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Anouar Bahrouni a, Vicenţiu D. Rădulescu b,c,d,∗, Dušan D. Repovš e

a Mathematics Department, University of Monastir, Faculty of Sciences, 5019 Monastir, Tunisia
b Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, 

Poland
c Department of Mathematics, University of Craiova, 200585 Craiova, Romania

d ‘Simion Stoilow’ Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania
e Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana & Institute of Mathematics, 

Physics and Mechanics, 1000 Ljubljana, Slovenia

Received 19 April 2021; revised 15 September 2021; accepted 21 September 2021

Abstract

In this paper we introduce a new double phase Baouendi-Grushin type operator with variable coefficients. 
We give basic properties of the corresponding functions space and prove a compactness result. In the second 
part, using topological argument, we prove the existence of weak solutions of some nonvariational problems 
in which this new operator is present. The present paper extends and complements some of our previous 
contributions related to double phase anisotropic variational integrals.
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1. Introduction

The present paper is motivated by recent fundamental enrichment to the mathematical analysis 
of nonlinear models with unbalanced growth. We mainly refer to the pioneering contributions of 
Marcellini [19,20] who studied lower semicontinuity and regularity properties of minimizers 
of certain quasiconvex integrals. Related problems are inspired by models arising in nonlinear 
elasticity and they describe the deformation of an elastic body, see Ball [1,2].

More precisely, we are concerned with the following nonlinear equations of double phase 
Baouendi-Grushin type

−�G,au + |u|G(z)−2u = K(z)f (u), z ∈RN, (1.1)

where N ≥ 3, K ∈ C(RN), f ∈ C(R), while −�G,a stands for a new double phase Baouendi-
Grushin type operator with variable exponents (see (1.2)).

The main aim of our work is to introduce a new double phase Baouendi-Grushin type oper-
ator with variable exponents and its suitable functions space. Our abstract results related to the 
new function space are motivated by the existence of solutions for nonvariational problems of 
type (1.1). The present paper complements our previous contributions related to double phase 
anisotropic variational integrals, see [3–6].

First, we recall the notion of Baouendi-Grushin operator with variable growth. Let � ⊂ RN , 
N > 1, be a domain with smooth boundary ∂� and let n, m be nonnegative integers such that 
N = n + m. This means that RN = Rn × Rm and so z ∈ � can be written as z = (x, y) with 
x ∈ Rn and y ∈ Rm. In this paper G : � → (1, ∞) is supposed to be a continuous function and 
�G(x,y) stands for the Baouendi-Grushin operator with variable coefficient, which is defined by

�G(x,y)u = div
(∇G(x,y)u

)
=

n∑
i=1

(
|∇xu|G(x,y)−2uxi

)
xi

+ |x|γ
m∑

i=1

(
|∇yu|G(x,y)−2uyi

)
yi

,

where

∇G(x,y)u = A(x)

⎡
⎣ |∇xu|G(x,y)−2 ∇xu

|x|γ |∇yu|G(x,y)−2 ∇yu

⎤
⎦

and

A(x) =
[

In 0n,m

0m,n |x|γ Im

]
∈ MN×N(R),

with In being the identity matrix of size n ×n, On,m is the zero matrix of size n ×m and MN×N

stands for the class of (N ×N)–matrices with real-valued entries. From the representation above 
it is clear that �G(x,y) is degenerate along the m-dimensional subspace M := {0} ×Rm of RN .
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The differential operator �G(x,y) generalizes the degenerate operator

∂2

∂x2 + x2r ∂2

∂y2 (r ∈ N)

introduced independently by Baouendi [8] and Grushin [16]. The Baouendi–Grushin operator 
can be viewed as the Tricomi operator for transonic flow restricted to subsonic regions. On the 
other hand, a second-order differential operator T in divergence form on the plane, can be written 
as an operator whose principal part is a Baouendi-Grushin-type operator, provided that the prin-
cipal part of T is nonnegative and its quadratic form does not vanish at any point, see Franchi 
& Tesi [14]. For recent contributions to the study of double-phase problems we cite Beck & 
Mingione [9], Cencelj, Rădulescu & Repovš [10], Eleuteri, Marcellini & Mascolo [12], Papa-
georgiou, Rădulescu & Repovš [25–27], Pucci et al. [18,29], and Zhang & Rădulescu [35]. We 
refer to Marcellini [21] and Mingione & Rădulescu [22] for surveys of recent results on ellip-
tic variational problems with nonstandard growth conditions and related to different kinds of 
nonuniformly elliptic operators.

Now, we are able to introduce the new Baouendi-Grushin type operator with variable coeffi-
cients, which is defined by

�G,au = div
(∇G(x,y)u

)
(1.2)

=
n∑

i=1

(
|∇xu|G(x,y)−2uxi

)
xi

+ a(x)

m∑
i=1

(
|∇yu|G(x,y)−2uyi

)
yi

.

The main goal of our recent paper [6] was to study a singular system in the whole space RN

in which the Baouendi-Grushin operator (−�G(x,y)) is present. So, the main difficulty is the 
lack of compactness corresponding to the whole Euclidean space. To overcome this difficulty, 
we proved a related compactness property. However, the interval of compactness is too short. So, 
we are not able to study a large number of equations driven by −�G(x,y) in the whole space RN . 
For this reason and in order to get a better compactness result, we introduced the new operator 
−�G,a . Our abstract results are motivated by the existence of solutions of the following class of 
nonlinear equation

−�G,au = −div(α1u∇xr) − div(α2a
1

G(x,y) (x)u∇yr) + f (z,u), z = (x, y) ∈RN, (1.3)

where � ⊂ RN is supposed to be a bounded domain. Another motivation comes from singular 
problems in the form

−�G,au + |u|G(x,y)−2u = b(x, y)

uσ(x,y)
, (x, y) ∈RN, (1.4)

where σ(·) ∈ (0, 1) and b is positive function.

The paper is organized as follows. In Section 2 we present the basic properties of variable 
Lebesgue space and introduce the main tools which will be used later. New properties concerning 
the new operator (−�G,a) will be discussed in Section 3. In Section 4, combining these abstract 
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results with the topological argument, we study a nonvariational problem in which −�G,a is 
present. In last section, we deal with purely singular double phase equation. We refer to the 
monograph by Papageorgiou, Rădulescu & Repovš [28] as a general reference for the abstract 
methods used in this paper.

2. Terminology and the abstract setting

In this section we recall some necessary definitions and properties of variable exponent spaces. 
We refer to the papers of Bahrouni & Repovš [7], Hájek, Montesinos Santalucía, Vanderwerff 
& Zizler [17], Musielak [23], Rădulescu [30,31], Rădulescu & Repovš [32] and the references 
therein. Consider the set

C+(�) =
{
p ∈ C(�)

∣∣∣∣ p(x) > 1 for all x ∈ �

}

and define for any p ∈ C+(�)

p+ := sup
x∈�

p(x) and p− := inf
x∈�

p(x).

Then 1 < p− ≤ p+ < ∞ for each p ∈ C+(�). The variable exponent Lebesgue space Lp(·)(�)

is defined by

Lp(·)(�) =
⎧⎨
⎩u : � →R

∣∣∣∣ u is measurable and
∫
�

|u(x)|p(x) dx < ∞
⎫⎬
⎭

equipped with the Luxemburg norm

‖u‖p(·),� = inf

⎧⎨
⎩μ > 0

∣∣∣∣
∫
�

∣∣∣∣u(x)

μ

∣∣∣∣
p(x)

dx ≤ 1

⎫⎬
⎭ .

If � = RN , we denote ‖u‖p(·),� = ‖u‖p(·).
It is well known that Lp(·)(�) is a reflexive Banach space.
Let Lq(x)(�) denote the conjugate space of Lp(x)(�), where 1/p(x) + 1/q(x) = 1. If u ∈

Lp(x)(�) and v ∈ Lq(x)(�) then the following Hölder-type inequality holds:

∣∣∣∣∣∣
∫
�

uv dx

∣∣∣∣∣∣≤
(

1

p− + 1

q−

)
‖u‖p(.)‖v‖q(.) .

Also, if pj ∈ C+(�) (j = 1, 2, . . . , k) and

1 + 1 + · · · + 1 = 1,

p1(x) p2(x) pk(x)
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then for all uj ∈ Lpj (x)(�) (j = 1, . . . , k) we have

∣∣∣∣∣∣
∫
�

u1u2 · · ·uk dx

∣∣∣∣∣∣≤
(

1

p−
1

+ 1

p−
2

+ · · · + 1

p−
k

)
|u1|p1(x)|u2|p2(x) · · · |uk|pk(x) . (2.1)

Moreover, if p1 ≤ p2 in � and � has finite Lebesgue measure, then there exists the continuous 
embedding

Lp2(·)(�) ↪→ Lp1(·)(�). (2.2)

The following two propositions will be useful in the sequel, see Rădulescu & Repovš [32, 
p. 11].

Proposition 2.1. Let

ρ1(u) =
∫
�

|u|p(x) dx for all u ∈ Lp(·)(�).

Then the following hold:

(i) ‖u‖p(·),� < 1 (resp., = 1; > 1) if and only if ρ1(u) < 1 (resp., = 1; > 1);

(ii) ‖u‖p(·),� > 1 implies ‖u‖p−
p(·),� ≤ ρ1(u) ≤ ‖u‖p+

p(·),�;

(iii) ‖u‖p(·),� < 1 implies ‖u‖p+
p(·),� ≤ ρ1(u) ≤ ‖u‖p−

p(·),�.

Proposition 2.2. Let

ρ1(u) =
∫
�

|u|p(x) dx for all u ∈ Lp(·)(�).

If u, un ∈ Lp(·)(�) and n ∈N , then the following statements are equivalent:

(i) lim
n→+∞‖un − u‖p(·),� = 0;

(ii) lim
n→+∞ρ1(un − u) = 0;

(iii) un(x) → u(x) in � and lim
n→+∞ρ1(un) = ρ1(u).

In what follows, we recall Lemma A.1 of Giacomoni, Tiwari & Warnault [15] for variable 
exponent Lebesgue spaces which is necessary to verify the coercivity in Section 4. A related 
property can be found in Edmunds & Rákosnik [11, Lemma 2.1].

Lemma 2.3. Assume that h1 ∈ L∞(�) such that h1 ≥ 0 and h1 �≡ 0 a.e. in �. Let h2 : � → R
be a measurable function such that h1h2 ≥ 1 a.e. in �. Then for any u ∈ Lh1(·)h2(·)(�),

‖|u|h1(·)‖h (·) ≤ ‖u‖h−
1 + ‖u‖h+

1 .
2 h1(·)h2(·) h1(·)h2(·)
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Next, we define the variable exponent Sobolev space

W 1,p(·)(�) = {u ∈ Lp(·)(�) : |∇u| ∈ Lp(·)(�)}.
On W 1,p(·)(�) we may consider one of the following equivalent norms

‖u‖W = ‖u‖p(·) + ‖∇u‖p(·)

or

‖u‖W = inf

⎧⎨
⎩μ > 0;

∫
�

(∣∣∣∣∇u(x)

μ

∣∣∣∣
p(x)

+
∣∣∣∣u(x)

μ

∣∣∣∣
p(x)
)

dx ≤ 1

⎫⎬
⎭ .

We also define W 1,p(·)
0 (�) as the closure of C∞

0 (�) in W 1,p(.)(�).
Next, we recall an embedding result regarding variable exponent Sobolev spaces, see Fan, 

Shen & Zhao [13].

Theorem 2.4. If � ⊂RN is bounded domain and p(x) ∈ C(�), then for any measurable function 
q(x) defined in � with

p(x) ≤ q(x), a.e. x ∈ � and ess inf
x∈�

(p∗(x) − q(x)) > 0, (q∗(·) = q(·)
q(·) − 1

)

there is a compact embedding W 1,p(·)
0 (�) ↪→ Lq(·)(�).

3. Double phase Baouendi-Grushin operators

In this section we prove new results concerning the new Baouendi-Grushin operator defined 
in (1.2).

First, we give the hypotheses on continuous functions a, K, G :RN →R.
(A) a(.) is a continuous function such that

a(x) > 0 for all x ∈RN.

(G) G is a function of class C1 and that

G(x,y) ∈ (2,N) for every (x, y) ∈RN.

We need G > 2 in the proof of Lemma 4.5, that is, in the first application. So, it is possible to 
include the case G = 2 if we do another kind of applications.
(K) K ∈ L∞(RN), K(x) > 0 for all x ∈ RN and if (An) ⊂ RN is a sequence of Borel sets such 
that the Lebesgue measure |An| ≤ R, for all n ∈N and some r > 0, then

lim
n→+∞

∫
c

K(x)dx = 0.
An∩Br (0)
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In order to treat problem (1.1), let us consider the space:

D1,G
a (RN) = {u :RN → R, u ∈ LG∗

(RN) and∫
RN

(|∇xu|G(x,y) + a(x)|∇yu|G(x,y))dxdy < +∞}

endowed with the norm

‖u‖D = ‖∇xu‖G(·,·) +
∥∥∥a(x)

1
G(·,·) ∇yu

∥∥∥
G(·,·) , for all u ∈ X.

This permits us to construct a suitable space

X = D1,G(·)
a (RN)

⋂
LG(·)(RN),

endowed with the norm

‖u‖X = ‖u‖D + ‖u‖G(·) for all u ∈ X.

Remark 3.1. Note that the norm ‖ · ‖X on X is equivalent to

‖u‖
= inf

{
μ ≥ 0

∣∣∣∣ ρ
(

u

μ

)
≤ 1

}

= inf

⎧⎪⎨
⎪⎩μ ≥ 0

∣∣∣∣
∫
RN

[∣∣∣∣∇x

(
u

μ

)∣∣∣∣
G(x,y)

+ a(x)

∣∣∣∣∇y

(
u

μ

)∣∣∣∣
G(x,y)

+
( |u|

μ

)G(x,y)
]

dx dy ≤ 1

⎫⎪⎬
⎪⎭ ,

(3.1)

where

ρ(u) =
∫
RN

[
|∇xu|G(x,y) + a(x)

∣∣∇yu
∣∣G(x,y) + |u|G(x,y)

]
dx dy. (3.2)

From now on, we shall denote the duality pairing between X and its dual space X∗ by 〈·, ·〉X .
The following lemma will be helpful in the sequel.

Lemma 3.2. Suppose that conditions (A) and (G) are satisfied. Let u ∈ X, then the following 
holds:

(i) For u �= 0 we have: ‖u‖ = a if and only if ρ(u
a
) = 1;

(ii) ‖u‖ < 1 implies ‖u‖G+

2
1

G+−1

≤ ρ(u) ≤ 2‖u‖G−
;

(iii) ‖u‖ > 1 implies ‖u‖G− ≤ ρ(u) ≤ ‖u‖G+
.
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Proof. The proof is similar to that in [5]. �
Lemma 3.3. Assume that the hypotheses of Lemma 3.2 are fulfilled. Then the following properties 
hold.

(i) The functional ρ is of class C1 and for all u, v ∈ X we have

〈ρ′(u), v〉X =
∫
RN

[
|∇xu|G(x,y)−2 ∇xu∇xv + a(x)

∣∣∇yu
∣∣G(x,y)−2 ∇yu∇yv

]
dx dy

+
∫
RN

|u|G(z)−2uv dz.

(ii) The function ρ′ : X → X∗ is coercive, that is, 〈ρ
′(u),u〉X‖u‖X

→ +∞ as ‖u‖X → +∞.

(iii) ρ′ is a mapping of type (S+), that is, if un ⇀ u in X and lim sup
n→+∞

〈ρ′(un), un − u〉X ≤ 0, 

then un → u in X.

Proof. The proof is similar to that in Bahrouni, Rădulescu & Winkert [5]. �
Now, we establish the following compactness result.

Lemma 3.4. Assume that (A) and (G) hold. Then D
1,G
a (RN) is compactly embedded in 

L
s(·)
loc (RN), for every s(·) ∈ (1, G∗(·)).

Proof. Let (un) be an arbitrary bounded sequence in D1,G
a (RN). Fix R > 0, s(·) ∈ (1, G∗(·)), 

and set B(0, R) = {x ∈RN, |x| ≤ R}.
We note that un ⇀ u weakly in LG∗(·)(RN). Thus, for every ϕ ∈ C∞

0 (RN), one has

lim
n→+∞

∫
RN

unϕdx =
∫
RN

uϕdx. (3.3)

Claim. We prove that un ⇀ u in W 1,G(·)
0 (B(0, R)).

Indeed, denote by u � B(0,R) the restriction of u to B(0, R) and suppose that (un) does not 
converge to u �BR weakly in W 1,G

0 (B(0, R)).
By condition (A), there exists x0 ∈ B(0, R) such that

a(x) ≥ a(x0) > 0, for all x ∈ B(0,R),

and so (un) is bounded in W 1,G
0 (B(0, R)). Therefore, there exist a subsequence (unk

) and 
u ∈ W 1,G(B(0, R)), with u �= u � BR , such that unk

⇀ u weakly in W 1,G
0 (B(0, R)). Invoking 

Theorem 2.4, un → u strongly in Ls(·)(B(0, R)). Then, taking into account (3.3), we obtain

k
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∫
B(0,R)

uϕdx = lim
k→+∞

∫
B(0,R)

unk
ϕdx =

∫
B(0,R)

uϕdx,

for every ϕ ∈ C∞
0 (B(0, R)). This implies that u(x) = u(x) for almost all x ∈ B(0, R), against 

the fact that u �= u � BR . This proves the claim. Hence (un) weakly converges to u � BR in 
W

1,G
0 (B(0, R)). Applying Theorem 2.4 again, (un) strongly converges to u in Ls(·)(B(0, R)). 

This completes the proof of Lemma 3.4. �
Now, we are ready to prove our compact embedding result in the whole space RN . Let us 

define, for every s(·) ∈ C+(RN), the following Lebesgue space

L
s(·)
K (RN) = {u : RN → R, u is measurable and

∫
RN

K(z)|u|s(z)dz < +∞}.

Proposition 3.5. Let (A), (G) and (K) be satisfied. Then X is compactly embedded in Ls(·)
K (RN), 

for every s(·) ∈ (G(·), G∗(·)).

Proof. Fix s(·) ∈ (G(·), G∗(·)) and ε > 0. It is easy to see that

lim
t→0

|t |s(z)
|t |G(z)

= lim
t→+∞

|t |s(z)
|t |G∗(z) = 0 uniformly for z ∈RN.

Thus, there exist 0 < t0 < t1 and a positive constant C > 0 such that

K(z)|t |s(z) ≤ εC(|t |G(z) + |t |G∗(z)) + χ[t0,t1](z)K(z)|t |G(z) for all t ∈R and z ∈ RN.

Set

A(u) =
∫
RN

|u|G(z)dz +
∫
RN

|u|G∗(z)dz and R = {z ∈ RN, t0 < |u(z)| < t1}.

Let (un) ∈ X be a sequence such that un ⇀ u in X. It is easy to see that (A(un))n is bounded 
in R. Denoting Rn = {x ∈ RN, t0 < |un(x)| < t1}, we get supn∈N |An| < +∞. Hence, by (K), 
there exists a positive radius r > 0 such that

∫
Bc

r (0)

K(z)|un|s(z)dz ≤ εCA(un) +
∫

Bc
r (0)

χ[t0,t1](z)K(z)|un|G(z)dz

≤ εCA(un) + (tG
−

1 + tG
+

1 )

∫
Bc

r (0)�Rn

K(z)dz

≤ (C′ + tG
−

1 + tG
+

1 )ε, for all n ∈N. (3.4)

Now, since s(·) ∈ (1, G∗(·)) and K ∈ L∞(RN), we deduce, that
653
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lim
n→+∞

∫
Br(0)

K(x)|un|s(z)dz =
∫

Br(0)

K(x)|u|s(z)dz. (3.5)

Here we used Lemma 3.4. Combining (3.4) and (3.5), we conclude for ε > 0 small enough, that

lim
n→+∞

∫
RN

K(z)|un|s(z)dz =
∫
RN

K(z)|u|s(z)dz.

Consequently, using Proposition 2.1, we infer that

un → u in L
s(·)
K (RN) for every s(·) ∈ (G(·),G∗(·)).

This completes the proof of Proposition 3.5. �
4. A nonlinear problem driven by �G,a

As an application of the previous abstract results, the main result of this section concerns the 
study of both nonvariational and singular aspects of problem (1.1).

4.1. Nonvariational case

In this paragraph, we work under conditions introduced in Proposition 3.5. We are mainly 
concerned with the following equation

−�G,au = −div(α1u∇xr) − div(α2a
1

G(x,y) (x)u∇yr) + f (z,u), z = (x, y) ∈ RN. (4.1)

The hypotheses on functions f and r are the following:

(H1) f (z, 0) �= 0, f (z, s) ≤ (a(z) + b(z)|s|γ (z)−1) and |f (z, s)| ≤ (a(z) + |b(z)||s|γ (z)−1) a.e. 
z ∈RN and for all s ∈ R where

• γ (·) ∈ C+(RN) and γ (·), γ (·)
γ (·)−1 ∈ (G(·), G∗(·).

• b ∈ C+(RN, R−) and b
K

∈ L∞(RN).

• a ∈ L
G(·)

G(·)−1 (RN) ∩ L∞(RN).

(H2) r :RN →R is some measurable function satisfying

∇r ∈ L
G(·)β(·)

(β(·)−1)(G(·)−1) (RN),

where G(·)β(·)
G(·)−1 ∈ (G, G∗).

(H3) α1, α2 ∈ C+(RN) and α1 , α2 ∈ L∞(RN).

K K
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Definition 4.1. We say that u ∈ X \ {0} is a weak solution of problem (4.1) if for all v ∈ X \ {0},∫
RN

[
|∇xu|G(x,y)−2 ∇xu∇xv + a(x)

∣∣∇yu
∣∣G(x,y)−2 ∇yu∇yv

]
dx dy

−
∫
RN

α1u∇xr.∇xv dx dy −
∫
RN

α2[a(x)] 1
G(x,y) u∇yr.∇yv dx dy

−
∫
RN

f ((x, y), u)v dx dy = 0.

Remark 4.2. Under conditions (A), (G), (K), (H1)–(H3) and by virtue of Proposition 3.5, the 
definition of weak solution of problem (4.1) is well-defined.

The main result of this paragraph reads as follows.

Theorem 4.3. Assume that (G), (K) and (H1)–(H3) hold. Then, problem (4.1) admits at least 
one nontrivial weak solution.

The proof of Theorem 4.3 relies on the topological degree theory of (S+)–type mappings. 
Define the operator L : X → X∗ by

〈L(u), v〉 =
∫
RN

[
|∇xu|G(x,y)−2 ∇xu∇xv + a(x)

∣∣∇yu
∣∣G(x,y)−2 ∇yu∇yv

]
dx dy

−
∫
RN

α1u∇xr.∇xv dx dy −
∫
RN

α2[a(x)] 1
G(x,y) u∇yr.∇yv dx dy

−
∫
RN

f ((x, y), u)v dx dy, u, v ∈ X.

Lemma 4.4. Suppose that assumptions of Theorem 4.3 are fulfilled. Then L is a mapping of type 
(S+), that is, if un ⇀ u in X and lim sup

n→+∞
〈L(un), un − u〉X ≤ 0, then un → u in X.

Proof. Let {un}n≥1 ⊆ X be a sequence such that

un ⇀ u in X and lim sup
n→+∞

〈L(un),un − u〉X ≤ 0.

This implies that

lim sup
n→+∞

〈L(un) − L(u),un − u〉X ≤ 0. (4.2)

Claim 1. lim
n→+∞

∫
N

(f (z, un) − f (z, u))(un − u)dz = 0.
R
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For r > 0, we denote by Br the open ball centered at the origin and of a radius r . Applying 
the Hölder inequality, we get

∫
RN

(f (z,un) − f (z,u))(un − u)dz ≤
∫
RN

(|f (z,un)| + |f (z,u)|)|un − u|dz (4.3)

≤
∫
RN

|a(z)||un − u|dz +
∫
RN

|b(z)||un|γ (z)−1|un − u|dz

+
∫
RN

|b(z)||u|γ (z)−1|un − u|dz

≤
∫
Br

|a(z)||un − u|dz +
∫
Bc

r

|a(z)||un − u|dz

+ ‖|b| γ (·)−1
γ (·) |un|γ (·)−1‖ γ (·)

γ (·)−1
‖|b| 1

γ (·) |un − u|‖γ (·)

+ ‖|b| γ (·)−1
γ (·) |u|γ (·)−1‖ γ (·)

γ (·)−1
‖|b| 1

γ (·) |un − u|‖γ (·).

Again, by Hölder’s inequality, we obtain

∫
Br

|a(z)||un − u|dz ≤ ‖a‖ G(·)
G(·)−1 (Br )

‖un − u‖G(·).

Using Lemma 3.4, it follows that

lim
n→+∞

∫
Br

|a(z)||un − u|dz = 0. (4.4)

Now, using (H1), we deduce that

∫
Bc

r

|a(z)||un − u|dz ≤ ‖a‖
L

G(·)
G(·)−1 (Bc

r )
‖un − u‖LG(·)(Bc

r ) ≤ C‖a‖
L

G(·)
G(·)−1 (Bc

r )
→ 0, (4.5)

as r → +∞ and for some positive constant C.
On the other hand, by (H1) and Propositions 2.1 and 3.5, we have

‖|b| γ (·)−1
γ (·) |un|γ (·)−1‖ γ (·)

γ (·)−1
‖|b| 1

γ (·) |un − u|‖γ (·) ≤ C‖|b| 1
γ (·) |un − u|‖γ (·)

≤ C

⎛
⎜⎝[
∫
N

|b(z)||un − u|γ (z)dz]
1

γ− + [
∫
N

|b(z)||un − u|γ (z)dz]
1

γ+

⎞
⎟⎠
R R
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≤ C

⎛
⎜⎝[
∫
RN

|K(z)||un − u|γ (z)dz]
1

γ− + [
∫
RN

|K(z)||un − u|γ (z)dz]
1

γ+

⎞
⎟⎠ ,

for some positive constant C. Thus, in light of Proposition 3.5, we infer that

lim
n→+∞‖|b| γ (·)−1

γ (·) |un|γ (·)−1‖ γ (·)
γ (·)−1

‖|b| 1
γ (·) |un − u|‖γ (·) = 0. (4.6)

In the same way, we prove that

lim
n→+∞‖|b| γ (·)−1

γ (·) |u|γ (·)−1‖ γ (·)
γ (·)−1

‖|b| 1
γ (·) |un − u|‖γ (·) = 0 (4.7)

Combining (4.3), (4.4), (4.5), (4.6) and (4.7), we get Claim 1.

Claim 2. In what follows, we show that

lim
n→+∞

∫
RN

α1(un − u)∇xr.∇x(un − u)dx dy

= lim
n→+∞

∫
RN

α2[a(x)] 1
G(x,y) (un − u)∇yr.∇y(un − u)dx dy = 0.

Invoking the Hölder inequality and Proposition 2.1, we obtain∫
RN

α1(un − u)∇xr.∇x(un − u)dx dy ≤ ‖α1|un − u|∇xr‖ G(·)
G(·)−1)

‖∇x(un − u)‖G(·) (4.8)

≤ C

⎛
⎜⎝ ∫
RN

α

G(x,y)
G(x,y)−1
1 |un − u| G(x,y)

G(x,y)−1 |∇xr|
G(x,y)

G(x,y)−1 dxdy

⎞
⎟⎠

G−−1
G+

+ C

⎛
⎜⎝ ∫
RN

α

G(x,y)
G(x,y)−1
1 |un − u| G(x,y)

G(x,y)−1 |∇xr|
G(x,y)

G(x,y)−1 dxdy

⎞
⎟⎠

G+−1
G−

.

Now, from conditions (H2), (H3) and the Hölder inequality, we deduce that∫
RN

(α1|un − u|) G(x,y)
G(x,y)−1 |∇xr|

G(x,y)
G(x,y)−1 dxdy ≤ C

∫
RN

(K|un − u|) G(x,y)
G(x,y)−1 |∇xr|

G(x,y)
G(x,y)−1 dxdy

≤ C‖K 1
β(·) |un − u| G(·,·)

G(·,·)−1 ‖β(·)‖|∇xr|
G(x,y)

G(x,y)−1 ‖ β(·)
β(·)−1

≤ C‖K 1
β(·) |un − u| G(·,·)

G(·,·)−1 ‖β(·),
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which, by Proposition 3.5, implies that

lim
n→+∞

∫
RN

(α1|un − u|) G(x,y)
G(x,y)−1 |∇xr|

G(x,y)
G(x,y)−1 dxdy = 0. (4.9)

Consequently, from (4.8) and (4.9), we conclude that

∫
RN

α1(un − u)∇xr.∇x(un − u)dx dy = 0.

Again, using the same argument, we show that

lim
n→+∞

∫
RN

α2[a(x)] 1
G(x,y) (un − u)∇yr.∇y(un − u)dx dy = 0.

This proves Claim 2.
Finally, from Claim 1, Claim 2 and (4.2), we infer that

lim sup
n→+∞

〈ρ′(un) − ρ′(u),un − u〉X ≤ 0.

Hence, by Lemma 3.3, we get our desired result. �
Lemma 4.5. Suppose that assumptions of Theorem 4.3 are fulfilled. Then for R > 0 large enough, 
we have

〈L(u),u〉 > 0 for all u ∈ X such that ‖u‖ = R.

Proof. Let u ∈ X be such that ‖u‖ > 1. Hence, in view of Lemmas 2.3 and 3.2 and Proposi-
tion 3.5 and the Hölder inequality, we obtain

〈L(u),u〉 =
∫
RN

[
|∇xu|G(x,y) + a(x)

∣∣∇yu
∣∣G(x,y)

]
dx dy

−
∫
RN

α1u∇xr.∇xudx dy −
∫
RN

α2[a(x)] 1
G(x,y) u∇yr.∇yudx dy

−
∫
RN

f ((x, y), u)v dx dy

≥
∫
RN

[
|∇xu|G(x,y) + a(x)

∣∣∇yu
∣∣G(x,y)

]
dx dy −

∫
RN

α1u∇xr.∇xudx dy

−
∫
N

α2[a(x)] 1
G(x,y) u∇yr.∇yudx dy −

∫
N

a(z)udz,
R R
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≥ ‖u‖G− − ‖∇xr‖ G(·)β(·)
(G(·)−1)(β(·)−1)

‖α
G(·)−1
β(·)G(·)
1 u‖ β(·)G(·)

G(·)−1
‖∇xu‖G(·)

− ‖∇yr‖ G(·)β(·)
(G(·)−1)(β(·)−1)

‖α
G(·)−1
β(·)G(·)
2 u‖ β(·)G(·)

G(·)−1
‖a 1

G(·) ∇yu‖G(·) − ‖a‖ G(·)
G(·)−1

‖u‖G(·)

≥ ‖u‖G− − C‖∇xr‖ G(·)β(·)
(G(·)−1)(β(·)−1)

‖K G(·)−1
β(·)G(·) u‖ β(·)G(·)

G(·)−1
‖∇xu‖G(·)

− C‖∇yr‖ G(·)β(·)
(G(·)−1)(β(·)−1)

‖K G(·)−1
β(·)G(·) u‖ β(·)G(·)

G(·)−1
‖a 1

G(·) ∇yu‖G(·) − ‖a‖ G(·)
G(·)−1

‖u‖G(·)

≥ ‖u‖G− − C‖∇xr‖ G(·)β(·)
(G(·)−1)(β(·)−1)

‖u‖2 − C‖∇yr‖ G(·)β(·)
(G(·)−1)(β(·)−1)

‖u‖2

− ‖a‖ G(·)
G(·)−1

‖u‖,

where C is a positive constant. Choosing ‖u‖ = R large enough, we deduce from the last in-
equality that

〈L(u),u〉 > 0 for all u ∈ X such that ‖u‖ = R.

This completes the proof of Lemma 4.5. �
Proof of Theorem 4.3 completed. It is clear that L is also demicontinuous and bounded. Then, 
in light of Lemmas 4.4 and 4.5 and using the topological degree theory for (S+) type mappings, 
we conclude that

deg(L,B(0,R),0) = 1,

where R is defined in Lemma 4.5. Therefore the equation L(u) = 0 has at least one solution 
u ∈ B(0, R). From assumption (H1), we can conclude that u is a nontrivial weak solution of 
equation (4.1). This completes the proof of Theorem 4.3. �
4.2. Singular problem

In this subsection, we work under conditions introduced in Proposition 3.5. Here, we are 
interested in weak solutions to nonlinear singular problems. Precisely, we study the following 
singular double phase equation

−�G,au + |u|G(x,y)−2u = b(x, y)

uσ(x,y)
, (x, y) ∈RN, (4.10)

where σ(·) ∈ C1(RN), 0 < σ(·) < 1. The assumption on function b is the following:

(A) b > 0 in RN , b ∈ L1(RN) 
⋂

LG(·)(RN) 
⋂

L
G(·)

G(·)−1 (RN) and b
K

∈ L∞(RN).

Definition 4.6. We say that u ∈ X \ {0} is a weak solution of problem (4.10) if u ≥ 0, u �=
0, u−σ(·)v ∈ L1(RN) for all v ∈ X \ {0} and
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∫
RN

[
|∇xu|G(x,y)−2 ∇xu∇xv + a(x)

∣∣∇yu
∣∣G(x,y)−2 ∇yu∇yv

]
dx dy

=
∫
RN

b(z)

uσ(z)
vdz.

Our main result is the following existence theorem.

Theorem 4.7. Let (A), (G) and (K) be satisfied. Then problem (4.10) admits at least one non-
trivial positive weak solution.

To prove the above theorem, we first consider a perturbation of (4.10) which removes the 
singularity. So, we consider the following approximation of problem (4.10):

−�G,au + |u|G(x,y)−2u = b(x, y)

(u + ε)σ(x,y)
, (x, y) ∈ RN,

u > 0.

(4.11)

The main way to deal with this problem is the topological approach. So, given f ∈ LG(·)(RN), 
f ≥ 0 and ε ∈ (0, 1), we consider the following equation:

−�G,au + |u|G(x,y)−2u = b(x, y)

(f (x, y) + ε)σ(x,y)
, (x, y) ∈RN,

u > 0.

(4.12)

For the above problem we have the following result.

Proposition 4.8. Suppose that (A), (G) and (K) hold. Then problem (4.12) admits a unique 
positive solution uε ∈ X.

Proof. Let BG : LG(·)(RN) → LG′(·)(RN) be the map defined by

BG(u) = |u|G(·)−2u for all u ∈ LG(·)(RN).

Using the Simon inequality (see [33]), BG is bounded, continuous, strictly monotone. Then we 
consider the map AG : X → X∗ defined by

< AG(u), v >=
∫
RN

[
|∇xu|G(x,y)−2 ∇xu∇xv + a(x)

∣∣∇yu
∣∣G(x,y)−2 ∇yu∇yv

]
dx dy,

for all u, v ∈ X. Using the same argument, we can deduce that this operator is bounded con-
tinuous, strictly monotone. It follows that the operator VG = AG + BG is bounded continuous, 
strictly monotone (thus, maximal monotone, too). On the other hand, in light of Lemma 3.3, we 
have that V is coercive. We know that a maximal monotone coercive operator is surjective. Then, 

since b(.)[f (.) + ε]−γ (.) ∈ L
G(·)

G(·)−1 (RN), we can find vε ∈ X such that
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〈V (vε), h〉 = 〈b(.)[f (.) + ε]−γ (.), h〉, for every h ∈ X. (4.13)

In (4.13) we choose h = −v−
ε (v−

ε = max(−vε, 0)). Thus, using the fact that (f (·) + ε) > 0, we 
obtain that vε is a nonnegative and vε �= 0. Moreover, the strict monotonicity of V (.) implies that 
this solution is unique. Finally, the anisotropic maximum principle of Zhang [34] implies that 
vε > 0. This completes the proof of Proposition 4.8. �

Using Proposition 4.8, we can define the solution map Lε : LG(·)(RN) → LG(·)(RN) for prob-
lem (4.12) by

Lε(f ) = vε.

Proposition 4.9. Suppose that assumptions of Proposition 4.8 are fulfilled. Then problem (4.11)
admits a unique positive solution uε ∈ X.

Proof. In view of Proposition 4.8, we have

< AG(vε), h > +
∫
RN

|vε |G(z)−2vεhdz =
∫
RN

b(z)[f (z) + ε]−γ (z)hdz, for all h ∈ X. (4.14)

In (4.14) we choose h = vε = Lε(f ) ∈ X and we obtain

ρ(vε) =
∫
RN

b(z)[f (z) + ε]−γ (z)vεdz,

which implies that there exists a positive constant C such that

min(‖Lε(f )‖G−
,‖Lε(f )‖G+

) ≤ Cε‖b‖ G(·)
G(·)−1

‖Lε(f )‖

and

‖Lε(f )‖ ≤ Cε, for all f ∈ LG(·)(RN). (4.15)

In what follows, we prove that Lε(.) is continuous. To this end, let fn → f in LG(·)(RN). 
From (4.15) we have that (Lε(fn) = un)n∈N is bounded in X. So, we may assume that

un ⇀ u in X.

Thus, using conditions (B) and (K), we infer that

∫
RN

b(z)[f (z) + ε]−γ (z)(un − u)dz ≤ 1

εσ+

∫
RN

b
G(z)−1
G(z) (z)b

1
G(z) (z)(un − u)dz

≤ C

εσ+

∫
N

b
G(z)−1
G(z) (z)K

1
G(z) (z)(un − u)dz
R
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≤ C

εσ+ ‖b G(·)−1
G(·) ‖ G(·)

G(·)−1
‖K 1

G(·) (un − u)‖G(·).

This leads to

lim
n→+∞

∫
RN

b(z)[f (z) + ε]−γ (z)(un − u)dz = 0. (4.16)

Here we used Proposition 3.5. On the other hand, we have

〈ρ′(un),h〉 =
∫
RN

b(z)[fn(z) + ε]−γ (z)hdz, for all h ∈ X and n ∈ N. (4.17)

In (4.17) we choose h = un − u ∈ X, pass to the limit as n → +∞ and use (4.16). Then we 
obtain

lim
n→+∞〈ρ′(un), un − u〉 = 0.

So, by Lemma 3.3,

un → u in X. (4.18)

If in (4.17) we pass to the limit as n → +∞ and use (4.18), we obtain that

〈ρ′(u),h〉 =
∫
RN

b(z)

(f (z) + ε)γ (z)
hdz,

and

Lε(f ) = u.

This proves that Lε(.) is continuous. The continuity of Lε(.), together with (4.15) and Proposi-
tion 3.5, permits the use of the Schauder-Tychonov fixed point theorem (see [24]) and we find 
uε ∈ X such that Lε(uε) = uε and so, uε is a positive solution of (4.11).
Next we show the uniqueness of this solution. Suppose that vε ∈ X is another positive solution 
of (4.11). We have

0 ≤ 〈ρ′(uε) − ρ′(vε), (uε − vε)
+〉

=
∫
RN

[ b(z)

(uε + ε)γ (z)
− b(z)

(vε + ε)γ (z)
](uε − vε)

+dz ≤ 0,

which implies that uε ≤ vε . Interchanging the roles of uε and vε in the above argument, we also 
have that vε ≤ uε , therefore uε = vε . This completes the proof of Proposition 4.9. �

Now, we prove the following monotonicity property of the map ε → uε .
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Proposition 4.10. Assume that (B), (G) and (K) hold. Then the map ε → uε from (0, 1] into X
is nonincreasing.

Proof. Let 0 < ε′ < ε ≤ 1 and let uε, uε′ ∈ X be the corresponding unique positive solutions of 
problem (4.11).

We define the following function:

fε(z, x) = b(z)

[x+ + ε]γ (z)
, if x ≤ uε′(z) and fε(z, x) = b(z)

[uε′(z) + ε]γ (z)
, if x > uε′(z).

We set Fε(z, x) =
x∫

0

fε(z, s)ds and we introduce the functional Iε : X → R defined by

Iε(u) =
∫
RN

|∇xu|G(x,y)

G(x, y)
dxdy +

∫
RN

a(x)
|∇yu|G(x,y)

G(x, y)
dxdy +

∫
RN

|u|G(x,y)

G(x, y)
dxdy

−
∫
RN

Fε(z,u)dz.

Evidently Iε is of class C1. If u ∈ X is large enough, we have

Iε(u) ≥ ρ(u)

G− − ‖b‖1

εγ + ≥ ‖u‖G−

G− −
‖b‖ G(·)

G(·)−1

εγ + .

Therefore, Iε is coercive. On the other hand, by condition (B), we can prove that Iε is weakly 
lower semicontinuous. Then, invoking the Weierstrass-Tonelli theorem, we can find vε ∈ X such 
that

Iε(vε) = inf
u∈X

Iε(u).

This implies that

< ρ′(vε), h >=
∫
RN

fε(z, vε)hdz, for all h ∈ X. (4.19)

In (4.19) we choose h = −v−
ε ∈ X and obtain

ρ(v−
ε ) = −

∫
RN

b(z)v−
ε

εγ (z)
dz ≤ 0.

Hence,

vε ≥ 0, vε �= 0.
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Now, in (4.19) we choose h = [vε − uε′ ]+ ∈ X. We get

〈ρ′(vε), (vε − uε′)+〉 =
∫
RN

b(z)
[vε − uε′ }+
[uε′ + ε]γ (z)

dz ≤ 〈ρ′(uε′), (vε − uε′)+〉,

and so

vε ≤ uε′ .

It follows, using the definition of fε(., .) and Proposition 4.9, that vε = uε . Then, uε ≤ uε′ . This 
completes the proof of Proposition 4.10. �
Proof of Theorem 4.7 completed. Let (εn) ⊆ (0, 1] be a sequence such that εn → 0+ as n →
+∞ and un be as in Proposition 4.9. Then

〈ρ′(un),h〉 =
∫
RN

b(z)

[un + εn]γ (z)
hdz, for all h ∈ X, all n ∈ N. (4.20)

In (4.20) we choose h = un and use Proposition 4.10. Hence

ρ(un) ≤ G+
∫
RN

b(z)

u
γ (z)

1

undz

which implies that (un) is bounded in X. Therefore, we can find u ∈ X such that

un ⇀ u in X and un → u a.e. in RN.

Consequently, combining Proposition 3.5 and the dominated convergence theorem, with the fact 
that u1 ≤ un (see Proposition 4.10), we deduce that

lim
n→+∞

∫
RN

b(z)

[un + εn]γ (z)
hdz =

∫
RN

b(z)

uγ (z)
hdz, for every h ∈ X. (4.21)

Also, it is easy to see that

lim
n→+∞ < ρ′(un),h >=< ρ′(u),h >, for every h ∈ X. (4.22)

Then, by (4.21) and (4.22) and passing to the limit as n → +∞ in (4.20), we conclude that

< AG(u),h > +
∫
RN

|u|G(z)−2uhdz =
∫
RN

b(z)

uγ (z)
hdz for all h ∈ X.

This proves that u is a weak solution of problem (4.10). Since u1 ≤ un for all n ∈ N , we have 
u > 0. Finally, we show the uniqueness of this positive solution. So, suppose that v ∈ X is another 
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positive solution of equation (4.10). As in the proof of Proposition 4.10, we can prove that u = v. 
The proof of Theorem 4.7 is now complete. �
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[10] M. Cencelj, V.D. Rădulescu, D.D. Repovš, Double phase problems with variable growth, Nonlinear Anal. 177 

(2018) 270–287.
[11] D. Edmunds, J. Rákosnik, Sobolev embeddings with variable exponent, Stud. Math. 143 (3) (2000) 267–293.
[12] M. Eleuteri, P. Marcellini, E. Mascolo, Regularity for scalar integrals without structure conditions, Adv. Calc. Var. 

13 (3) (2020) 279–300.
[13] X. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)(�), J. Math. Anal. Appl. 262 (2001) 

749–760.
[14] B. Franchi, M.C. Tesi, A finite element approximation for a class of degenerate elliptic equations, Math. Comput. 

69 (1999) 41–63.
[15] J. Giacomoni, S. Tiwari, G. Warnault, Quasilinear parabolic problem with p(x)-Laplacian: existence, uniqueness 

of weak solutions and stabilization, NoDEA Nonlinear Differ. Equ. Appl. 23 (2016).
[16] V.V. Grushin, On a class of hypoelliptic operators, Math. USSR Sb. 12 (1970) 458–476.
[17] P. Hájek, V. Montesinos Santalucía, J. Vanderwerff, V. Zizler, Biorthogonal Systems in Banach Spaces, Springer, 

New York, 2008.
[18] J. Liu, P. Pucci, H. Wu, Q. Zhang, Existence and blow-up rate of large solutions of p(x)-Laplacian equations with 

gradient terms, J. Math. Anal. Appl. 457 (1) (2018) 944–977.
[19] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. Henri 

Poincaré, Anal. Non Linéaire 3 (1986) 391–409.
[20] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q–growth conditions, J. Differ. Equ. 

90 (1991) 1–30.
[21] P. Marcellini, Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, J. Math. Anal. Appl. 

501 (1) (2021) 124408.
665

http://refhub.elsevier.com/S0022-0396(21)00591-X/bibE235270BF45893777334CD373CE9BE03s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibE235270BF45893777334CD373CE9BE03s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib057F9C5CDE230A29AA942949B32D9F0Ds1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib057F9C5CDE230A29AA942949B32D9F0Ds1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibDDC7655ABBEEDA12C8AE023067F80D01s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibDDC7655ABBEEDA12C8AE023067F80D01s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibA1F73E2C700372029EBE1731D09913CEs1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibA1F73E2C700372029EBE1731D09913CEs1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibB3E0E08202B7AF93B14F94EEFB88D0CAs1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibB3E0E08202B7AF93B14F94EEFB88D0CAs1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibD20FDD0988CFBD929834182B5946F3BDs1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibD20FDD0988CFBD929834182B5946F3BDs1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib9E962A036259594A9D5D22468D3012F0s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib9E962A036259594A9D5D22468D3012F0s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibC9813838145BD9485BE1C4D444865E89s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibC9813838145BD9485BE1C4D444865E89s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib7DB9E4E8C09E7E26560C50AE800F9960s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib7DB9E4E8C09E7E26560C50AE800F9960s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib3E8654EF6A2A5B2B4520173A74F16935s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibC7DBEDC860CE713314F41F5355D63F25s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibC7DBEDC860CE713314F41F5355D63F25s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib50BD8C21BFAFA6E4E962F6A948B1EF92s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib50BD8C21BFAFA6E4E962F6A948B1EF92s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib23228CD758C16BF213F4A51DE567E2B6s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib23228CD758C16BF213F4A51DE567E2B6s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib595F0F0A178FAFD18F9D0255ED0760F1s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibD85EA15B398CC75990E4A893B6BD7BA1s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibD85EA15B398CC75990E4A893B6BD7BA1s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib87218FDC95F75D182D429941A0BC51DFs1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib87218FDC95F75D182D429941A0BC51DFs1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibD1C99C2DDB6F3E364E53C096A303002Es1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bibD1C99C2DDB6F3E364E53C096A303002Es1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib9AA3C41E7795EE243713C29F681384D1s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib9AA3C41E7795EE243713C29F681384D1s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib4ECE6EE6BA60ACC5C9A02075F1E6E069s1
http://refhub.elsevier.com/S0022-0396(21)00591-X/bib4ECE6EE6BA60ACC5C9A02075F1E6E069s1
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