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1. Introduction

In this paper we study the following semilinear elliptic problem with Robin boundary condi-
tion:
—Au(z) +§@u(z) = f(z, u(z)) in 2,

0
N 4+ B(z)u =0o0n 0L2.
on

(1)

In this problem © € R" is a bounded domain with a C 2-boundary 0$2. The potential function

& € L*(Q) with s > N is in general sign-changing. So, the linear part of (1) is indefinite. The
reaction term f(z, x) is a Carathéodory function (that is, for all x € R, z+> f(z, x) is measur-
able and for almost all z € 2, x — f(z,x) is continuous), which exhibits superlinear growth
near £o00. However, f(z,-) does not satisfy the (usual in such cases) Ambrosetti—-Rabinowitz
condition (AR-condition, for short). Instead, we employ a more general condition which incor-
porates in our framework superlinear functions with “slower” growth near £oo, which fail to
satisfy the AR-condition. Another nonstandard feature of our work is that f(z, -) does not have
subcritical polynomial growth. In our case, the growth of f(z.-) is almost critical in the sense that
f(z,x)

x—+o0 |x|2*_2x
for 2, defined by

= 0 uniformly for almost all z € 2, with 2* being the Sobolev critical exponent

2N .

+o00 ifN=1,2.

ou
In the boundary condition, o denotes the normal derivative of u € H'() defined by exten-
n
sion of the continuous linear map

'@ surs 2 _
U 5_( u,n)pn,

with n(-) being the outward unit normal on d€2. The boundary coefficient is 8 € W1’°°(8 Q) and
we assume that 8(z) > 0 for all z € Q2. When 8 = 0, we have the usual Neumann problem.

Our aim in this paper is to prove existence and multiplicity results within this general ana-
Iytical framework. Recently, there have been such results primarily for Dirichlet problems. We
mention the works of Lan and Tang [14] (with £ = 0), Li and Wang [15], Miyagaki and Souto
[17] (with & = 0), Papageorgiou and Papalini [21], Qin, Tang and Zhang [29], Wu and An [34],
Zhang-Liu [35]. For Neumann and Robin problems, we mention the works of D’ Agui, Marano
and Papageorgiou [5], Papageorgiou and Radulescu [23,24,26], Papageorgiou, Radulescu and
Repovs [27], Papageorgiou and Smyrlis [28], Pucci et al. [2,4], Shi and Li [31]. Superlinear
problems were treated by Lan and Tang [14], Li and Wang [15], Miyagaki and Souto [17], who
proved only existence results. The superlinear case was not studied in the context of Neumann
and Robin problems.

Our approach uses variational methods based on the critical point theory, together with suit-
able truncation and perturbation techniques and Morse theory (critical groups).
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2. Mathematical background

Let X be a Banach space and X* its topological dual. By (-, -) we denote the duality brackets
for the pair (X*, X). Given ¢ € C ! (X, R), we say that ¢ satisfies the “Cerami condition” (the
“C-condition” for short), if the following property holds:

“Every sequence {uy},>1 € X such that {¢(u,)},>1 S R is bounded and

(1 + [|un|D¢' (un) — 0in X* as n — oo,

admits a strongly convergent subsequence”.

This is a compactness-type condition on ¢, which compensates for the fact that the ambient
space X is in general not locally compact. It leads to a deformation theorem from which one
can derive the minimax theory of the critical values of ¢. A fundamental result of this theory is
the so-called “mountain pass theorem”, which we state here in a slightly more general form (see
Gasinski and Papageorgiou [9, p. 648]). We also point out that Theorem 1 is a direct consequence
of Ekeland [7, Corollaries 4 and 9].

Theorem 1. Let X be a Banach space. Assume that ¢ € C "X, R) satisfies the C-condition and
for some ug, u1 € X with ||luy — uol| > r > 0 we have

max{g(uo), (1)} < inflp(u) : [lu —uol| =r]=m,

andc = inlﬁomax o(y@)withl ={y e C([0,1], X) : y(0) =ug, y(1) =uy}. Then c > m, and
Ye

<t<l

c is a critical value of ¢ (that is, there exists ug € X such that ¢’ (up) =0 and ¢ (ug) = c).

It is well known that when the functional ¢ has symmetry properties, then we can have an
infinity of critical points. In this direction, we mention two such results which we will use in
the sequel. The first is the so-called “symmetric mountain pass theorem” due to Rabinowitz [30,
Theorem 9.12, p. 55] (see also Gasinski and Papageorgiou [9, Corollary 5.4.35, p. 688]).

Theorem 2. Let X be an infinite dimensional Banach space such that X =Y @ V with Y finite
dimensional. Assume that ¢ € C (X, R) satisfies the C-condition and that

(i) there exist 9, p > 0 such that ¢|yp,nv =V > 0 (here 9B, ={x € X : [|x|| = p});
(i) for every finite dimensional subspace E C X, we can find R = R(E) such that ¢|x\p; <0
(here B ={u € X : ||u|| < R}).

Then ¢ has an unbounded sequence of critical points.

The second such abstract multiplicity result that we will need, is a variant of a classical result
of Clark [3], due to Heinz [11] and Kajikiya [13].

Theorem 3. If X is a Banach space, ¢ € C "X, R) satisfies the C-condition, is even and bounded
below, ¢(0) = 0 and for every n € N there exist an n-dimensional subspace Y,, of X and p,, > 0
such that

suplp(u) :u €Y, NdB, 1<0

then there exists a sequence {u,},>1 € X of critical points of ¢ such that u, — 0 in X.
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In the analysis of problem (1), we will use the following three spaces:
e the Sobolev space Hl(_Q);
e the Banach space cl(Q);
o the “boundary” Lebesgue spaces L?(9€2) with 1 < ¢ < oo.

The Sobolev space H () is a Hilbert space with inner product given by
(u, h) g1 = / uhdz + /(Du, Dh)gndz forallu, h € HY(Q).
Q Q

By || - || we denote the corresponding norm defined by

12
lull = Il 5 + 11Dul3 ]| ™ forallu € H' ().

The Banach space C! () is an ordered Banach space with positive (order) cone given by
Ci={uecC'(Q):uz)>0forall z € Q).
This cone has a nonempty interior containing

D, ={ueCy:u(z)>0forall z € QJ.

On 92 we consider the (N — 1)-dimensional Hausdorff (surface) measure o (-). Using this
measure, we can define in the usual way the “boundary” Lebesgue space LY(3L2), 1 < ¢ < oo.
From the theory of Sobolev spaces, we know that there exists a unique continuous linear map
Y0 - H! (Q) —> LZ(E)Q), known as the “trace map”, such that

yo(u) = ulyq forallu e H'(Q) N C(Q).

So, the trace map extends the notion of boundary values to every Sobolev function. We know

2N —1
g) if N >3 and into LI (9S)

that the map yp is compact into L?(3<2) for all g € [1, N2

forall ¢ > 1 if N =1, 2. Moreover, we have

keryo = H{ () and im yo = H22(3S2).

In the sequel, for the sake of notational simplicity, we drop the use of the trace map. All
restrictions of Sobolev functions on 02 are understood in the sense of traces.

We will need some facts about the spectrum of the differential operator u — —Au + £(2)u
with Robin boundary condition. So, we consider the following linear eigenvalue problem:
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—Au(z) +&@u(z) = ):u(z) in 2,

Z—Z—i—ﬁ(z)M:Oon 0Q2. @
We assume that
£ € L*(Q) withs > N and B € W1(3Q) with B(z) > 0 for all z € 3<2.
Lety:H 1(Q) — R be the C!-functional defined by
p = Duld+ [ s@uld+ [ pentdo foratue ' @)
Q a0

From D’ Agui, Marano and Papageorgiou [5], we know that we can find © > 0 such that

y @) + ullul|3 = collu||* for all u € H'(R2), some co > 0. (3)

Using (3) and the spectral theorem for compact self-adjoint operators on a Hilbert space, we
show that the spectrum & (2) of (2) consists of a sequence {ik}keN of distinct eigenvalues such
that Ay — +00. By E () (k € N) we denote the corresponding eigenspace. These items have
the following properties:

e J is simple (that is, dim E(A;) = 1) and

[luel 3

ilzinf[”(“) :ueHl(Q),u;«éO]. @)

e For every m > 2 we have

Am = inf y(u; ‘ue @ EQu),u#0
[uell5 kzm

= sup ”(“)2 ue ®EGL),u#0]|. )
[|uell5 k=1

e Forevery ke N, E ():k) is finite dimensional, E ()A»k) ccC l(5) and it has the “unique con-
tinuation property” (UCP for short), that is, if # € E(Ar) and vanishes on a set of positive
measure, then u = 0.

Note that in (4) the infimum is realized on E (X 1) and in (5) both the infimum and the supre-
mum, are realized on E (im). The above properties, imply that the nontrivial elements of E (5»1)
have constant sign, while the nontrivial elements of E (im) (for m > 2) are all nodal (that is, sign
changing) functions. By #; we denote the L%-normalized (that is, ||a1||2 = 1) positive eigen-
function. We know that ii; € C4 and by the Harnack inequality (see, for example, Motreanu,
Motreanu and Papageorgiou [18, p. 211]), we have ii1(z) > 0 for all z € . Moreover, assuming
that £ € L°°(2) and using the strong maximum principle, we have ii; € D,
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Now let fj: 2 x R — R be a Carathéodory function satisfying

| foz, x)| <ao(z)(1 + |x|* 1) for almost all z € 2, all x € R.

X
We set Fo(z,x) = / fo(z, s)ds and consider the C'-functional ©o H'($) — R defined by
0

¢0(M)=%V(u)—/Fo(z,u)dz forall u € H' ().
Q

The next result is a special case of a more general result of Papageorgiou and Rédulescu
[22,25].

Proposition 4. Assume that ug € H 1(Q) is a local C 1(5)-1711'm’mizer of o, that is, there exists
81 > 0 such that

9o (u0) < @o(uo + ) for all h € C'(Q) with ||h]|c1 g < 1.

Then ug € C' (Q) and uq is also a local H 1(SZ)-minimizer of wo, that is, there exists 53 > 0 such
that

@0 (uo) < po(uo + h) for all h € H' () with ||h|| < 8.

Next let us recall a few basic definitions and facts from Morse theory, which we will need in
the sequel. So, let X be a Banach space, ¢ € C 1(X ,R) and ¢ € R. We introduce the following
sets:

={ueX: o) <c}, Kp={ueX:¢u =0}, K(;:{ueK(pxp(u):c}.

Let (Y1, Y2) be a topological pair such that Y, € Y| € X. For k € Ny, let Hy (Y1, Y2) denote the
kth relative singular homology group for the pair (Y7, Y2) with integer coefficients (for k € —N,
we have Hy (Y7, Y2) =0). Given ug € K (; isolated, the critical groups of ¢ at uq are defined by

Ci (@, uo) = Hp(p° NU, ¢ N U\{ug}) for all k € N,

with U being a neighbourhood of u satisfying ¢ N K, N U = {uo}. The excision property of
singular homology implies that this definition of critical groups is independent of the choice of
the neighbourhood U .

Suppose that ¢ satisfies the C-condition and that inf¢(K,) > —o0. Let ¢ < inf¢(K,). The
critical groups of ¢ at infinity, are defined by

Ci(p, 00) = H (X, ¢°) for all k € Ny.

This definition is independent of the choice of ¢ < infp(K,,). Indeed, let ¢ < ¢ < infp(K,).
Then from a corollary of the second deformation theorem (see Motreanu, Motreanu and Papa-
georgiou [ 18, Corollary 5.35, p. 115]) we have that
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@ is a strong deformation retract of (pé.

Therefore, we have
Hi(X, ¢°) = Hy(X, ¢) for all k € No.

We assume that K, is finite and introduce the following quantities:

M(t,u) = Z rank Cy (¢, u)t* forall 7 € R, all u € K,
k=0

P(t,00) = Z rank Cy (¢, 0o)t* for all 1 € R.
k>0

Then the Morse relation says that

> M(@tu)=P(t,00) + (1 +1)Q(), (6)

ueky,

where Q(1) = Z ﬁktk is a formal series in ¢ € R, with nonnegative integer coefficients ,3/(.
k=0
Finally we fix our notation. So, for x € R, we set xT= max{=£x, 0}. Then for u € H! (2) we
define ui(-) = 14(-)ﬂE and we have

u=ut—u", |u|=u+—u_, uieHl(Q).

Given a measurable function g : 2 x R — R (for example, a Carathéodory function), by N,
we denote the Nemytskii map corresponding to g, that is,

Ngu)(-) =g(-,u(-)) forallu € H'(Q).

Evidently, z > Ng(u)(z) is measurable on Q. By | - [y we denote the Lebesgue measure
on RV . We set

m+:min{keN:ik>0}andm_:max{keN:ik<O}.

Then we have the following orthogonal direct sum decomposition of the Sobolev space
H'(Q):

H' (Q)=H_®E0) & H,

m—_ A - _~

with H_. = @ E(Ay), Hr = @& E(Ar).So,every u € H! (2) admits a unique sum decompo-
k=1 k>my

sition

u=u—+u’+i,withue H_, u® € E0), i € H,
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If0¢o(2)= {ik}keN, then E(0) =0and m_ =m,4 — 1.
If&>0andé#00r §#£0,then A >0andsomy =1and m_ =0.
If £ =0, 8 =0 (Neumann problem with zero potential), then

my =2, m_=0, E(0O)=R.
Ifu,ve H ! (2), and v < u, then by [v, u] we denote the order interval defined by

lv,ul={ye H(Q): v(z) < y(z) <u(z) for almost all z € Q}.

3. Existence theorems

In this section we prove two existence theorems. The two existence results differ on the ge-
ometry near the origin of the energy (Euler) functional.

For the first existence theorem, we assume that f(z,-) is strictly sublinear near the origin.
More precisely, our hypotheses on the data of problem (1) are the following:

H(E): & € L5(Q) with s > N.
H(B): BeWh™(dQ) with B(z) =0 for all z € IQ.

Remark 1. When 8 = 0, we have the usual Neumann problem.

H(f)1: f:Q2 xR — Risa Carathéodory function such that
(i) forevery p > 0, there exists a, € L°°(£2)4 such that

| f(z,x)] <a,(z) foralmostall z € ,all |x| <p

and lim fzx)

m m = 0 uniformly for almost all z € 2;

(i) if F(z,x) = / f(z,8)ds and 7(z, x) = f(z,x)x —2F(z, x), then
0

. F(z,x)
lim
x—>+00 X
such that

= 400 uniformly for almost all z € Q and there exists e € LI(Q)

7(z2,x) <1(2,y) +e(z) foralmostallze Q2,all0 <x <yandall y <x <0;

(i) tim 2%

—0 X

= 0 uniformly for almost all z € Q2 and there exists § > 0 such that
[al F(z,x) <O0foralmostall z € £, all |x| <§,
or [b] F(z,x)>0foralmostall z e €, all |x| <§.

Remark 2. Hypothesis H(f)1(i) is more general than the usual subcritical polynomial growth
which says that
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|f(z,x)| <c1(1+ |x|’_1) foralmostall z € 2, all x e R,

with ¢y > 0 and 1 < r < 2*. Here the growth of f(z, -) is almost critical and this means we face
the difficulty that the embedding of H 1(Q) into L2 (£2) is not compact. We overcome this dif-
ficulty without use of the concentration-compactness principle. Instead we use Vitali’s theorem.
Hypothesis H (f)1(ii) implies that

i f(z,x)
im

x—>+00 X

= 400 uniformly for almost all z € Q.

Therefore f(z,-) is superlinear near +co. Usually such problems are studied using the so-
called Ambrosetti—-Rabinowitz condition (the AR-condition for short). We recall that the AR-
condition says that there exist g > 2 and M > 0 such that

0<gq F(z,x) < f(z,x)x foralmost all z € Q , all |x| > M (7a)

0 < essinfo F (-, =M). (7b)
Integrating (7a) and using (7b), we obtain the following weaker condition
c2|x|? < F(z, x) for almost all z € Q, all [x| > M. )

From (7a) and (8), we see that f(z, -) has at least (¢ — 1)-polynomial growth. This restriction
removes from consideration superlinear functions with “slower” growth near +0o. For example,
consider a function f(x) which satisfies:

1
fx)y=x |:ln|x| + §:| for all |x| > M.

1
In this case the primitive is F(x) = —x2In |x| for all |x| > M and so (3) fails. In particular,

then the AR-condition (see (7a) and (7b)) does not hold. In contrast f(-) satisfies our hypothesis
H (f)1(ii). This condition is a slightly more general form of a condition used by Li and Yang [15].
It is satisfied, if there exists M > O such that

X = fz,x) is nondecreasing on [M, +00),
x
X = f&x) is nonincreasing on (—oo, —M] (see [16]).
X

Hypothesis H (f)1(iii) implies that f(z, -) is sublinear near zero.

Examples. The following functions satisfy hypotheses H(f);. For the sake of simplicity, we
drop the z-dependence:

|x|
1+ |x|

f1(x)=x[1n(1+|x|)+ } forallx e R

and
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lx|?" ~2x 1 |x| .
—_— ] _ —C lfx < —1
In(1 + |x]|) 2* (1 + |x|) In(1 + |x|)
H) =1 |x|""2x if —1<x<1
lx|?"~2x 1 x| .
P E—— 1 —_ + C lf 1 <X
In(1 + |x|) 2% (14 |xP In(1 + |x])

1 1 1
withr >2andc=1— —|1— — .
In2 2% 21n2

Note that we have

1
Fi(x) = Elen(l + |x|) forall x e R

1 x¥

B = a1

+ c|x| for all |x| > 1.

Observe that f1(-) although superlinear, fails to satisfy the AR-condition, while f, has almost
critical growth.
Let ¢ : H' () — R be the energy (Euler) functional for problem (1) defined by

o) = %y(u) - / F(z,u)dz forallu € H' ().
Q

Evidently, ¢ € C!(H'(Q)). First we show that the functional ¢ satisfies the C-condition.

Proposition 5. If hypotheses H(£), H(B), H(f)1(i), (ii) hold, then the functional ¢ satisfies the
C-condition.

Proof. We consider a sequence {u,},>1 € H 1(SZ) such that

lo(uy)| < My for some My >0, alln € N, 9
(1 + [lin )¢ ) — 0'in H'(Q)* as n — oc. (10)
From (10) we have
h
(AGun), h) + / E(unhd + f B@unhdo — / F (e umhdz| < % (1)
n
Q Q2 Q

forall h € H'(Q), with &, — 0.
In (11) we choose h = u,, € H! (2) and obtain

—V(un)+/f(z,un)undz§8n for alln € N. (12)
Q

On the other hand, by (9), we have
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v (uy) — /ZF(Z, u,)dz <2M, foralln € N. (13)
Q
We add (12) and (13) and obtain

/ t(z,u,)dz < M, for some M, > 0, alln € N. (14)
Q

Claim 1. {u,,},>1 € H'(Q) is bounded.

We argue by contradiction. So, we assume that the Claim is not true. Then by passing to a
subsequence if necessary, we have

[lun|l = 4o00. (15)
Let y, = |Z"” for all n € N. Then ||y,|| = 1 and so we may assume that
n
yo 2 yin H'(Q) and y, — y in LT () and in L2(9R) (16)

2
(note that since s > N (see hypothesis H(£)), we have sl <2%).

§ —
First, we assume that y #£ 0. Let Q" = {z € Q : y(z) # 0}. Then |Q*|xy > 0 and we have

lun(z)] = 400 for almost all z € Q* (see (15)).
Using hypothesis H (f);(ii) we have

F(z,un(z))  F(z,un(2))
Huall2 un(2)?

Yn (2)? > 400 for almost all 7 € Q*.

Using Fatou’s lemma we can say that

F(z,
/%dz—) 00 as 1 — 0. (17)
Un

Hypothesis H (f)(ii) implies that we can find M3 > 0 such that
F(z,x) >0 for almost all z € 2, all |x| > M3. (18)
From (15) we see that we may assume that
[luy]| > 1foralln e N. (19)

Then we have
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F(z, F(z, F(z,
/7@ u;)dz=/—(z u;)dz+ / —(Z u;)dz
[unll [lunll [lunll

Q Q* Q\Q*

F(z,u F(z,u
:/ (z ;)dZ (z ;)dz
[unll [unll

(Q\Q*)N{|un|>=M3}
F(Zvun)
+ ot gy
] |2

(@\QH)N{Jun|<M3}

F ’
zf%dz—qforsomeg>0, alln eN
Up

(see (18), (19) and hypothesis H (f)1(1))

F(Z7 “n)
:>/ Wdz — 400 asn — oo (see (17)). (20)

By (9) we have

FGz, M1
/ & ”;’)dzs L+ ~y () < My for some My > 0,alln € N Q1)
[tenl] [uenl] 2

(see (19)).

Comparing (20) and (21), we get a contradiction.

Now suppose that y = 0. Let n > 0 and set v, = (277)1/2y,, € H'(Q) for all n € N. Then from
(16) and since y = 0, we have

vy 2> 0in H'(Q) and v, — 0in LT () and in L2(9). (22)
Let c4 = sup ||vn||%i (see (22)). From hypothesis H(f)1(i) we see that given ¢ > 0, we can

n>1

find ¢s5 = ¢5(e) > 0 such that

& 5
|F(z,x)| < 2—|x|2 + ¢s5 for almost all z € 2, all x € R. 23)
4

e
Let E C 2 be a measurable set such that |E|y < Zec” Then we have
cs

/F(z,vn>dz 5/|F<z,vn)|dz

E E
£ *
< ——|lvall3 + cs|E|y (see (23))
2cy4
<egforalln e N,

= {F(,v2(:)}n>1 € LY(RQ) is uniformly integrable.
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Also note that by (22) and by passing to a subsequence if necessary, we have
F(z,v,(z)) — 0 for almost all z € Q as n — +00.

So, invoking Vitali’s theorem (the extended dominated convergence theorem) we have

/F(z,vn)dz—>0asn—>oo. (24)
Q

From (15), we see that we can find ng € N such that

1
0<(2n)‘/2|| <1 forall n > ny. (25)
Un
We choose 2, € [0, 1] such that
@(tquy) =max[p(tu,):0 <t <1]. (26)

From (25) and (26) we have

@(tyun) = @ (vy)

= [y G) + 1yl 3] —fF(z,vn)dz—unHynu%
Q

> n[co = ullyal 3] - / F(z, un)dz forall n = ng @)
Q

(see (3)).

Recall that y = 0. So, from (16), (24) and (27), we see that we can find ny € N, ny > ng such
that

o(thuy) > %nco foralln > n;y.
But n > 0 was arbitrary. Therefore it follows that
@(thuy) - 400 asn — 00. (28)
We have
¢(0) =0 and ¢(u,) < M; for all n € N (see (9)). 29)
From (28) and (29) we see that we can find n, € N such that
t, € (0, 1) for all n > ns. (30)

From (26) and (30), we have
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d
E§0(l‘un)|t=z,l =0foralln > ny,
= (¢ (tyun), tyun) = 0 for all n > n, (by the chain rule),

= V(tnun)=/f(z,tnun)(tnun)dz for alln > nj. (31)
Q

From hypothesis H (f)1(ii) and (30), we have

(2, thity) < 1(2,Uu,) + e(z) for almost all z € 2, all n > no,

= /‘L’(Z, tnun)dZS/T(Z,Mn)d2+||€||1fOrallnznz
Q Q

= /f(zvtnun)(tnun)dzSCG+/2F(thnun)dZ (32)
Q Q

for some cg > 0, all n > ny (see (14)).
We return to (31) and use (32). Then
2¢(thuy) < ce for all n > ny. (33)

Comparing (28) and (33) we get a contradiction. This proves the Claim.
On account of the Claim, we may assume that

wy > win H'(Q) and u, — u in LT and in L2(0S). (34)
In(11) we choose h =u,, —u € HI(Q), pass to the limit as n — oo and use (34). Then
lim (A(up), u, —u) =0,
n— oo
= ||Dupll2 — [|Dull2

= u,—uin H(Q)
(by the Kadec—Klee property, see (34) and Gasinski and Papageorgiou [9, p. 901]).
This proves that ¢ satisfies the C-condition. O
We assume that K, is finite (otherwise we already have an infinity of nontrivial solutions for
problem (1)). Then the finiteness of K, and Proposition 5 permit the computation of the critical
groups of ¢ at infinity.

Proposition 6. If hypotheses H (§), H(B), H(f)1, (i), (ii) hold, then Ci(p, 00) =0 for all k € N.

Proof. Hypotheses H (f)1(i), (ii) imply that given any n > 0, we can find ¢7 = c7(n) > 0 such
that
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F(z.x)> ng — ¢ for almost all z € 2, all x € R. (35)

LetdB; ={ue HI(Q) :|lu]] = 1}. Then for u € By and ¢t > 0, we have

2
(i) = Sy ) - f Fo. tu)dz

Q
t
< 5 [y @ = nliuli3] + er@y see 35)

=<

| T

[C8—77||M||%]+C7IQ|N for some cg > 0 (36)

(see hypotheses H (), H(B)).
Recall that > 0 is arbitrary. So, we can choose 1 > ||C|| . Then it follows from (36) that
u

@(tu) > —oo ast — +oo (u € dBy). 37

For u € 0B and ¢t > 0, we have

d
E(p(tu) = (¢'(tu), u) (by the chain rule)

1
= ;((P/(tu): tu)

=— y(tu)—/f(z,tu)(tu)dz

5; y(tu)—/ZF(z,tu)dz+||e||1 see hypothesis H (f)1(ii)
L Q
1
= ;[2<ﬂ(tu)+ [lell1]. (33)

From (37) and (38) we infer that

d
Ego(tu) <0 fort > 0 big.

Invoking the implicit function theorem, we can find ¢ € C(d B1) such that

llell1

¥ >0and (¥ w)u) =pg < — >

(39)

We extend ¢ on H' (£2)\{0} by defining
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by = —p <L> for all u € H' (2)\{0}.
[[ee]] [|ze]]

We have that 9 € C(H ' (2)\{0}) and ¢ (3 (u)u) = po. Also
o) =po= V()= 1.
Therefore, if we define

if p(u) < po

1
Dot = { by if po < ()

then 99 € C' (H'(2)\{0}) (see (40)).

Consider the deformation 4 : [0, 1] x (H'(2)\{0}) — H'(2)\{0} defined by

ht,u)=1 —t)u +t9g(m)u forall t € [0, 1] all u € Hl(Q)\{O}.

We have

h(O,) = id] 1@\ )
h(1,u) € p™ (see (41) and (40))
h(t, )gro =id|gpro (see (41)).

These properties imply that
@™ is a strong deformation retract of H! (2)\{0}.
Consider the map rp : HI(Q)\{O} — 0Bj defined by
ro(u) = IIZ—II for all u € H' (Q)\{0}.
We see that

ro(-) is continuous and rolyp, = id|yp, ,

= 9B is aretract of H'(£)\{0}.

3259

(40)

(41)

(42)

(43)

Also, if we consider the deformation hg : [0, 1] x (HI(SZ)\{O}) — H! (2)\{0} defined by

ho(t,u) = (1 — t)u + tro(u) for all £ € [0, 1], all u € H' (Q)\{0}

then we see that
H! (2)\{0} is deformable into 0 Bj.

From (43), (44) and Theorem 6.5 of Dugundji [6, p. 325] it follows that

(44)
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d B is a deformation retract of H ! (2)\{0}. 45)

From (42) and (45) we infer that

¢ and 9 B are homotopy equivalent,
= H(H' (Q),¢") = H(H'(Q),dB)) forall k € Ny (46)
(see Motreanu, Motreanu and Papageorgiou [18, p. 143]).
Since d B; is the unit sphere of the infinite dimensional Hilbert space H 1(Q) then it is con-

tractible (see Gasinski and Papageorgiou [10, Problems 4.154 and 4.159]). Therefore

Hi (H'(R),0B;) =0 forall k € Ny 47)

(see Motreanu, Motreanu and Papageorgiou [18, p. 147]).
From (46) and (47) it follows that

Hy(H'(2), ™) =0 for all k € N. (48)
Taking po more negative if necessary (see (39)), we have

Hi(H' (), 9™) = Ci (g, 00) for all k € Ny,
= Ci(p,00)=0forallkeNy. O

We also compute the critical groups of ¢ at the origin. Recall that we have the orthogonal
direct sum decomposition

H' (Q)=H_®E0) & H,

m_ A~ - _~ _
with H_. = @ E(A\), Hr = @ E(A) (see Section 2). We set
k=1

Zm4
d_=dimH_ and d° = dim (H- @ E(0)). Note that

o d_=0if gk > 0 for all k € Ny (that is, H_ = {0}).
e d° =0if A; > 0forall k e Ny (that is, H_ & E(0) = {0}).

Proposition 7. If hypotheses H(§), H(B), H(f)1 hold, then Cq_(¢,0) # 0 or C o (¢, 0) # 0.

Proof. First we assume that hypothesis H (f)1(iii) [a] holds.
Hypotheses H (f); imply that given ¢ > 0, we can find cg = c9(¢) > 0 such that

& *
|F(z,x)| < 5x2 + colx|> foralmostall ze Rall x € R (49)

(if N =1, 2, then we replace 2* by r > 2). For u € H_ we have
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1
<P(M)=§J/(M)—/F(Z,u)dz

Q

)A»m, +é&
<

lul13 + col|u| |3 (see (49) and recall that u € H_). (50)

Recall that im7 < 0. So, if we choose ¢ € (0, —)A»m,) and exploit the fact that since H_ is
finite dimensional all norms are equivalent, then from (50) we have

o) < —c10||u||2 +c11||u||2* for some c19,c11 >0, allu € H_. (&)
Since 2 < 2*, we see from (51) that we can find p; € (0, 1) small such that
ueH_, [lull <p1=¢)=<0. (52)

Recall that E(0) is finite dimensional. So, all norms are equivalent and we can find py > 0
such that

u € Eo, ||u]] < po=u(z)| <38/, for almostall z € Q2. (53)

Here, § > 0 is as postulated by hypothesis H (f)1(iii).
Letu € E(0) @ Hy. Then u admits a unique sum decomposition

u=u"+0 withu € E(0), ii € H.
Note that
lul] < po = 11u®]] < po, (54)

since u” is the orthogonal projection of u on E(0) and the orthogonal projection operator has
operator norm equal to 1.

8
We define Q5 = {z eQ:u(z) < 5} Then for u € E(0) @ H, with ||u|| < pg, we have

lu(z)| < [u®(2)| + |i(2)] < g + % = § for almost all z € Qs
(see (53), (54)),
= / F(z,u(z))dz <0 (see hypothesis H (f)1(iii)[a]). (55)
Qs
Also, for u € E(0) & H+ with ||u|| < po, we have
lu(z)| < [u®(z)| + |ii(z)| < 2)it(z)| for almost all z € 2\ (56)

(see (53), (54)).
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So, for u € E(0) @ H with ||u|| < pg, exploiting the orthogonality of the component spaces,
we have

1
w(u)=§)/(u)—/F(Z,u)dZ

Q

1
= E)/(ﬁ) - / F(z, u)dz (see (55) and recall that u® € E(0))
Q\Q

1 .
> 5)/(12) —el|||3 — ci2l|@l|* for some c12 > 0 (see (49), (56))

> cuslli]|? = crz|lit||* for some ¢j3 > 0, choosing & > 0 small (57)

(recall that zi € Hy).
Since 2 < 2*, choosing p; € (0, pg] small, from (57) we have
o) >0=¢0) forallu € E(0)® H+, 0 < ||u]] < p2. (58)
Then (52) and (58) imply that
¢ has alocal linking at u =0
(for the decomposition H_ @ [E(0) ® H+])
u = 0 is a strict minimizer of ¢|g)gpH,
Then by Motreanu, Motreanu and Papageorgiou [18, pp. 169, 171], we have

Ca_(9,0) #0.

Now assume that hypothesis H (f)1(iii) [b] holds. We consider the following orthogonal di-
rect sum decomposition

HY(Q)=Z@® H, with Z = H_ @ E(0).
Then for u € H; we have

1
o) = 3y (@) f F(z.u)dz

Q
>3 |y @ —elull3] = crallul " for some 14> 0
(see (49)).
Choosing ¢ > 0 small, we have
@) = cis||ull* — crallul|* for some c15 > 0

(recall that u € Hy).
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Since 2 < 2*, we can find p; € (0, 1) small such that
ueHy, 0<|ull =p1=¢0)=0<g). (59

Now suppose that u € Z = H_ @ E(0). The space Z is finite dimensional and so all norms are
equivalent. Therefore we can find p; > 0 such that

ucZ, ||lull <p2=|u(z)] <6 foralmostall z € Q2. (60)

Here, § > 0 is as postulated in hypothesis H (f)(iii). Every u € Z can be written in a unique way
as

u=1+u’ withu € H_, MOEE(O).

Exploiting the orthogonality of the component spaces, for u € Z with ||u|| < p2, we have

1
o) = v (@) — / F(zu)dz

Q

= %V(ﬁ) - / F(z, u)dz (since u® € E(0))
Q

N
< % |lul3 (see (60) and use hypothesis H (f)1(iii) [b]).

Since A,, <0, it follows that

o) <0forallu € Z=H & E(0) with ||u]| < p>. (61)
Then (59) and (61) imply that

¢ has a local linking at u =0
(now for the decomposition Z & H),
0 is as strict local minimizer of ¢|H

As before, by Motreanu, Motreanu and Papageorgiou [18, pp. 169, 171], we have
Cpo(9.0) #0 (recall ° =dim 2). O
Now we are ready for our first existence theorem.

Theorem S.thypotheses H(&), H(B), H(f)1 hold, then problem (1) admits a nontrivial solu-
tion ii € C1(Q).
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Proof. From Proposition 6, we have that
Ci(p, 00) =0 for all k € Ny. (62)
Also, Proposition 7 says that
Ca_(9.0) #0or Cp(p,0) #0. (63)

Then (62), (63) and Corollary 6.92 of Motreanu, Motreanu and Papageorgiou [18, p. 173]
imply that we can find i € K,\{0}. From Papageorgiou and Ridulescu [22], we have

—~Aﬁ(z) + &(2)u(z) = f(z,u(z)) for almost all z €

a 64
—M—i-ﬂ(z)ft:OonaQ. (64)
on
We define the following functions
0 if |i(z)] <1 - s
_ i _ | fzou) if Ju@|=1
a(z) = f(Z: 1(z)) it 1< i)l and b(z) = { 0 it 1< (@) (65)
u(z)
Hypotheses H (f)1, imply that given ¢ > 0, we can find c16 = c16(¢) > 0 such that
| f(z, )| < E|)c|2*_1 + c16|x| for almost all z € 2, all x € R. (66)

Then from (65), (66) and the Sobolev embedding theorem, we have

ael?(Q).
Also, it is clear from (64) and hypothesis H (f)1(i) that
be L™ ().
We rewrite (64) as follows
—Au(z) = (a(z) — §(2))i(z) + b(z) for almost all z € 2,
ol

— + B(2)it =0 0n 9L2.
on

Invoking Lemma 5.1 of Wang [33], we have
ieL®Q).
Then hypotheses H(§), H(f)1(i) imply that
fCa() —&Cu) e L*(Q), s>N.

Invoking Lemma 5.2 of Wang [33] (the Calderon—Zygmund estimates), we have
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i e WH(Q),
~ l,a /o . N
= ueC Q) witha=1-——>0
s

(by the Sobolev embedding theorem). 0O

In Theorem 8, the reaction term f(z,-) is strictly sublinear near zero (see hypothesis
H(f)1(iii)). In the next existence theorem, we change the geometry near zero and assume that
f(z,-) is linear near zero. In fact we permit double resonance with respect to any nonprincipal
spectral interval.

The new hypotheses on the reaction term f(z, x) are the following:

H(f)2:f:Q2xR— R is a Carathéodory function such that hypotheses H (f)2(i), (ii) are the
same as the corresponding hypotheses H (f)1(i), (ii) and
(ii1) there exist m € N, m > 2 and é > 0 such that

AmxZ < f(z, X)X < Amy1x> for almost all z € 2, all x| <.

Remark 3. The behaviour of f(z, -) near oo remains the same. However, near zero, the growth
of f(z,-) has changed. In fact the new condition for f(z, -) near zero implies linear growth. Also,
permits resonance with respect to both endpoints of the nonprincipal spectral interval Com,s )A»m_H],
m > 2 (double resonance). This means that the computation of the critical groups of ¢ at the
origin changes.

Proposition 9. If hypotheses H (&), H(B), H(f)2 hold, then Ci(¢,0) = k.4, Z for all k € Ny
with dy, = dim & E(G).
i=1

Proof. Let v € ()A»m, ):m+ 1) and consider the C 2_functional W : H' (2) — R defined by

U(u) = Ey(u) — E||u||2 forallu € H' (2).

In this case we consider the following orthogonal direct sum decomposition of the Hilbert
space H ! (2):

J— A J— m A A~ A - _ _~ _
H'(Q)=H, & Hy with Hy, = & EG), Hn=Hy = & E(). (67)
i=1 izm+1

The choice of ¥ and (5) imply that
\Il|ﬁm <0and \Il|131m\{0} > 0.
Then Proposition 2.3 of Su [32] implies that
Cr (¥, 0) = 6.4, Z for all k € Np. (68)

m

Consider the homotopy 4 : [0, 1] x H' (2) — R defined by
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hy(t,u) = (1 — @) + 1V (u) forall 1 € [0, 1], allu € H' ().
As in the proof of Theorem 8, using the regularity theorem of Wang [33], we have that
Kn .y S CH(Q) forall 7 € [0, 1].

Let t > 0 and suppose that u € c! () satisfies 0 < ||u] |C1(§) <4, with § > 0 as postulated by
hypothesis H (f)>(iii). Then

((ha)y, (2, w), v) = (1 = 1){@' (), v) + (¥’ (u), v) for all v e H'(Q). (69)
Using the orthogonal direct sum decomposition (67), we can write u in a unique way as
u=Ttu+iwithie Hy, i € Hy,.

Exploiting the orthogonality of the component spaces, we have

(@' ), ot —u) =y (@) —y @) — / [z uw) (i —wydz.
Q

Recall the choice of u € C'(Q) and use hypothesis H (f)2(iii). Then
fzu@)@—u)(z) < )A»m+1t2(z)2 — Amii(z) for almost all 7 € 2.

Therefore
(G, — ) >y @) — A 181 = [y @ — Rl l13] >0 (10)

(see (5)).
Also, again via the orthogonality of the component spaces, we have

W, i =) =y @ — 21l — [y @ - 2@ 3] > erllul 2 an

for some c17 > 0 (recall that 6 € ()A»m, Xm+1)).
Returning to (69) and usingv=u —u € H! (£2) and relations (70), (71), we obtain

((ha)! (2 u), 0 — ) > tc17||u||2 >0forall0 <z <1.

For t =0, we have h.(0,-) = ¢(-) and 0 € K|, is isolated (recall that we assumed that K,
is finite or otherwise we already have an infinity of nontrivial solutions). Therefore from the
homotopy invariance property of critical groups (see Gasinski and Papageorgiou [10, Theorem
5.125, p. 836]), we have

Ci(h+(0,4),0) = Cr(h«(1,-),0) for all k € Ny,
=  Cil(p,0) = Cr (¥, 0) for all k € Ny,
= Ci(¢,0) =6gq,Zfor all k € Ny (see (68)). O
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Using this Proposition and reasoning as in the proof of Theorem 8, we obtain the following
existence theorem.

Theorem 10. If hypotheses H (), H(B), H(f>) hold, then problem (1) admits a nontrivial
smooth solution

ii e C'(Q).
4. Equations with concave terms

In this section we examine what happens when the reaction function exhibits a concave term
(that is, a term which is strictly superlinear near zero). So, the geometry is different from both
cases considered in Section 3. To deal with this new problem, we introduce a parameter A > 0 in
the concave term and for all A > 0 small we prove multiplicity results for the equation.

So, now the problem under consideration, is:

—Au(z) + E@u) = Au@) " *u@) + £z u) inQ,

ou (Py)
a—-i-,B(z)u:O ond2, A>0, 1 <g<?2.
n

The hypotheses on the perturbation f(z, x) are the following:

H(f)3: f: Q2 xR — Ris a Carathéodory function such that hypotheses H (f)3(i), (ii) are
the same as the corresponding hypotheses H (f)1(i), (i) and
(iii) there exist functions n, ng € L% (£2) such that

1 f(z,x)
< limsup

x—0 X

n(z) < 5»1 for almost all z € 2, n £ )Aq,
M <l < 1(z) uniformly for almost all z € Q.
x

no(z) < lim
x—0

For every A > 0, let ¢, : H 1(Q) — R be the energy (Euler) functional for problem (7))
defined by

1 A
o (u) = Ey(u) — = lullf - / F(z,u)dz forallu € H (Q).
q

Evidently, ¢, € C'(H'(Q)).
Also, we consider the following truncations—perturbations of the reaction in problem ( P;):

A 0 ifx <0
+ _ —
5 (Z’x)_{kxq_l+f(z,x)+ux if 0 < x, (72)
- x4 f (2 x) Fpx ifx <0,
5 (Z’x)_{o if0 < x. (73)



3268 N.S. Papageorgiou et al. / J. Differential Equations 263 (2017) 3244-3290

Here © > 0 is as in (3). Both f;‘ and f)\_ are Carathéodory functions. We set I:“)ft(z, x) =

X
/ f;i (z, s)ds and consider the C'-functionals (,?)Ai : Hl(Q) — R defined by
0

n 1 ~
gof(u):Ey(u)—}—%IIMII%—/F;t(z,u)dzforallueHl(Q).
Q

Since hypotheses H (f)3(i), (ii) are the same as H (f);(i), (ii) and the concave term A|x |q_2x

does not affect the behaviour of the reaction near +00, from Proposition 5, we have:

Proposition 11. If hypotheses H(&), H(B), H(f)3 hold and A > 0, then the functional ¢, sat-

isfies the C-condition.

Using similar arguments, we can also prove the following result:

Proposition 12. If hypotheses H (&), H(B), H(f)3 hold and A > 0, then the functionals g?))jf sat-

isfy the C-condition.

Proof. As we already indicated, the proof is basically the same as that of Proposition 5. So, we
only present the first part of the proof, which differs a little due to the unilateral nature of the

functionals @Ai (see (72) and (73)).
So, let {u,},>1 € H! (£2) be a sequence such that

|¢;(un)| < M5 for some M5 >0, alln €N,

(1 + [un D@ () = 0in H' (2)* as n — oo0.

From (75) we have

<A(un),h>+/(s(z)+u)unhdz+/ﬂ(z)unhda—ff;(z,un)hdz < _Cnllhll
Q 02 Q

forall h € H'(Q), with e, — 07,

In (76) we choose h = —u,, € H! (2). Then

v(u, )+ ullu;H% <e¢, foralln € N (see (72)),
= collu, ||* <e, foralln e N (see (3)),

= u, —0in H(Q).
Using (72) and reasoning as in the proof of Proposition 5, we show that

{(uf}u=1 € H'(Q) is bounded.

n

R Al

(74)
(75)

(76)

(77)

(78)
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From (77) and (78) it follows that
{ttn}n=1 € H' () is bounded.

From this via the Kadec—Klee property, as in the proof of Proposition 5, we establish that
gﬁ;' satisfies the C-condition.

In a similar fashion, using this time (73), we show that gf); satisfies the C-condition. O

Hypothesis H( f)3(ii) (the superlinearity condition) implies that the functionals @Ai are un-
bounded below.

Proposition 13. If hypotheses H(£¢), H(B), H(f)3 hold, ». > 0 and u € D then gﬁit (tu) - —oo
ast — £oo.

The next result will help us to verify the mountain pass geometry (see Theorem 1) for the
functionals @f when A > 0 is small.

Proposition 14. If hypotheses H (&), H(B), H(f)3 hold, then we can find )Lfkt > 0 such that for
every A € (0, kf) we can find ,of > 0 for which we have

inf[@; () : |lull = o1 = > 0.

Proof. Hypotheses Hy(3)(1), (iii) imply that given € > 0, we can find ¢, > 0 such that

1 .
F(z,x) < E(n(z) +€)x? + cc|x|> foralmostall z € Q, all x € R. (79)

For every u € H! (R2), we have

. 1 w. 1 € .
¢y > ARREAI ||%—§fn<z><u+>2dz— 5|Iu+||2—c18<x||u||‘f+||u||2)
Q

for some c1g > 0 (see (72), (79))

1 1
=3 y(uﬂ—/n(z)(uﬂzdz—enuﬂﬂ +5[y<u*>+m|u*||%]—
Q

s ull? + ||ul*")

1 co,, _ *
> E(c19—6>||u+||2+ >l 12— crigllull? + [lull*)

for some c19 > 0 (see Lemma 4.11 of Mugnai and Papageorgiou [19] and (3)).
So, choosing € € (0, c19), we have

9 = [e20 = crsGllull?=2 4 ljul )| lul? for some e > 0. (80)
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Consider the function

() =m072 447 2 forall 1 > 0, 1> 0.
Since g < 2 < 2%, we see that

X, (1) > +ooast — 0T and as r — +00.
So, we can find ty = #9(A) € (0, +00) such that

S (to) =min[3I; (7) : t > 0].
We have
35 (1) =0,
= AQ-@ii T =@ -2,

1

A2 —q) |7

to=to(A) =| ————— .

= fo=1(}) [ T
Hence it follows that

I (79) = 0T as A — 07,

So, we can find A" > 0 such that
. (t0) < <2 forall & € (0, 7).
C18
Returning to (80) and using this fact we obtain
¢ ) >m} > 0forallu e H'(Q), |lull = pi7 =1o(1).
Similarly for the functional ¢, . O

To produce multiple solutions of constant sign, we need to strengthen the condition on the
potential function. The new hypothesis on &(-) is:

H(E): £ e L(Q) withs > N and €T € L®(Q).
Proposition 15. If hypotheses H (&), H(B), H(f)3 hold, then
(a) forevery A € (0, )\:) problem (P, has two positive solutions
ug, U € D with ug being a local minimizer of ¢y ;
(b) forevery A € (0, 1)) problem (P;) has two negative solutions

V0, 0 € — D4 with vy being a local minimizer of );
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(c) for every A € (0, 1y) (here Ay = min{)»:', Ay }) problem (P;) has at least four nontrivial
solutions of constant sign

up, ie D+, Vo, Ve —D+,

ug and vg are local minimizers of @;..

Proof. (a) Let A € (0, A:) and let ,o;f > 0 be as postulated by Proposition 14. We consider the
set

B ={ue HY(Q):|lull < p;).

This set is weakly compact. Also, using the Sobolev embedding theorem and the compact-
ness of the trace map, we see that gﬁzr is sequentially weakly lower semicontinuous. So, by the

Weierstrass—Tonelli theorem, we can find ug € H' (€2) such that
¢ (o) = infl[@; (u) : u € H'(Q)]. (81)
Since g < 2, for ¢t € (0, 1) small we have

¢ (tiy) <0,
= @ (uo) <0=¢; (0) (see (81)),

= ug#0and |lugl| < p;r (see Proposition 14).
This fact and (81) imply that
(@) (uo) =0,
> (o) + 6@+ wuondz + [ pouhdo = [ fFeundz 52
Q aQ Q

forall h € H' ().

In (82) we choose h = —u, € H! (£2). Using (72) we obtain

y(ug) + pllug 113 =0,
= collug 1> <0 (see (3)),

= ug>0, ug#0.

Then because of (72), equation (82) becomes
{(A(ug), h) +f$(z)u0hdz+//3(z)uohda =/[/\ugfl + f(z,up)lhdz
Q aQ Q

forallh € H(Q),
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= —Aup(z) +E@uo(z) = rug)? ' + f(z, up(z)) for almost all 7 € €2, (83)

0
% + B(z)up =0 on 92 (see Papageorgiou and Radulescu [22]).
n

As in the proof of Theorem 8, from the regularity theory of Wang [33], we have
up € C+\{0}.
Hypotheses H (f)3(i), (iii), imply that
| f(z,x)] <ca1]x| for almost all z € 2, all |x| < [|ug||co, SOme c21 > 0.

Then from (83) and hypothesis H (£)’, we have

Aug(z) < [11E |00 + c21uo(z) for almost all z € Q,

= ug € Dy (by the strong maximum principle). (84)
From (72) it is clear that
<PA|CJr = @;T .-
So, from (84) it follows that

ug is a local C'($2) — minimizer of ¢y,

= ugisalocal H'(Q) — minimizer of @ (see Proposition 4).

Next we will produce a second positive smooth solution.
We know that

@ (uo) <0 < =inf[@;" () : |lul| = p; 1 (see Proposition 14). (85)
Also, from Propositions 12 and 13, we have

(ﬁ;r satisfies the C-condition, (86)

¢ (ti) > —ocast — +oo. (87)

Then (85), (86) and (87) permit the use of Theorem | (the mountain pass theorem). So, we
can find it € H'(S2) such that

it € K+ and ity < ¢, (). (88)
From (85) and (88) we have that

u#ugy, u#0,

= 1 € Dy is a solution of (P;) (as before).
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(b) Reasoning in a similar fashion, this time using the functional (23; and (73), we produce
two negative smooth solutions

v, D € =D, v # D,

with v being a local minimizer of ¢;.
(c) Follows from (a) and (b). O

In fact we can show that problem (P, ) has extremal constant sign solutions. So, for all A €
(0, )L:) there exists a smallest positive solution u} € D4 and for all A € (0, o) there is a biggest
negative solution vy € —Dy.

Let S;j' (respectively S, ) be the set of positive (respectively negative) solutions of problem.
From Proposition 15 we know that

0+ S <Dy forall € (0, 1)),
@#S, CDyforall e (0,A)).
Moreover, from Filippakis and Papageorgiou [8] (see Lemmata 4.1 and 4.2), we have that
° S;' is downward directed (that is, if |, up € S; , then there exists u € S}:|r such that u < uy
and u < uj).
e S, is upward directed (that is, if vy, v2 € S, , then there exists v € §, such that

v <v,v2 <)

Note that hypotheses H (f)3(i), (iii) imply that

F(z,x)x > —coox® — co3)x|* for almost all z € Q, all x € R, some c22, 23 > 0. (89)

We may always assume that c3> > @ (see (3)). This unilateral growth condition on f(z, -),
leads to the following auxiliary Robin problem:

—Au(z) + £@)uz) = Mu@)|972u(z) — cnu(z) — enlu@)* ~2uz) inQ,
ou (Au;)
> + B(z)u=00n 0.

Proposition 16. If hypotheses H(£)', H(B), H(f)3 hold and A > 0, then problem (Au;) has a
unique positive solution

I/‘i)L € D+
and because problem (Au,) is odd it follows that
IN))L = —IZ)L (S —D+

is the unique negative solution of (Auy).
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Proof. First, we show the existence of a positive solution.
To this end, let w;f :H! (2) > R be the C !_functional defined by

1 wooo_ (%) €23 *
Y ) =Sy )+ S5 + == w15+ == 15— Aeaallu] |
2 2 2 2
for some ¢4 > 0,
CO 2 q
> ?||u|| — Acgl|lu||? (recall that cpp > w and see (3)),
= wf (-) 1is coercive (recall that g < 2).

Also, ‘ﬁ;—f is sequentially weakly lower semicontinuous.
So, we can find i, € HI(Q) such that

¥ @) = inf[y; ) 1w e H' ()1, (90)

Since ¢ < 2 < 2%, for t € (0, 1) small we have

Y (tiiy) < 0= ;7 (0),
= ¥, ) <0=1,7(0) (see (90)),
= i, #0. 91)
From (90) we have
(W) (@) =0,
= (A(iiy), h) + f £(2)ii; hdz — /(§(z) + ity hdz + / B(2)iishdo
Q Q R

= Acoa /(ﬁj)‘f—lhdz — 3 /(ﬁj)z*—lhdz forall h € H' (). 92)
Q Q

In (92) we choose h = —it, € H'(Q). Then

y @) + i |13 =0,
= colli; II* <0 (see (3)),
= U >0,u; #0 (see (91)).

Therefore equation (92) becomes

(A(ﬁx),h)+/€(z)zlxhdz+/ﬂ(z)1bhda
Q FYe

:x/,zj‘lhdz—cm/ﬁmdz—cm/ﬁf*—lhdz forall h € H'(RQ),
Q Q Q
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= —Aii(2) + @i (2) = Aiin ()T — emiin(z) — caziip () " foraa. z €Q, (93)

9
% + B(z)uy =0 on 992 (see Papageorgiou and Radulescu [22]),
n

= U € C\{0}

(as before using the regularity theory of Wang [33]).
From (93) we have

Aii3.(2) < [IEF oo 4 231122 + ex2liis (z) for almost all z € 2,

= 1, € D4 (by the strong maximum principle).

Next we show the uniqueness of this positive solution. So, suppose that i, i, € Dy are two
solutions of (A, ). The solution set of (A, ) is downward directed (see [8]). So, we may assume
that u; <1y,

/(Dﬁ,\,DﬁA)RNdz—i—/é(z)ﬂ,xﬁ,\dz—l—/ﬁ(z)ﬁ,\ﬁ,\do =k/ﬁz_lﬁ,\dz
Q Q Q2 Q

_czzfﬁ)hb_t)\dz—023/ﬁi*_1ﬁxdz 94)
Q Q

/(Dﬁx,DﬁA)RNdz+/§(z)ﬁ,\ﬁkdz+/.ﬂ(z)ﬁxllxda=/\/.ﬁ37112;\dz
Q Q Q Q

—cn / itidz — c23 / WX i dz. (95)
Q Q

We subtract (95) from (94) and obtain
o | = — Y e [, (22— 2 ) d
AUL ~2_q _2_q =23 AUL A A Z
u u
Q Q

= i =u; (recall g <2 <2 and u;, <1i1;).

This proves the uniqueness of the positive solution ity € D1 of (Au;).
Problem (Au;) is odd. So, it follows that

ﬁ)L = —I:i)L € —D+
is the unique negative solution of (Au;). O

Remark 4. We present an alternative way of proving the uniqueness of the positive solution
u) € Dy of (Au;). So, let u,,u) € Dy be two positive solutions of (Au;). Let t > 0 be the
biggest positive real such that

tuy <up (96)
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(see Filippakis and Papageorgiou [8, Lemma 3.6]). Suppose that 7 € (0, 1). Since g < 2 < 2*, we

can find ¢ > 0O such that the function

.
x> Axd 4+ (9 — con)x — cazx? !

is increasing on [0, max{||iy||co, ||t |lco}]-
We have

—Aiix(2) + (£(2) + D)iir(2)

=10, (2)47" + (D — )i (2) — ca3iin (2)*

> M1, ()7 + (D — et (2) — 23tz (2))* 7 (see (96))

= 127+ () = )it (@) — enin (7 ]
(sinceqg <2 <2"andt € (0, 1))

=[-8 + €@ + i )]

= —A(tii)(2) + (E(z) + 9)(ti1n)(z) for almost all z € €2,

= A —1i13)(2) < (1 loo 4+ 9) (i — tii;)(z) for almost all 7 €

(see hypothesis H (£)").

Note that i, = tu; . Indeed, if &) = tu,, then
Atii) ()7 = e (i) (2) — ex3(tiiy) ()% !
> t[—Ay(2) + £y (z)] (since g <2 <2*andt € (0, 1))
= —Au;(2) + &) (z) (since iy = tuy)

=it ()17 — enitn(2) — a3t (2)F 7!

=A(ti3)(2)7 7! = exn(tiiy) (z) — exs(tiin) ()% 1,

a contradiction.
Then from (97) and the strong maximum principle, we have

u) —tu; € Dy,
which contradicts the maximality of 7 > 0. Hence ¢ > 1 and we have
i) <1, (see (96)).

Interchanging the roles of i and i, in the above argument, we also have

This proves the uniqueness of the positive solution of (Auy).

o7)
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Next we show that i) € Dy (respectively v, € —Dy) is a lower bound (upper bound) for the
elements of S)f (respectively S, ).

Proposition 17. If hypotheses H(E)', H(B), H(f)3 hold, then

(@ up <uforallue S;, A e (0, )»*Jr);
(b) v=uyforallves,, xe(0,Ar,).

Proof. (a) Letu e S ;r and let gf : Q2 x R — R be the Carathéodory function defined by

0 ifx <O
g @)= a7 4 (u—e)x — eppx? ! if0<x <u(z) (98)
()T 4 (n— cu(z) — esu(@* 7 ifulz) < x.

X

We set G;\F(z, xX)= /g;r (z, s)ds and consider the C'-functional @f : H'(Q) — R defined

0
by

. 1 m
Ui () = Ey(y) + Ellyllﬁ - / G (z,y)dz forall y e H'(Q).
Q

From (3) and (98) it is clear that 1}; is coercive. Also, it is sequentially weakly lower semi-
continuous. So, we can find i1, € H'(€2) such that

it (i) = inflg;f () :u € H'(Q)]. (99)
As before, since g < 2 < 2%, we have
Ui () < 0= 5 (0),
= i #0. (100)
From (99), we have
WD) (i) =0,

= (A(zh),h)+/(S(Z)+u)ﬁkhd2+/ﬂ(z)ﬁxhdazfg;(z,ﬁx)hdz (101)
Q aQ Q

forall h € H ().

In (101) first we choose i = —ii; € H'($2). Then
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y (i) + plliEy 113 = 0 (see (98)),
= collit} II* <0 (see (3)),
= i, >0, iy #0 (see (100)).

Alsoin (101) we choose h = (i1, — u)* € H' (). Then

(AG@), (@ — ™)+ /(«‘E(Z) + )iy (i), — u)*dz + / B @iy (i, —u)*do
Q a0

= / [Auq‘l + (U — cn)u — czsuz*_l] (it;, — u)Tdz (see (98))
Q

< /[/\u"_l + (2, u) + pul (@, — u)Tdz (see (89))
Q

=(A@), (@, —u)*)+ /(E(Z) + wyu(it, —u)tdz + / B(@u(i, —u)*do
Q a0

(since u € S;—)’
= (@ —w) + ull@ —wt3 <o,
= coll(@in —w)|* <0 (see (3)),

= uy<u.
So, we have proved that
ity €[0,ul, i #0. (102)
On account of (98) and (102), equation (101) becomes
(A(iiz), h) +/s(z)ﬁkhdz+/ﬁ(z)amda =/[m§‘l — ey, —cmi*—l]hdz
Q

1] Q
forall h € HY(Q),

= U, is a positive solutions of (Au;),

= U, =uy € D (see Proposition 16).
From (102) we conclude that

iy <u forall u eS;r.
(b) In a similar fashion we show that

v=u,forallvesS, . O
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Now we are ready to produce extremal constant sign solutions for problem (/7;), that is, a
smallest element for the set S;j' (A € (0, A:)) and a biggest element for the set S, (A € (0,A))).

Theorem 18. If hypotheses H(€)', H(B), H(f)3 hold, then

(a) for every A € (0, )»:) problem S;' has a smallest element u; € Dy;
(b) for every A € (0, A,) problem S, has a biggest element vy € —D..

Proof. (a) Recall that Sf (A € (0, Aj)) is downward directed. So, invoking Lemma 3.10 of Hu
and Papageorgiou [12, p. 178], we can find a decreasing sequence {u,},>1 € Szr such that

inf S} = inf u,.
n>1
Evidently, {u,},>1 € Hl(Q) is bounded. So, we may assume that

Uy = uj in H'(Q) and u, — uj in LSZTSI(Q) and in L>(09Q). (103)

We have
(A(u,,),h)—i—/é(z)unhdz—l—/ﬂ(z)unhda:Afuz_lhdz+/f(z,un)hdz (104)
Q 30 Q Q

forallh € H' (), alln e N.

In (104) we pass to the limit as # — oo and use (103). We obtain
(A(ui), h) +/E(z)u§hdz + / B(2)uihdo = A/(uj{)q_lhdz + / f(z,ud)hdz (105)
Q Q2 Q Q

forall h € H'(Q).

Also we have

u) <uy forall n € N (see Proposition 17),

= i) <uj (see (103)). (106)
Then from (105) and (106) we infer that
ui € S and uf =inf ;.
(b) Similarly we produce vy € —D, the biggest element of S, . O

Using these extremal constant sign solutions of (P;), we can generate nodal (that is, sign
changing) solutions.
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Proposition 19. If hypotheses H (&), H(B), H(f)3 hold and A € (0, 1) (recall iy = min{A;,
Ay }), then problem (Py) admits a nodal solution y € Cl(ﬁ)\{O}.

Proof. Letu} € D and v} € —Dy be the two extremal constant sign solutions of (7 ) produced
in Theorem 18. Using them we introduce the following Carathéodory function

AvF @925 (@) + f(z, 5 (2)) + uvi(z)  ifx < vi(2)
kp(z,x) = Alx|?"2x + f(z,x) + px ifvf(z) <x<uj(z) (107
2k ()T 4 £z, ut (2) + ik (2) if uf(z) <x.

X

Let K (z,x) = / k;.(z, s)ds and consider the C'-functional . H'(©) — R defined by
0

1
m(u) = Ey(u) + %||u||§ — / K, (z,u)dz forallu € H' ().
Q

Also we consider the positive and negative truncations of kj(z,-) (that is, kf(z,x) =
X

ky (z, j:xi)), set K;t(z, X) = /k)jf(z, s)ds and consider the corresponding C!-functionals nj\t :

0
H'(Q) — R defined by

1
() = S+ %||u||§ - / K (z,u)dz forallu € H' ().
Q
Claim 2. K,, € [v},u}1NC'(Q), K+ ={0.u3}, K,- ={0.v}}.
Letu € K, . We have
(A(u), h) + /(S(Z) + wyuhdz + f B(z)uhdo = /kx(z, u)hdz forall h € H' ().  (108)
Q aQ Q

In (108) we choose h = (u — uj{)+ € H' (). Then

(A, w —up)T)+ /(E(z) + wu(w —uf)tdz + / B()u(u —u3)Tdo
Q Q2

= /[k(ui‘)q_1 + f(zou) + puil(u — u3)Tdz (see (107))
Q

=(A@}), u—u)*)+ /(E(Z) +wul(w—ud)tdz + / B@usu —ui)tdo
Q Yo



N.S. Papageorgiou et al. / J. Differential Equations 263 (2017) 3244-3290 3281
(since u} € S;),
=u<uj.
Similarly, choosing h = (v} — wt e HI(SZ) in (108), we show that
vl <u.
So, from the above and the regularity theory of Wang [33], we have

ue v, ullnCcl(Q),
= K, Ch},uilncl ().

In a similar fashion, we show that
* *
Kn; C [0, u5] and Kn[ C [vy, 0]
The extremality of u} € D4 and of v; € —D,, implies that
K+ ={0,uf} and K,- = {0, ]},
This proves Claim 2.
Claim 3. u € Dy and v} € — Dy are local minimizers of 0.

Evidently, nr is coercive (see (107)) and sequentially weakly lower semicontinuous. So, we
can find i € H'() such that

ni(@3) = infln} () :u € H'(Q)]. (109)
As before, since g < 2 < 2%, we have
n (@) <0=n(0)
) (110)
From (109) we have that
i e Kyt (111)
From (110), (111) and Claim 2 it follows that it} = u} € D,. Note that
mle, = 1l |, (see (107)),

= uj isalocal c! () — minimizer of 7y,

= u}isalocal H' () — minimizer of 1 (see Proposition 4).
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Similarly for v} € —D.., using this time the functional 7, . This proves Claim 3.
Without any loss of generality, we may assume that

m.(v3) < m(u3).
The reasoning is similar if the opposite inequality holds. Also, we assume that K, if finite or

on account of Claim 2 we already have an infinity of smooth nodal solutions and so we are done.
Then Claim 3 implies that we can find p € (0, 1) small such that

m3) < ma(u3) <inflny(u) < [lu —ui|| = pl=my, v} —uil| > p (112)

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).
From (3) and (107) it is clear that 7, is coercive. Hence

;. satisfies the C-condition. (113)

Then (112) and (113) permit the use of Theorem 1 (the mountain pass theorem). So, we can
find § € H'(2) such that

y € Ky, and m; < n,.(9). (114)
Claim 2 together with (112) and (114) imply that
yelvf,uflnCh (), § ¢ {uf, vi).
Since  is a critical point of 7, of mountain pass type, we have
Ci(m.. ) #0 (115)
(see Motreanu, Motreanu and Papageorgiou [ 18, Corollary 6.81, p. 168]).
On the other hand, the presence of the concave term A|x |‘7—2x (g < 2) in the reaction function,
hypothesis H (f)3(iii) and Lemma 3.4 of D’ Agui, Marano and Papageorgiou [5] imply that
Cik(m.,0) =0 for all k € Np. (116)
Comparing (115) and (116), we conclude that
y#0,
= $eC'(Q)\{0}isnodal. O
So, we can state the following multiplicity theorem for problem (P;).

Theorem 20. If hypotheses H(E)' , H(B), H(f)3 hold, then we can find a parameter value Ay >
0 such that for every A € (0, L) problem (P) has at least five nontrivial smooth solutions

uo, ue D+, V0, N —D+,

$ € C1(Q) nodal.
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If we strengthen the regularity of f(z,-), we can improve Theorem 20 and produce a sixth
nontrivial smooth solution. However, we do not provide any sign information for this sixth solu-

tion.
The new conditions on the perturbation term f(z, x) are the following:

H(f)4: f: 2 xR — R is a measurable function such that for almost all z € 2, f(z,-) €
C'(R) and

(i) for every p > 0, there exists a, € L°°(2) such that

| f1(z,x)| <a,(z) foralmostall z € Q, all |x| <p

/
and lim I (Z*’ *) = 0 uniformly for almost all z € Q;
x—+o00 |x|2 -2
oo F(z,x) . . 1
(ii) llI:E 5— =+ uniformly for almost all z € 2 and there exists e € L* (£2) such that
x—+o0o x

7(z,x) <1(z,y) +e(z) foralmostallz € 2, all0<x <yandally <x <0

(recall that F(z,x) = / f(z,s)ds and t(z,x) = f(z,x)x —2F(z,x));
0

uniformly for almost all z € Q

(iii) f(z,0) =0 for almost all z € Q, f/(z,0) = lin}) [z x)
x— X

and

fL(-,0) € L®(R), f1(z,0) <4 for almost all z € Q, f/(-,0) # ij.
Under the above hypotheses, we have ¢, € CZ(H] (2D)\{0}).

Proposition 21. If hypotheses H (&), H(B), H(f)4 hold and A € (0, 1), then problem (P;) ad-
mits a sixth nontrivial smooth solution

jec ().
Proof. From Proposition 15 we know that
Ci(pn, uo) = Cr(@r, vo) = 8,07 for all k € No. (117)

Also, recall (see the proof of Proposition 15), that 4 € Dy is a critical point of mountain pass
type for ;" and & € — Dy is a critical point of mountain pass type for ¢; . Note that
oile, = ¢ |e, and @il ¢, = @, |, (see (72),(73),
= Clelorg ) = Cu(@) |1 gy @) and Cr(ilerg - 0) = Cu(@y |1 gy » D)
for all k € Ny (recall that # € Dy and v € — D)

=  Cilpp,u)= Ck(gbf, i) and Cy (g3, ) = C (@, , 0) for all k € Ny (see Palais [20])
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= Cilon, ) = Cr(@n, V) =8 1 Z (118)
(see Motreanu, Motreanu and Papageorgiou [18, Corollary 6.102, p. 177]).

Also, as we already pointed out in the proof of Proposition 19 (see (116) and recall

'“'[vi’uil = ‘PA||v;,u’;])’ we have

Ci (@5, 0) =0 for all k € Ny. (119)
From Proposition 6, we have
Ci (@, 00) =0 for all k € Np. (120)

Let i = max{|uoloo, [[#]loc. [[volloc, [ID]loc}. Hypotheses H (f)4(i), (iii) imply that we can
find & > 0 such that for almost all z € €2, the function

xr—>f(z,x)+§x

is nondecreasing on [—m, m]. With y € C L@)\{0} being the nodal solution we have

—AP(@D) + EQ + I )
= MI@I29@) + [ (2 @) +E5 ()
<MtV 4 £z, ul(2) +Eul(z) (since § <ul, see Proposition 19)
=—Auj(z)+ (E@R@) + é)uﬁ(z) for almost all z € ,
= AWl =)@ <[ oo + E1E — $)(2) for almost all z €  (see hypothesis H (£))

= u} —y € Dy (by the strong maximum principle).

Similarly we show that

5) — U;Lk S D+.
So, finally we have
Y €inter [V, u3]- (121)
Recall that
M (v ul] = $a (ot see (107),

= Cr(ni,y) = Ci(ps, y) forall k € Ny
(as before from (121) and Palais [20])
= Ci(pn, $) = 8.1Z for all k € Ny (122)

(since y € K, is of mountain pass type, see [18, p. 177]).
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Suppose that K, = {0, uo, vo, i, 0, $}. Then from (117), (118), (119), (120) and (121) and
using the Morse relation with t = —1 (see (6)), we have

2D +2(=D'+(=D' =0,
a contradiction. So, there exists y € H 1(Q) such that
jeK,y CCHQ) and § ¢ {0, uo, vo, i, 0, 9}
This is the sixth nontrivial smooth solution of problem (7;). O
So, we can state the following new multiplicity theorem for problem (7).

Theorem 22. If hypotheses H (&), H(B), H(f)4 hold, then there exists a parameter value
A« > 0 such that for every A € (0, L) problem (P;)) has at least six nontrivial smooth solutions

uop, ie D+, Vo, vE —D+,

$ € CY(Q) nodal and 5 € C' (Q).
5. Infinitely many solutions

In this section, we generate an infinity of nontrivial smooth solutions by introducing symmetry
on the reaction term. We prove two such results. The first concerns problem ( P; ) and the solutions
we produce are nodal. The second result deals with problem (1) and produces an infinity of
nontrivial smooth solutions but without any sign information.

For the first theorem, the hypotheses on the perturbation term f(z, x) are the following:

H(f)s: f:Q2 xR — Risa Carathéodory function which satisfies hypotheses H( f)3 and in
addition for almost all z € 2, f(z,-) is odd.

Theorem 23. If hypotheses H(£)', H(B), H(f)s hold, then we can find a parameter value
A« > 0 such that for every A € (0, Ay) problem (P;) admits a sequence {un}n>1 C cl(Q) of
distinct nodal solutions such that

un—>0inC1(§)asn—>oo.

Proof. Let 1, = min{kj, A, } be as in Proposition 15(c) and consider the C !_functional -
H'(Q) — R introduced in the proof of Proposition 19. We have the following properties:

e 7, is even;
e 7, is coercive (hence it is bounded below and it satisfies the C-condition);
e 1,(0)=0.

Let V be a finite dimensional subspace of H 1 (£2). So, all norms on V are equivalent. Also,
from (107) and hypotheses H (f)5(1), (iii)) = H (f)3(i), (iii) we see that we can find co4 > 0 such
that
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K (z,x)] < cz4|x|2 for almost all z € Q2. (123)

So, for every u € V and recalling that all norms are equivalent, we have

2
() < casllull” — Aeasl|ul|? for some c5, c26 > 0

(see (123) and hypotheses H (§)', H(B)).
Since g < 2, we can find p; € (0, 1) small such that
. () <0 for all u € V with ||u|| = p;.

Therefore we can apply Theorem 3 and find {u, },>1 € K, € [vi,uilN c! () (see Claim 2
in the proof of Proposition 19) such that

u, — 0in H'(Q). (124)

From the regularity theory of Wang [33] we know that

_ N
up € CH¥(Q) witha =1— — > 0and ||y || ¢ ) < €27 (125)
S

for all n € N and some c»7 > 0.

Exploiting the compact embedding of C"%(Q) into C' (), from (124) and (125) we infer
that

up — 0in C'(Q) as n — oo.
Moreover, since u, € [v},u}] foralln € N, u, € C'(Q)isnodal. O

The second result of this section is about problem (1). For this result the hypotheses on the
reaction term f(z, x) are the following:

H(f)s: f: Q2 xR — Ris a Carathéodory function such that for almost all z € Q f(z, x) is
odd and hypotheses H (f)¢(i), (ii) are the same as the corresponding hypotheses H (f)s(i), (ii).

Remark 5. We point out that in the above hypotheses there are no conditions on f(z,-) near
ZEero.

Theorem 24. If hypotheses H(§), H _(,3), H(f)e hold, then problem (1) admits an unbounded
sequence of solutions {u,}n>1 C CI(SZ).

Proof. From Proposition 5 we know that the energy (Euler) functional ¢ satisfies the C-condition

and ¢(0) =0.
We consider the following orthogonal direct sum decomposition of H Q)

H' (Q)=H_®EW0)®H,
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m_ A - _~ _
with H_. = @ E(A;), Hr = @& E(A) (see Section 2). Then every u € HI(Q) admits a unique
k=1 k

>m4
sum decomposition of the term

u=i+u’+iwithieH_, u>cEQ), i€ Hy.

Hypothesis H (f)e(i) implies that given € > 0, we can find cp3 = ¢23(€) > 0 such that
F(z,x) < %|x|2* + cpg|x| for almost all z € 2, all x e R. (126)

Let u € Hy. We have
1
pu) = EV(M) — [ F(z,u)dz
Q

1 € *
> Sy - 5||u||%* — cagllull (see (128))

1 .
> 3 [ — ecaollull?"] = easlully for some 20 > 0
> [2c30||u||2 - ecZ9||u||2*] — cogljull1 for some cag > O (recall that u € H)

= [esollul? = ecasliul | + [esollull® = easlully . (127)

If i € Hy is such that

then we have
2 2%
c3ollul|® — ecoollu||= > 0.
Also, forl >my andu € & E():k), we have
k>1
C31
casllullr < carllullz < —=Ilu|| for some c31 > 0.

Al

Therefore

C - ~
S ul| forue V= @ EGy).
a k>1

S

So, if u € V; with [ > m big and with ||u|| = p, we have

2 2
csollul|” — cagllullt = c3ollull” —
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A2 C31 4
c30p” — ——p > 0.

fu

Returning to (127), we see that
‘p|VzﬂﬁB,a > 0. (128)

Next let Z C H ! (£2) be a finite dimensional subspace. From hypotheses H (f)g(1), (ii), we
know that given any 7 > 0, we can find ¢33 = ¢32(n) > 0 such that

F(z,x)> gxz — ¢3; for almost all z € Q, all x € R. (129)

For u € Z we have

1
w(u)=§J/(u)—/F(z, uydz

Q
< 1 n 2
< Sy () = S llul3 +cxlQAy see (129)
< exsllull? — nesallul]? 4 32|y for some ¢33, ¢34 > 0 (130)

(since Z is finite dimensional all norms are equivalent).
C
But > 0 is arbitrary. So, we choose 1 > %33 S 0 and from (130) we infer that
C34

¢|z 1s anticoercive. (131)

Then (128) and (131) permit the use of Theorem 2 (the symmetric mountain pass theorem).
So, we can find {u,},>1 C HI(Q) such that

u, € Ky foralln e Nand [|u,|| — +oo.
Hence u, is a solution of (1) and u, € Cl(ﬁ) with ||”n||cl(§) — 400. O
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