) ≤ e (A,B) and e
(

A + b,A + b′) ≤ d
(

b, b′) .
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3. On the behaviors of �xed points sets of set-valued
pseudo-contractionmappings

In this section, we will be concerned with the behaviors of �xed points sets of

set-valued pseudo-contraction mappings.

Existence of �xed points is a subject which is not limited to set-valued

contraction or pseudo-contraction mappings, and in this spirit, we will not

make use here of classical conditions assuring existence of �xed points for

set-valued mappings. More precisely, we will assume that the �xed points sets

of the involved set-valued mappings are nonempty and linked in such a way

that a result on the behaviors of their �xed points sets is derived. And instead

of conditions on the distance between the images of the set-valued mappings

as considered in some recent articles (see, for instance, [10, 32]), we impose

conditions only on those for the �xed points.

We will not follow here classical procedures usually used when dealing with

the behaviors of �xed points sets of set-valued mappings but make use of the

following more precise version of the well-known lemma on existence of �xed

points of set-valued pseudo-contraction mappings called in [13], Dontchev–

Hager �xed-point theorem; see also [18]. This version is enhanced in the sense

that not only the completeness is assumed only on the closed ball, but more

particulary, only the values of restriction of the set-valuedmapping on the closed

ball are assumed to be nonempty and closed. Of course the proof follows, step

by step, the arguments used in [18] which are based on techniques having roots

in the Banach contraction principle. A proof using arguments based on a weak

variant of the Ekeland variational principle has also been performed recently

in [13].

Lemma 3.1. Let (X, d) be a metric space. Let x̄ ∈ X and α > 0 be such that

B (x̄,α) is a complete metric subspace. Let λ ∈ [0, 1) and T : X ⇉ X be a set-

valued mapping with nonempty closed values on B (x̄,α) such that

(1) d (x̄,T (x̄)) < (1 − λ) α and

(2) e
(

T (x) ∩ B (x̄,α) ,T
(

x′)) ≤ λd
(

x, x′) ∀ x, x′ ∈ B (x̄,α).

Then, T has a �xed point in B (x̄,α).

Now, we derive the following result on the behavior of �xed points sets of

set-valued mappings which should be compared to [10, Proposition 2.4], [11,

Proposition 2.4], [23, Proposition 4.5], andmore recently to [3, Theorem 3.1]. It

is worthwhile noticing that one of the deep and most general result obtained in

this direction is [7, Theorem4.1].However, our conditions seem to be somewhat

di�erent. In any case, and at the current stage of advancement, it is not easy to see

if it is possible to derive our result from it, see Remark 1 below for explanation.

Using Lemma 3.1, we give here the proof for the convenience of the reader.
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Theorem 3.2. Let (X, d) be a metric space. Let x0 ∈ X and r > 0 be such that

B (x0, r) is a complete metric subspace. Let λ ∈ (0, 1) and 0 < β < (1 − λ) r and

let T, S : X ⇉ X be two set-valued mappings such that

(1) T is λ-pseudo-contraction with respect to B (x0, r) and has nonempty closed

values on B (x0, r);

(2) S has nonempty �xed points set and for every x ∈ Fix (S),

d (x, x0) < β and d (x,T (x)) < λβ .

Then, T has a nonempty �xed points set and

e(Fix (S) , Fix (T)) ≤
1

1 − λ
sup

x∈B(x0,r)

e (S (x) ,T (x)) .

Proof. Fix ε > 0 and put

α = min

{

1

1 − λ
sup

x∈B(x0,r)

e (S (x) ,T (x)) + ε,
λβ

1 − λ

}

.

Let x̄ ∈ Fix (S) be an arbitrary element.

Claim 1: We prove that B (x̄,α) ⊂ B (x0, r). To do this, let x ∈ B (x̄,α). Then,

from assumption (2), we have

d (x, x0) ≤ d (x, x̄) + d (x̄, x0)

< α + β ≤
1

1 − λ
λβ + β < λr + (1 − λ) r = r.

Claim 2: We have d (x̄,T (x̄)) < (1 − λ) α. Indeed, since x̄ ∈ Fix (S), then by

assumption (2), d (x̄,T (x̄)) < λβ . Also,

d (x̄,T (x̄)) ≤ e (S (x̄) ,T (x̄)) ≤ sup
x∈B(x0,r)

e (S (x) ,T (x)) ,

and, since d (x̄,T (x̄)) is �nite, then

d (x̄,T (x̄)) < sup
x∈B(x0,r)

e (S (x) ,T (x)) + (1 − λ) ε.

Thus, d (x̄,T (x̄)) < (1 − λ) α.

It results by Claim 1 and assumption (1) that T has nonempty closed values

on B (x̄,α) and for every x, x′ ∈ B (x̄,α),

e
(

T (x) ∩ B (x̄,α) ,T
(

x′)) ≤ e
(

T (x) ∩ B (x0, r) ,T
(

x′)) ≤ λd
(

x, x′) .

Now, all the conditions of Lemma 3.1 are satis�ed for T on B (x̄,α) and then,

T has a �xed point x∗ ∈ B (x̄,α). It results that

d (x, Fix (T)) ≤ d
(

x, x∗) ≤ α ≤
1

1 − λ
sup

x∈B(x0,r)

e (S (x) ,T (x)) + ε.
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This inequality being valid for any x ∈ Fix (S), we obtain

e (Fix (S) , Fix (T)) ≤
1

1 − λ
sup

x∈B(x0,r)

e (S (x) ,T (x)) + ε.

Letting ε go to zero, we complete the proof.

Remark 1. In [7, Theorem 4.1], the authors consider the set of coincidence

points of two set-valued mappings 8 and 9 which is exactly the �xed points

set of 8 whenever 9 is the embedding set-valued mapping EmbX of X de�ned

by EmbX (x) = {x}, for every x ∈ X. Then, according to our notations, we

take 8 = T, 8̃ = S, and 9 = 9̃ = EmbX . In our assumptions, T is λ-

pseudo-contraction with respect to B (x0, r) which is weaker than the property

of being pseudo-Lipschitzian with Lipschitz constant λ considered in [7]. But

to overcome this fact, we know that it is pseudo-Lipschitzian with Lipschitz

constantλ+ε, for every ε > 0.According to the notations of [7], we take x∗
0 = y∗

0

any point in Fix (S) which plays the role of x0 and y0 in [7], respectively. But we

can not take our x0 because d (x0,T (x0)) is not known under our assumptions.

Also, we take R1 = R2 = R̃ = λr, β = λ + ε, and α = 1. As a conclusion, for

any r1 > 0 and r2 > 0 verifying Condition (3.11) of page 821 [7], we obtain

e
(

Fix (S) ∩ B
(

x∗
0 , r1

)

, Fix (T)
)

≤
1

1 − λ − ε
sup

x∈B(x∗
0 ,r1)

e (S (x) ,T (x)) .

It is not clear how to choose, for every ε > 0, r1 (which depends on ε) in such

a way that Fix (S) ⊂ B
(

x∗
0 , r1

)

⊂ B (x0, r), since the upper bound in the second

term of inequality is taken on B
(

x∗
0 , r1

)

. Furthermore, neither X nor the graph

of T are assumed to be complete in Theorem 3.2. This condition is required in

[7, Theorem 4.1].

Now, we derive the following corollary.

Corollary 3.3. Let (X, d) be a metric space. Let x0 ∈ X and r > 0 be such that

B (x0, r) is a complete metric subspace. Let λ ∈ (0, 1) and 0 < β < (1 − λ) r and

let T, S : X ⇉ X be two set-valued mappings such that

(1) S andT areλ-pseudo-contractions with respect to B (x0, r) and have nonempty

closed values on B (x0, r);

(2) S has nonempty �xed points set and for every x ∈ Fix (S),

d (x, x0) < β and d (x,T (x)) < λβ ;

(3) T has nonempty �xed points set and for every x ∈ Fix (T),

d (x, x0) < β and d (x, S (x)) < λβ .

Then,

Haus (Fix (S) , Fix (T)) ≤
1

1 − λ
sup

x∈B(x0,r)

Haus (S (x) ,T (x)) .
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Remark 2. It is worthwhile emphasizing the importance of the above result

which allows to replace the excess by the Pompeiu–Hausdor� metric in the

conclusion of Theorem 3.2. To our knowledge, even if all the �xed points sets

of the involved set-valued mappings are in B (x0, r), there does not seem to be

any result in the literature dealingwith set-valued pseudo-contractionmappings

which provides such a conclusion, see, for comparison, [10, Proposition 2.4] and

the recent generalization given in [1] of Lim’s lemma, see [29].

In the following example, we give two set-valued mappings satisfying the

conditions of Theorem 3.2 with respect to each other. Though some conditions

are relaxed, this example provides us a situation where the Pompeiu–Hausdor�

metric can be used in the conclusion of Theorem 3.2.

Example 2. According to Theorem 3.2, let X = R
2, x0 = (0, 0), r = 1, and

λ = 1√
2
.

Let T : R2
⇉ R

2 be the set-valued mapping de�ned by:

T
((

x, y
))

=















{x

2

}

×
([

0,
|x|
2

]

∪ [3,+∞[

)

if ‖
(

x, y
)

‖ < 1,

{2x} ×
]

0, x2
]

if ‖
(

x, y
)

‖ ≥ 1.

Clearly, T has nonempty closed values on B (x0, r) and the images of points of

B (x0, r) are not necessarily included in B (x0, r). And since, for every
(

x1, y1
)

and
(

x2, y2
)

in B (x0, r), we have

e
(

T
((

x1, y1
))

∩ B (x0, r) ,T
((

x2, y2
)))

≤
1

√
2

|x1 − x2| ,

then, T is λ-pseudo-contraction with respect to B (x0, r). We note that T is not

Lipschitzian on R
2 and Fix (T) = {(0, 0)}.

Now, take any α ∈
]

0, 2
√

λ
5

(

1 −
√

λ
)

[

and de�ne S : R2
⇉ R

2 by:

S
((

x, y
))

=















{

x + α

2

}

×
([

0,
|x|
2

]

∪ [3,+∞[

)

if ‖
(

x, y
)

‖ < 1,

{2x} ×
]

0, x3
]

if ‖
(

x, y
)

‖ ≥ 1.

The set-valued mapping S has nonempty closed values on B (x0, r) and the

images of points of B (x0, r) are not necessarily included in B (x0, r). Also, it is

λ-pseudo-contraction with respect to B (x0, r) and Fix (S) = {α} ×
[

0, α
2

]

.

Finally, S is not Lipschitzian on R
2.

We put β =
(

1 −
√

λ
)

< (1 − λ) r and we will verify the other conditions

of Theorem 3.2.
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(1) For the unique �xed point (0, 0) of T, we have

d ((0, 0) , S ((0, 0))) =
α

2

≤
√

λ

5

(

1 −
√

λ
)

< λ
(

1 −
√

λ
)

= λβ .

(2) For any (α, γ ) ∈ Fix (S), we have

d ((α, γ ) , (0, 0)) ≤
√

α2 +
α2

4
=

√
5

2
α =

√
λ

(

1 −
√

λ
)

< β

and

d ((α, γ ) ,T ((α, γ ))) ≤ d
(

(α, γ ) ,
(α

2
,
α

2

))

=
√

α2

4
+

(

γ −
α

2

)2

≤
α

√
2

<
√
2

√

λ

5

(

1 −
√

λ
)

< λ
(

1 −
√

λ
)

= λβ .

We conclude this section by the following easily veri�ed result. This corollary

will be useful in the sequel.

Proposition 3.4. Under assumptions of Theorem 3.2, we have

e(Fix (S) ∩ B, Fix (T)) ≤
1

1 − λ
sup

x∈B(x0,r)

e (S (x) ∩ B,T (x)) ,

for every subset B of X such that B ∩ Fix (S) 6= ∅.

Proof. It su�ces to replace S in Theorem 3.2 by the set-valued mapping S ∩ B

de�ned on X by (S ∩ B) (x) = S (x) ∩ B.

4. On the inverse of the sum of two set-valuedmappings

In this section, we will be concerned with the properties of inverse of the sum

of two set-valued mappings.

As in Theorem 3.2 of the last section, the two set-valued mappings involved

in the following results will be connected between them by some additional

conditions related to the existence of �xed points. We formulate this connection

in the following de�nition which can be compared to the notion of sum-stable

maps used in [21, De�nition 4.2].

Let F,G : X ⇉ Y be two set-valuedmappings, x0 ∈ X, y0 ∈ Y , B ⊂ Y , α > 0,

and β > 0. In the sequel, we say that F is (α,β)-compatible with respect to G on

B for x0 and y0 if the following conditions hold:

(FP1) for every y ∈ B, there exists xy ∈ X such that
(

y − G
(

xy
))

∩
(

F
(

xy
)

− y0
)

6= ∅;
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(FP2) whenever x is such that
(

y − G (x)
)

∩
(

F (x) − y0
)

6= ∅ for some y ∈ B,

then dX (x, x0) < β and dX
(

x, F−1
(

y′ + y0 − G (x)
))

< αβ , for every

y′ ∈ B with y′ 6= y.

Example 3. Put X = Y = R
2 and x0 = y0 = (0, 0) ∈ R

2. Choose λ = 1√
2
,

β =
(

1 −
√

λ
)

, and δ = 2
√

λ
5

(

1 −
√

λ
)

. Put B = B
(

y0, δ
)

and de�ne, for

every z ∈ B, the set-valued mapping Tz : R
2
⇉ R

2 by:

Tz

((

x, y
))

=











{

x + ‖z‖
2

}

×
([

0, |x|
2

]

∪ [3,+∞[
)

if ‖
(

x, y
)

‖ < 1,

{2x} ×
]

0, x3
]

if ‖
(

x, y
)

‖ ≥ 1.

As in Example 2, the set-valued mapping Tz is not Lipschitzian but λ-pseudo-

contraction with respect to B (x0, 1) and has nonempty closed values onB (x0, 1)

and Fix (Tz) = {‖z‖} ×
[

0, ‖z‖
2

]

, for every z ∈ B.

For z ∈ B and (α, γ ) ∈ Fix (Tz), we have

d ((α, γ ) , x0) < β and d ((α, γ ) ,Tz′ ((α, γ ))) < λβ ,

for every z′ ∈ B such that z 6= z′.
Now, if F andG are the two set-valued mappings de�ned onR

2 toR2 in such

a way that for any z ∈ B and
(

x, y
)

∈ R
2, we have

Tz

((

x, y
))

= F−1
(

y − G
((

x, y
)))

,

then F is (λ,β)-compatible with respect to G on B for x0 and y0

We formulate here the following inverse set-valued mapping result for the

sumof two set-valuedmappings similar to [14, Theorem 3], where the condition

of being Lipschtzian is replaced by some local conditions such as the condition

of being pseudo-Lipschitzian.

From now on, the metric of the linear metric space Y will be always assumed

to be shi� invariant and (−1)-homogeneous. This condition of homogeneity is

also needed in [14]. A metric dY on a linear space Y is called α-homogeneous,

α ∈ R, if dY
(

αx,αy
)

= |α| dY
(

x, y
)

, for every x, y ∈ Y . Every metric associated

to a norm is α-homogeneous, for every α ∈ R. Thus, the metric dY is (−1)-

homogeneous if dY
(

−x,−y
)

= dY
(

x, y
)

, for every x, y ∈ Y .

Theorem 4.1. Let (X, dX) be a metric space, (Y , dY) be a linear metric space,

r > 0, x0 ∈ X and y0 ∈ Y be such that B (x0, r) is a complete metric subspace. Let

F,G : X ⇉ Y be two set-valued mappings satisfying the following assumptions

(1) G has nonempty closed values on B (x0, r), G (x0) is a bounded set with

diameter d0, and there exist α > 0, δ > 0, and a nonempty subset N of Y
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such that G (B (x0, r)) ⊂ B (G (x0) ,αr), and G is α-pseudo-Lipschitzian on

B (x0, r) with respect to B (G (x0) , δ) + y0 − N;

(2) B (x0, r) ⊂ dom (F), B
(

y0, δ + αr + d0
)

⊂ F(B (x0, r)), F is upper semicon-

tinuous, and there exists K > 0 such that αK < 1 and F−1 is fully K-pseudo-

Lipschitzian on B
(

y0, δ + αr + d0
)

for N with respect to B (x0, r);

(3) there exists β > 0 such that β < (1 − αK) r, and F is (α,β)-compatible with

respect to G on B (G (x0) , δ) for x0 and y0.

Then, (F + G)−1 is K
1−αK -Lipschitzian on B

(

G (x0) + y0, δ
)

.

Proof. Let y ∈ B (G (x0) , δ) be �xed, and consider the set-valued mapping Ty :

X ⇉ X de�ned by:

Ty (x) := F−1
(

y + y0 − G (x)
)

=
{

t ∈ X | ∃z ∈ G (x) , y + y0 − z ∈ F (t)
}

.

Clearly, Fix
(

Ty

)

= (F + G)−1
(

y + y0
)

, and it follows by condition (3) that

there exist xy ∈ X, yG ∈ G
(

xy
)

, and yF ∈ F
(

xy
)

such that

y − yG = yF − y0.

Therefore, y = yF + yG − y0 ∈ (F + G)
(

xy
)

− y0, and then xy ∈
(F + G)−1

(

y + y0
)

. This proves in particular that

B
(

G (x0) + y0, δ
)

⊂ dom (F + G)−1 .

To verify all the conditions of Theorem 3.2 to any couple of set-valued

mappings Ty with y ∈ B (G (x0) , δ), we state �rst the following fact:

y + y0 − G (x) ⊂ B
(

y0, δ + αr + d0
)

∀ x ∈ B (x0, r) .

Indeed, let x ∈ B (x0, r) and z ∈ G (x). Since dY is a shi�-invariant metric, it

su�ces to verify that dY
(

y, z
)

< δ + d0 + αr. Let yx0 ∈ G (x0) be such that

dY
(

y, yx0
)

< δ and put ε = δ − dY
(

y, yx0
)

> 0. Let uε,z ∈ G (x0) be such that

dY
(

uε,z, z
)

< αr + ε
2 . Then, we obtain

dY
(

y, z
)

≤ dY
(

y, yx0
)

+ dY
(

yx0 , uε,z

)

+ dY
(

uε,z, z
)

< dY
(

y, yx0
)

+ d0 + αr +
ε

2

= δ − ε + d0 + αr +
ε

2
< δ + d0 + αr.

The set-valued mapping Ty has nonempty closed values on B (x0, r). Indeed,

let x ∈ B (x0, r). For every z ∈ G (x), y+ y0 − z ∈ B
(

y0, δ + αr + d0
)

, and then

F−1
(

y + y0 − z
)

6= ∅. Thus, Ty (x) 6= ∅, for every x ∈ B (x0, r). Moreover, by

the upper semicontinuity of F and since y + y0 − G (x) is closed, then Ty (x) =
F−1

(

y + y0 − G (x)
)

is closed, for every x ∈ B (x0, r).

The set-valued mapping Ty is αK-pseudo-contraction with respect to

B (x0, r). Indeed, for x1, x2 ∈ B (x0, r), we know from above that y+ y0 −G (x1)
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and y + y0 − G (x2) are contained in B
(

y0, δ + αr + d0
)

. Then,

dX
(

Ty (x1) ∩ B (x0, r) ,Ty (x2)
)

= e
(

F−1
(

y + y0 − G (x1)
)

∩ B (x0, r) , F
−1

(

y + y0 − G (x2)
))

≤ Ke
((

y + y0 − G (x1)
)

∩ N, y + y0 − G (x2)
)

.

Since dY is shi� invariant and (−1)-homogeneous, then

Ke
((

y + y0 − G (x1)
)

∩ N, y + y0 − G (x2)
)

= Ke
(

(G (x1)) ∩
(

y + y0 − N
)

,G (x2)
)

≤ αKdX (x1, x2) .

To verify the condition (2) of Theorem 3.2, take y, y′ ∈ B (G (x0) , δ), y 6=
y′ and suppose x ∈ Fix

(

Ty

)

. Then, by condition (3), dX (x, x0) < β and

dX
(

x, F−1
(

y′ + y0 − G (x)
))

< αβ . That is, dX (x, x0) < β and dX
(

x,Ty (x)
)

<

αβ which are required.

It remains now to verify that the set-valued mapping (F + G)−1 is K
1−αK -

Lipschitzian on B
(

G (x0) + y0, δ
)

. Note �rst that we have Fix
(

Ty

)

⊂ B (x0, r),

for every y ∈ B (G (x0) , δ).

For z, z′ ∈ B
(

G (x0) + y0, δ
)

, let z = y + y0 and z′ = y′ + y0 with y, y′ ∈
(G (x0) , δ). We have

e
(

(F + G)−1 (z) , (F + G)−1
(

z′
))

= e
(

Fix
(

Ty

)

, Fix
(

Ty′
))

and

e
(

Fix
(

Ty

)

, Fix
(

Ty′
))

= e
(

Fix
(

Ty

)

∩ B (x0, r) , Fix
(

Ty′
))

≤
1

1 − αK
sup

x∈B(x0,r)

e
(

Ty (x) ∩ B (x0, r) ,Ty′ (x)
)

.

On the other hand, for every x ∈ B (x0, r), we have

e
(

Ty (x) ∩ B (x0, r) ,Ty′ (x)
)

= e
(

F−1
(

y + y0 − G (x)
)

∩ B (x0, r) , F
−1

(

y′ + y0 − G (x)
))

≤ Ke
((

y + y0 − G (x)
)

∩ N, y′ + y0 − G (x)
)

≤ Ke
(

y + y0 − G (x) , y′ + y0 − G (x)
)

≤ KdY
(

y, y′) .

We conclude that

e
(

(F + G)−1 (z) , (F + G)−1
(

z′
))

≤
K

1 − αK
dY

(

y, y′) =
K

1 − αK
dY

(

z, z′
)

which, by interchanging z and z′, completes the proof.

Remark 3. We remark that in Condition (1) of the above theorem, the condition

of G being α-pseudo-Lipschitzian on B (x0, r) with respect to B (G (x0) , δ) +
y0 − B

(

y0, δ + αr + d0
)

can be replaced by the weak condition of G being
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α-pseudo-Lipschitzian on B (x0, r) with respect to y+ y0 − B
(

y0, δ + αr + d0
)

,

for every y ∈ B (G (x0) , δ).

Now,we are going to obtain a result similar to the classical result due toGraves

on the inverse of continuous functions acting between Banach spaces. First, we

state the following result.

Theorem 4.2. Suppose that all the conditions of Theorem 4.1 are satis�ed such

that B
(

y0, δ + αr + d0
)

⊂ F(B (x0, r)), F
−1 is fully K-pseudo-Lipschitzian on

B
(

y0, δ + αr + d0
)

for N with respect to B (x0, r), and B (G (x0) , δ) is replaced by
⋃

u∈G(x0)
B (u, δ) in the corresponding conditions. Then, the set-valued mapping

(F + G)−1 is K
1−αK -Lipschitzian on

⋃

u∈G(x0)
B

(

u + y0, δ
)

.

Proof. The proof follows step by step the proof of Theorem 4.1 where instead of

taking y ∈ B (G (x0) , δ), we take y ∈
⋃

u∈G(x0)
B (u, δ). The unique fact which

merits to be established is that for every y ∈
⋃

u∈G(x0)
B (u, δ),

y + y0 − G (x) ⊂ B
(

y0, δ + αr + d0
)

∀ x ∈ B (x0, r) .

Let y ∈
⋃

u∈G(x0)
B (u, δ) and take uy ∈ G (x0) such that y ∈ B

(

uy, δ
)

. Let

x ∈ B (x0, r) and z ∈ G (x). Since dY is a shi�-invariant metric, it su�ces

to verify that dY
(

y, z
)

≤ δ + d0 + αr. Since dX
(

y, uy
)

≤ δ, let (̺n)n be an

increasing sequence of positive numbers such that lim
n→+∞

̺n = 1 and εn =
δ −̺ndX

(

y, uy
)

> 0, for every n. Now, for every n, let yn,z ∈ G (x0) be such that

dY
(

yn,z, z
)

< αr + εn
2 . Then, we obtain

dY
(

y, z
)

≤ dY
(

y, uy
)

+ dY
(

uy, yn,z
)

+ dY
(

yn,z, z
)

< dY
(

y, uy
)

+ d0 +αr+
εn

2
,

and since limn→+∞ εn = δ − dY
(

y, uy
)

, we have

dY
(

y, z
)

≤ dY
(

y, uy
)

+ d0 + αr +
δ − dY

(

y, uy
)

2

=
δ + dY

(

y, uy
)

2
+ d0 + αr ≤ δ + d0 + αr

which completes the proof.

Remark 4. Theorems 4.1 and 4.2 provide us with the conclusion that the set-

valuedmapping (F + G)−1 is Lipschitzian. In [7, Lemma4.3], the authors obtain

that the inverse of the considered set-valued mapping is pseudo-Lipschitzian,

which is a property weaker than that of being Lipschitzian. It should be empha-

sized that this result has been used to derive su�cient conditions for the

existence of double �xed points of set-valued mappings which, in particular,
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has applications to the problem of regularity of the composition of set-valued

mappings, see [26].

Recall that the Banach open mapping theorem guarantees that a linear

continuous mapping A from a Banach space X to a Banach space Y is surjective

if and only if it is an open mapping. In particular, if A is surjective linear and

continuous, then there exists K > 0 such that

BY (0, 1) ⊂ A (BX (0,K)) .

Corollary 4.3. Let (X, ‖.‖X) and (Y , ‖.‖Y) be two Banach spaces. Denote by A :

X → Y a surjective, linear, and continuous mapping and let K be the constant

arising from the Banach open mapping theorem. Let r > 0 and x0 ∈ X. Let

g : X → Y be a single-valued mapping and suppose that the following conditions

are satis�ed:

(1) there exist α > 0 and a subset N of Y containing A (x0) such that αK < 1,

g (B (x0, r)) ⊂ B
(

g (x0) ,αr
)

, and g isα-pseudo-Lipschitzian on B (x0, r)with

respect to B
(

g (x0) ,
1−αK
K r

)

+ A (x0) − N;

(2) A−1 is fully K-pseudo-Lipschitzian on B
(

A (x0) ,
1−αK
K r + αr

)

for N with

respect to B (x0, r);

(3) there exists β > 0 such that β < (1 − αK) r, and A is (α,β)-compatible with

respect to g on B
(

g (x0) ,
1−αK
K r

)

for x0 and y0.

Then, (A + G)−1 is K
1−αK -Lipschitzian on B

(

A (x0) + g (x0) ,
1−αK
K r

)

.

Proof. Let F = A and G = g. From the Banach open mapping theorem,

B
(

A (x0) ,
r

K

)

⊂ A
(

B (x0, r)
)

= F
(

B (x0, r)
)

.

The proof then holds by applying Theorem 4.2 with δ = 1−αK
K r, y0 = A (x0)

and d0 = 0.

We close this section by the following discussion about the conditions

on mapping A which have been involved in the proof of Corollary 4.3. The

continuity of A implies, by the Banach open mapping theorem, the openness

of A. However, the linearity of A is not used in the proof. Instead of that, we

need that A−1 is fully pseudo-Lipschitzian.

On the other hand, the openness ofA can be involved without the linearity of

A. In the literature and, especially in convex analysis without linearity, general-

izations of some implicit function theorems and other questions of optimization

have been obtained without linearity, see [33]. See also [36] where a notion

denoted by PL weaker than that of the linearity has been recently de�ned and

a generalization of the Banach open mapping theorem has been derived. It is

shown, in particular, that every surjective continuous mapping acting between

Banach spaces and satisfying the conditions of the notion PL is open.
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5. Applications to variational inclusions

In this section, we deal with the sensitivity analysis of variational inclusions.

Based on the proximal convergence, we make use here of our results developed

above and develop techniques related to the existence of solutions of variational

inclusions.

Let (P, dP) be a metric space which is called the set of parameters, and let A :

P×X ⇉ Y be a set-valuedmapping, where (X, dX) is ametric space and (Y , dY)

a linear metric space. For a �xed value of the parameter p ∈ P, we consider the

parameterized generalized equation:

�nd x ∈ dom
(

A
(

p, .
))

such that 0 ∈ A
(

p, x
)

, (5.1)

where its set of solutions is denoted by SA
(

p
)

which de�nes a set-valued

mapping.

The regularity properties of solution mapping p 7→ SA
(

p
)

has been the

subject of study of many authors since it is related to the theory of implicit func-

tions and its applications for variational inclusions, see for instance, [4, 20, 21]

and the references therein.

We de�ne a measure of the sensitivity of the solutions with respect to small

changes in the problem’s data to apply it to the problem of existence of solutions

of variational inclusions. For any p0 ∈ P, we de�ne the full condition number of

A at p0 with respect to a subsetW of X as the extended real-valued number by:

c∗f
(

A | p0,W
)

= lim sup
Z,Z′→{p0}
Z 6=Z′,Z 6=∅

e
(

SA (Z) ∩ W, SA
(

Z′))

e (Z,Z′)

where the convergence is taken in the sense of the upper proximal convergence.

A net
(

Zγ

)

γ
is upper proximal convergent to Z if lim

γ
e
(

Zγ ,Z
)

= 0, see [3, 12].

Then, we have

c∗f
(

A | p0,W
)

= inf
ε>0

sup

{

e
(

SA (Z) ∩ W, SA
(

Z′))

e (Z,Z′)
| Z,Z′ ⊂ B

(

p0, ε
)

,Z 6= Z′,Z 6= ∅
}

.

Also, the extended real number K
(

A, δ|p0,W
)

is de�ned by:

K
(

A, δ | p0,W
)

= sup

{

e
(

SA (Z) ∩ W, SA
(

Z′))

e (Z,Z′)
| Z,Z′ ⊂ B

(

p0, δ
)

,Z 6= Z′,Z 6= ∅
}

.

Clearly, the function δ 7→ K
(

A, δ | p0,W
)

is decreasing and for every p0 ∈ P,

we have limδ→0 K
(

A, δ | p0,W
)

= c∗
(

A | p0,W
)

.



156 B. ALLECHE AND V. D. RĂDULESCU

Proposition 5.1. If K
(

A, δ | p0,W
)

< +∞, then one of the following alternatives

holds:

(1)there exists a neighborhood V
(

p0
)

of p0 such that SA
(

p
)

= ∅, for every p ∈
U

(

p0
)

;

(2)there exists a neighborhood V
(

p0
)

of p0 such that SA
(

p
)

6= ∅, for every p ∈
U

(

p0
)

.

In particular, if 0 < K
(

A, δ | p0,W
)

< +∞, then there exists a neighborhood

V
(

p0
)

of p0 such that the solution set of the parameterized generalized equa-

tion (5.1) is nonempty, for every p ∈ V
(

p0
)

.

In the sequel, we focus on the special case where P = Y . We study the

parameterized generalized equation associated to A : Y ×X ⇉ Y de�ned using

a set-valued mapping F : X ⇉ Y as follows:

A
(

p, x
)

=
{

F (x) − p if x ∈ B (x0, r) ,

∅ otherwise.

We remark that SA (Z) = F−1 (Z), for every subset Z of P and it results that in

this framework, the full condition number given above takes the more explicit

form

c∗f
(

A | p0,W
)

= lim sup
Z,Z′→{p0}
Z 6=Z′,Z 6=∅

e
(

F−1 (Z) ∩ W, F−1
(

Z′))

e (Z,Z′)

In this setting, we will write c∗f
(

F | p0,W
)

and K
(

F, δ | p0,B (x0, r)
)

instead of

c∗f
(

A | p0,W
)

and K
(

A, δ | p0,B (x0, r)
)

, respectively.

Now, we obtain the following result on the existence of solutions of parame-

terized generalized equations.

Theorem 5.2. Let r > 0, x0 ∈ X, and p0 ∈ Y be such that B (x0, r) is a complete

metric subspace. Let G : X ⇉ Y be a set-valued mapping. Suppose that 0 <

c∗
(

F | p0,B (x0, r)
)

< +∞ and choose δ such that K
(

F, δ | p0,B (x0, r)
)

< +∞.

Suppose further that the following conditions are satis�ed

(1) G has nonempty closed values on B (x0, r), G (x0) is a bounded set with

diameter d0 < δ, and there exist a subset N containing B
(

p0, δ
)

and 0 < α <

min

{

δ−d0
r , 1

K
(

F,δ|p0,B(x0,r)
)

}

such that G (B (x0, r)) ⊂ B (G (x0) ,αr), andG is

α-pseudo-Lipschitzian on B (x0, r) with respect to B
(

G (x0) , δ − αr − d0
)

+
p0 − N;

(2) B (x0, r) ⊂ dom (F), B
(

p0, δ
)

⊂ F (B (x0, r)), and F is upper semicontinuous.

(3) there exists β > 0 such that β <
(

1 − αK
(

F, δ | p0,B (x0, r)
))

r, and F is

(α,β)-compatible with respect to G on B
(

G (x0) , δ − αr − d0
)

for x0 and p0.
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Then, c∗
(

F + G | p0 + y,B (x0, r)
)

≤ K
(

F,δ|p0,B(x0,r)
)

1−αK
(

F,δ|p0,B(x0,r)
) < +∞, for every y ∈

G (x0).

Proof. Put δ = δ − αr − d0 > 0. We have αK
(

F, δ | p0,B (x0, r)
)

< 1. Also, for

every subsets Z,Z′ of B
(

p0, δ
)

, we have

e
(

F−1 (Z) ∩ B (x0, r) , F
−1

(

Z′)) ≤ K
(

F, δ | p0,B (x0, r)
)

e
(

Z,Z′)

and then, F−1 is fullyK
(

F, δ | p0,B (x0, r)
)

-pseudo-Lipschitzian on B
(

p0, δ
)

for

N with respect to B (x0, r).

It results by applying Theorem 4.1 that the set-valued mapping (F + G)−1

is
K

(

F,δ|p0,B(x0,r)
)

1−αK
(

F,δ|p0,B(x0,r)
)-Lipschitzian on B

(

G (x0) + p0, δ
)

. Then, for every y ∈
G (x0), we have

c∗
(

F + G | y + p0,B (x0, r)
)

= lim sup
Z,Z′→{y+p0}
Z 6=Z′,Z 6=∅

e
(

(F + G)−1 (Z) ∩ B (x0, r) , (F + G)−1
(

Z′))

e (Z,Z′)

≤ sup
Z,Z′⊂B(y+p0,δ),

Z 6=Z′,Z 6=∅

e
(

(F + G)−1 (Z) , (F + G)−1
(

Z′))

e (Z,Z′)

≤
K

(

F, δ | p0,B (x0, r)
)

1 − αK
(

F, δ | p0,B (x0, r)
) < +∞,

which completes the proof.

In conclusion, we have obtained in this article the results on the behaviors

of �xed points sets of set-valued mappings similar to the classical ones but with

new conditions and di�erent proofs. Then, we have highlighted the properties of

set-valued pseudo-Lipschitzianmappings to deal with the Lipschitzian property

of the inverse of sum of two set-valued mappings. In our approach, we have

considered techniques based on handling subsets rather than points which are

usually used in these studies.
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