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Abstract

In this paper we study a non-homogeneous eigenvalue problem involving variable growth conditions and a potential V .
The problem is analyzed in the context of Orlicz–Sobolev spaces. Connected with this problem we also study the optimization
problem for the particular eigenvalue given by the infimum of the Rayleigh quotient associated to the problem with respect to the
potential V when V lies in a bounded, closed and convex subset of a certain variable exponent Lebesgue space.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on étudie un problème non homogène à valeurs propres avec exposant variable et potentiel V . Ce problème est
analysé dans les espaces d’Orlicz–Sobolev. On étudie également le problème d’optimisation dans le cas particulier où la valeur
propre s’obtient par minimisation du quotient de Rayleigh associé au potentiel V , quand V appartient à un ensemble borné, fermé
et convexe d’un espace de Lebesgue à exposant variable.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction and preliminary results

Let Ω be a bounded domain in R
N (N � 3) with smooth boundary ∂Ω . Assume that ai : (0,∞) → R, i = 1,2,

are two functions such that the mappings ϕi : R → R, i = 1,2, defined by:
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ϕi(t) =
{

ai(|t |)t, for t �= 0,

0, for t = 0,

are odd, increasing homeomorphisms from R onto R, λ is a real number, V (x) is a potential and q1, q2, m :Ω →
(1,∞) are continuous functions. We analyze the eigenvalue problem:⎧⎨

⎩
−div((a1(|∇u|) + a2(|∇u|))∇u) + V (x)|u|m(x)−2u = λ(|u|q1(x)−2 + |u|q2(x)−2)u,

if x ∈ Ω

u = 0, if x ∈ ∂Ω.

(1)

The interest in analyzing this kind of problems is motivated by some recent advances in the study of eigenvalue
problems involving non-homogeneous operators in the divergence form. We refer especially to the results in [13,
18,20,12,21–23]. Problem (1) can be placed in the context of the above results since in the particular case when
q1(x) = q2(x) = q(x) for any x ∈ Ω and V ≡ 0 in Ω it was studied in [21]. The form of problem (1) becomes a
natural extension of the problem studied in [21] with the presence of the potential V in the left-hand side of the
equation and by considering that in the right-hand side we can have q1 �= q2 on Ω .

In order to go further we introduce the functional space setting where problem (1) will be discussed. In this context
we notice that the operator in the divergence form is not homogeneous and thus, we introduce an Orlicz–Sobolev
space setting for problems of this type. On the other hand, the presence of the continuous functions m, q1 and q2 as
exponents appeals to a suitable variable exponent Lebesgue space setting. In the following, we give a brief description
of the Orlicz–Sobolev spaces and of the variable exponent Lebesgue spaces.

We start by recalling some basic facts about Orlicz spaces. For more details we refer to the books by D.R. Adams
and L.I. Hedberg [2], R. Adams [3] and M.M. Rao and Z.D. Ren [25] and the papers by Ph. Clément et al. [6,7],
M. Garciá-Huidobro et al. [14] and J.P. Gossez [15].

For ϕi : R → R, i = 1,2, which are odd, increasing homeomorphisms from R onto R, we define

Φi(t) =
t∫

0

ϕi(s) ds, (Φi)
�(t) =

t∫
0

(ϕi)
−1(s) ds, for all t ∈ R, i = 1,2.

We observe that Φi , i = 1,2, are Young functions, that is, Φi(0) = 0, Φi are convex, and limx→∞ Φi(x) = +∞.
Furthermore, since Φi(x) = 0 if and only if x = 0, limx→0 Φi(x)/x = 0, and limx→∞ Φi(x)/x = +∞, then Φi are
called N -functions. The functions (Φi)

�, i = 1,2, are called the complementary functions of Φi , i = 1,2, and they
satisfy:

(Φi)
�(t) = sup

{
st − Φi(s); s � 0

}
, for all t � 0.

We also observe that (Φi)
�, i = 1,2, are also N -functions and Young’s inequality holds true

st � Φi(s) + (Φi)
�(t), for all s, t � 0.

The Orlicz spaces LΦi
(Ω), i = 1,2, defined by the N -functions Φi (see [2,3,6]) are the spaces of measurable functions

u :Ω → R such that

‖u‖LΦi
:= sup

{ ∫
Ω

uv dx;
∫
Ω

(Φi)
�
(|g|)dx � 1

}
< ∞.

Then (LΦi
(Ω),‖ · ‖LΦi

), i = 1,2, are Banach spaces whose norm is equivalent to the Luxemburg norm

‖u‖Φi
:= inf

{
k > 0;

∫
Ω

Φi

(
u(x)

k

)
dx � 1

}
.

For Orlicz spaces Hölder’s inequality reads as follows (see [25, Inequality 4, p. 79]):∫
Ω

uv dx � 2‖u‖LΦi
‖v‖L(Φi )

� for all u ∈ LΦi
(Ω) and v ∈ L(Φi)

�(Ω), i = 1,2.
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Next, we introduce the Orlicz–Sobolev spaces. We denote by W 1LΦi
(Ω), i = 1,2, the Orlicz–Sobolev spaces

defined by:

W 1LΦi
(Ω) :=

{
u ∈ LΦi

(Ω); ∂u

∂xi

∈ LΦi
(Ω), i = 1, . . . ,N

}
.

These are Banach spaces with respect to the norms

‖u‖1,Φi
:= ‖u‖Φi

+ ∥∥|∇u|∥∥
Φi

, i = 1,2.

We also define the Orlicz–Sobolev spaces W 1
0 LΦi

(Ω), i = 1,2, as the closure of C∞
0 (Ω) in W 1LΦi

(Ω).
By Lemma 5.7 in [15] we obtain that on W 1

0 LΦi
(Ω), i = 1,2, we may consider some equivalent norms

‖u‖i := ∥∥|∇u|∥∥
Φi

.

For an easier manipulation of the spaces defined above, we define:

(ϕi)0 := inf
t>0

tϕi(t)

Φi(t)
and (ϕi)

0 := sup
t>0

tϕi(t)

Φi(t)
, i ∈ {1,2}.

In this paper we assume that for each i ∈ {1,2} we have:

1 < (ϕi)0 � tϕi(t)

Φi(t)
� (ϕi)

0 < ∞, ∀t � 0. (2)

The above relation implies that each Φi , i ∈ {1,2}, satisfies the �2-condition, i.e.

Φi(2t) � KΦi(t), ∀t � 0, (3)

where K is a positive constant (see [22, Proposition 2.3]).
On the other hand, the following relations hold true

‖u‖(ϕi )
0

i �
∫
Ω

Φi

(|∇u|)dx � ‖u‖(ϕi )0
i , ∀u ∈ W 1

0 LΦi
(Ω) with ‖u‖i < 1, i = 1,2, (4)

‖u‖(ϕi )0
i �

∫
Ω

Φi

(|∇u|)dx � ‖u‖(ϕi )
0

i , ∀u ∈ W 1
0 LΦi

(Ω) with ‖u‖i > 1, i = 1,2 (5)

(see, e.g. [21, Lemma 1]).
Furthermore, in this paper we assume that for each i ∈ {1,2} the function Φi satisfies the following condition:

the function [0,∞) � t → Φi(
√

t ) is convex. (6)

Conditions (3) and (6) assure that for each i ∈ {1,2} the Orlicz spaces LΦi
(Ω) are uniformly convex spaces and thus,

reflexive Banach spaces (see [22, Proposition 2.2]). That fact implies that also the Orlicz–Sobolev spaces W 1
0 LΦi

(Ω),
i ∈ {1,2}, are reflexive Banach spaces.

Remark 1. We point out certain examples of functions ϕ : R → R which are odd, increasing homeomorphisms from
R onto R and satisfy conditions (2) and (6). For more details the reader can consult [7, Examples 1–3, p. 243].

1) Let

ϕ(t) = p|t |p−2t, ∀t ∈ R,

with p > 1. For this function it can be proved that

(ϕ)0 = (ϕ)0 = p.

Furthermore, in this particular case the corresponding Orlicz space LΦ(Ω) is the classical Lebesgue space Lp(Ω)

while the Orlicz–Sobolev space W 1
0 LΦ(Ω) is the classical Sobolev space W

1,p

0 (Ω). We will use the classical notations
to denote the Orlicz–Sobolev spaces in this particular case.
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2) Consider

ϕ(t) = log
(
1 + |t |s)|t |p−2t, ∀t ∈ R,

with p, s > 1. In this case it can be proved that

(ϕ)0 = p, (ϕ)0 = p + s.

3) Let

ϕ(t) = |t |p−2t

log(1 + |t |) , if t �= 0, ϕ(0) = 0,

with p > 2. In this case we have

(ϕ)0 = p − 1, (ϕ)0 = p.

Next, we recall some background facts concerning the variable exponent Lebesgue spaces. For more details we
refer to the book by Musielak [24] and the papers by Edmunds et al. [8–10], Kováčik and Rákosník [16], Mihăilescu
and Rădulescu [17], and Samko and Vakulov [26].

Set

C+(Ω) = {
h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω

}
.

For any h ∈ C+(Ω) we define:

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any q(x) ∈ C+(Ω) we define the variable exponent Lebesgue space Lq(x)(Ω) (see [16]). On Lq(x)(Ω) we define
the Luxemburg norm by the formula

|u|q(x) = inf

{
μ > 0;

∫
Ω

∣∣∣∣u(x)

μ

∣∣∣∣
q(x)

dx � 1

}
.

We remember that the variable exponent Lebesgue spaces are separable and reflexive Banach spaces. If 0 < |Ω| < ∞
and q1, q2 are variable exponents so that q1(x) � q2(x) almost everywhere in Ω then there exists the continuous
embedding Lq2(x)(Ω) ↪→ Lq1(x)(Ω).

Let Lp′(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/p′(x) = 1. For any u ∈ Lp(x)(Ω) and
v ∈ Lp′(x)(Ω) the Hölder type inequality∣∣∣∣

∫
Ω

uv dx

∣∣∣∣ �
(

1

p− + 1

p′−
)

|u|p(x)|v|p′(x), (7)

holds true.
If (un), u ∈ Lq(x)(Ω) then the following relations hold true:

|u|q(x) > 1 ⇒ |u|q−
q(x) �

∫
Ω

|u|q(x) dx � |u|q+
q(x), (8)

|u|q(x) < 1 ⇒ |u|q+
q(x)

�
∫
Ω

|u|q(x) dx � |u|q−
q(x)

, (9)

|un − u|q(x) → 0 ⇔
∫
Ω

|un − u|q(x) dx → 0. (10)

Now we can turn back to problem (1). We will study problem (1) when q1, q2, m : Ω → (1,∞) are continuous
functions satisfying the following assumptions:
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1 < (ϕ2)0 � (ϕ2)
0 < q−

2 � q+
2 � m− � m+ � q−

1 � q+
1 < (ϕ1)0 � (ϕ1)

0 < N, (11)

q+
1 <

[
(ϕ2)0

]� := N(ϕ2)0

N − (ϕ2)0
, ∀x ∈ Ω, (12)

and the potential V :Ω → R satisfies

V ∈ Lr(x)(Ω), with r(x) ∈ C(Ω) and r(x) >
N

m− ,∀x ∈ Ω. (13)

Condition (11) which describes the competition between the growth rates involved in Eq. (1), actually, assures a
balance between them and thus, it represents the key of the present study. Such a balance is essential since we are
working on a non-homogeneous (eigenvalue) problem for which a minimization technique based on the Lagrange
Multiplier Theorem cannot be applied in order to find (principal) eigenvalues (unlike the case offered by the homo-
geneous operators). Thus, in the case of nonlinear non-homogeneous eigenvalue problems the classical theory used
in the homogeneous case does not work entirely, but some of its ideas can still be useful and some particular results
can still be obtained in some aspects while in other aspects entirely new phenomena can occur. To focus on our case,
condition (11) together with conditions (12) and (13) imply:

lim‖u‖1→0

∫
Ω

Φ1(|∇u|) dx + ∫
Ω

Φ2(|∇u|) dx + ∫
Ω

V (x)
m(x)

|u|m(x) dx∫
Ω

1
q1(x)

|u|q1(x) dx + ∫
Ω

1
q2(x)

|u|q2(x) dx
= ∞,

and

lim‖u‖1→∞

∫
Ω

Φ1(|∇u|) dx + ∫
Ω

Φ2(|∇u|) dx + ∫
Ω

V (x)
m(x)

|u|m(x) dx∫
Ω

1
q1(x)

|u|q1(x) dx + ∫
Ω

1
q2(x)

|u|q2(x) dx
= ∞.

In other words, the absence of homogeneity is balanced by the behavior (actually, the blow-up) of the Rayleigh
quotient associated to problem (1) in the origin and at infinity. The consequences of the above remarks is that the
infimum of the Rayleigh quotient associated to problem (1) is a real number, i.e.

inf
u∈W 1

0 LΦ1 (Ω)\{0}

∫
Ω

Φ1(|∇u|) dx + ∫
Ω

Φ2(|∇u|) dx + ∫
Ω

V (x)
m(x)

|u|m(x) dx∫
Ω

1
q1(x)

|u|q1(x) dx + ∫
Ω

1
q2(x)

|u|q2(x) dx
∈ R, (14)

and it will be attained for a function u0 ∈ W
1,p1(x)

0 (Ω) \ {0}. Moreover, the value in (14) represents an eigenvalue of
problem (1) with the corresponding eigenfunction u0. However, at this stage we cannot say if the eigenvalue described
above is the lowest eigenvalue of problem (1) or not, even if we are able to show that any λ small enough is not an
eigenvalue of (1). For the moment this rests an open question. On the other hand, we can prove that any λ superior to
the value given by relation (14) is also an eigenvalue of problem (1). Thus, we conclude that problem (1) possesses a
continuous family of eigenvalues.

Related with the above ideas we will also discuss the optimization of the eigenvalues described by relation (14)
with respect to the potential V , providing that V belongs to a bounded, closed and convex subset of Lr(x)(Ω) (where
r(x) is given by relation (13)). By optimization we understand the existence of some potentials V� and V � such that the
eigenvalue described in relation (14) is minimal or maximal with respect to the set where V lies. The results that we
will obtain in the context of optimization of eigenvalues are motivated by the above advances in this field in the case of
homogeneous (linear or nonlinear) eigenvalue problems. We refer mainly to the studies in Ashbaugh and Harrell [1],
Egnell [11] and Bonder and Del Pezzo [4] where different optimization problems of the principal eigenvalue of some
homogeneous operators were studied.

2. The main results

By relation (11) it follows that W 1
0 LΦ1(Ω) is continuously embedded in W 1

0 LΦ2(Ω) (see, e.g. [21, Lemma 2]).
Thus, problem (1) will be analyzed in the space W 1

0 LΦ1(Ω).
We say that λ ∈ R is an eigenvalue of problem (1) if there exists u ∈ W 1

0 LΦ1(Ω) \ {0} such that∫
Ω

(
a1

(|∇u|) + a2
(|∇u|))∇u∇v dx +

∫
Ω

V (x)|u|m(x)−2uv dx − λ

∫
Ω

(|u|q1(x)−2 + |u|q2(x)−2)uv dx = 0,
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for all v ∈ W 1
0 LΦ1(Ω). We point out that if λ is an eigenvalue of problem (1) then the corresponding eigenfunction

u ∈ W 1
0 LΦ1(Ω) \ {0} is a weak solution of problem (1).

For each potential V ∈ Lr(x)(Ω) we define:

A(V ) := inf
u∈W 1

0 LΦ1 (Ω)\{0}

∫
Ω

Φ1(|∇u|) dx + ∫
Ω

Φ2(|∇u|) dx + ∫
Ω

V (x)
m(x)

|u|m(x) dx∫
Ω

1
q1(x)

|u|q1(x) dx + ∫
Ω

1
q2(x)

|u|q2(x) dx
,

and

B(V ) := inf
u∈W 1

0 LΦ1 (Ω)\{0}

∫
Ω

a1(|∇u|)|∇u|2 dx + ∫
Ω

a2(|∇u|)|∇u|2 dx dx + ∫
Ω

V (x)|u|m(x) dx∫
Ω

|u|q1(x) dx + ∫
Ω

|u|q2(x) dx
.

Thus, we can define two functions A,B :Lr(x)(Ω) → R.
The first result of this paper is given by the following theorem.

Theorem 2.1. Assume that conditions (11), (12) and (13) are fulfilled. Then A(V ) is an eigenvalue of problem (1).
Moreover, there exists uV ∈ W 1

0 LΦ1(Ω) \ {0} an eigenfunction corresponding to the eigenvalue A(V ) such that

A(V ) =
∫
Ω

Φ1(|∇uV |) dx + ∫
Ω

Φ2(|∇uV |) dx + ∫
Ω

V (x)
m(x)

|uV |m(x) dx∫
Ω

1
q1(x)

|uV |q1(x) dx + ∫
Ω

1
q2(x)

|uV |q2(x) dx
.

Furthermore, B(V ) � A(V ), each λ ∈ (A(V ),∞) is an eigenvalue of problem (1), while each λ ∈ (−∞,B(V )) is not
an eigenvalue of problem (1).

Next, we will show that on each convex, bounded and closed subset of Lr(x)(Ω) the function A defined above is
bounded from below and attains its minimum. The result is the following:

Theorem 2.2. Assume that conditions (11), (12) and (13) are fulfilled. Assume that S is a convex, bounded and closed
subset of Lr(x)(Ω). Then there exists V� ∈ S which minimizes A(V ) on S, i.e.

A(V�) = inf
V ∈S

A(V ).

Finally, we will focus our attention on the particular case when the set S from Theorem 2.2 is a ball in Lr(x)(Ω).
Thus, we will denote each closed ball centered in the origin of radius R from Lr(x)(Ω) by BR(0), i.e.

BR(0) := {
u ∈ Lr(x)(Ω); |u|r(x) � R

}
.

By Theorem 2.2 we can define the function A� : [0,∞) → R by:

A�(R) = min
V ∈BR(0)

A(V ).

Our result on the function A� is given by the following theorem:

Theorem 2.3.

(a) The function A� is not constant and decreases monotonically.
(b) The function A� is continuous.

On the other hand, we point out that similar results as those of Theorems 2.2 and 2.3 can be obtained if we notice
that on each convex, bounded and closed subset of Lr(x)(Ω) the function A defined in Theorem 2.1 is also bounded
from above and attains its maximum. It is also easy to remark that we can define a function A� : [0,∞) → R by:

A�(R) = max
V ∈BR(0)

A(V ),

which has similar properties as A�.



Author's personal copy
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3. Proof of Theorem 2.1

Let X denote the generalized Sobolev space W 1
0 LΦ1(Ω). Relation (11) and similar arguments as those used in [21,

Lemma 1] combined with [3, Lemma 8.12(b)] and with the Rellich–Kondrachov theorem we deduce that

W 1
0 LΦ1(Ω) ⊂ W 1

0 LΦ2(Ω) ⊂ W
1,(ϕ2)0
0 (Ω) ↪→ Lq+

1 (Ω) ⊂ Lq1(x)(Ω) ⊂ Lm(x)(Ω) ⊂ Lq2(x)(Ω), (15)

where we denoted by ⊂ a continuous embedding while by ↪→ we denoted a compact embedding.
Define the functionals JV , I :X → R by:

JV (u) =
∫
Ω

Φ1
(|∇u|)dx +

∫
Ω

Φ2
(|∇u|)dx +

∫
Ω

V (x)

m(x)
|u|m(x) dx,

I (u) =
∫
Ω

1

q1(x)
|u|q1(x) dx +

∫
Ω

1

q2(x)
|u|q2(x) dx.

Relation (15) assures that the functionals defined above are well defined. We notice that for any V satisfying condi-
tion (13) we have:

JV (u) = J0(u) +
∫
Ω

V (x)

m(x)
|u|m(x) dx, ∀u ∈ X,

where J0 is obtained in the case when V = 0 in Ω .
Standard arguments imply that JV , I ∈ C1(X,R) and for all u,v ∈ X,

〈
J ′

V (u), v
〉 =

∫
Ω

(
a1

(|∇u|) + a2
(|∇u|))∇u∇v dx +

∫
Ω

V (x)|u|m(x)−2uv dx,

〈
I ′(u), v

〉 =
∫
Ω

|u|q1(x)−2uv dx +
∫
Ω

|u|q2(x)−2uv dx.

In order to prove Theorem 2.1 we first establish some auxiliary results.

Lemma 3.1. Assume conditions (11), (12) and (13) are fulfilled. Then for each ε > 0 there exists Cε > 0 such that∣∣∣∣
∫
Ω

V (x)

m(x)
|u|m(x) dx

∣∣∣∣ � ε

∫
Ω

(
Φ1

(|∇u|) + Φ2
(|∇u|))dx + Cε |V |r(x)

∫
Ω

(|u|m− + |u|m+)
dx,

for all u ∈ X.

Proof. First, we point out that since r(x) > r− on Ω it follows that Lr(x)(Ω) ⊂ Lr−
(Ω). On the other hand, since

r(x) > N
m− for each x ∈ Ω it follows that r− > N

m− . Thus, we infer that V ∈ Lr−
(Ω) and r− > N

m− .
Now, let ε > 0 be fixed. We claim that there exists Dε > 0 such that∫

Ω

∣∣V (x)
∣∣ · |u|m−

dx � ε

∫
Ω

|∇u|m−
dx + Dε |V |r−

∫
Ω

|u|m−
dx, ∀u ∈ W

1,m−
0 (Ω). (16)

In order to establish (16) we show first that for each s ∈ (1, Nm−
N−m− ) there exists D′

ε > 0 such that

|v|s � ε
∣∣|∇v|∣∣

m− + D′
ε |v|m− , ∀u ∈ W

1,m−
0 (Ω). (17)

Indeed, assume by contradiction that relation (17) does not hold true for each ε > 0. Then there exists ε0 > 0 and a

sequence (vn) ⊂ W
1,m−
0 (Ω) such that |vn|s = 1 and

ε0
∣∣|∇vn|

∣∣
m− + n|vn|m− < 1, ∀n.
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Then it is clear that (vn) is bounded in W
1,m−
0 (Ω) and |vn|m− → 0. Thus, we deduce that passing eventually to

a subsequence we can assume that vn converges weakly to a function v in W
1,m−
0 (Ω) and actually v = 0. Since

s ∈ (1, Nm−
N−m− ) it follows by the Rellich–Kondrachov theorem that W

1,m−
0 (Ω) is compactly embedded in Ls(Ω) and

thus vn converges to 0 in Ls(Ω). On the other hand, since |vn|s = 1 for each n we deduce that |v|s = 1 and that is a
contradiction. We obtained that relation (17) holds true.

Next, we point out that since r− > N
m− then m− · r−′

< Nm−
N−m− , where r−′ = r−

r−−1 . Thus, by Hölder’s inequality
we have: ∫

Ω

∣∣V (x)
∣∣ · |u|m−

dx � |V |r− · |u|m−
m−·r−′ , ∀u ∈ W

1,m−
0 (Ω).

Combining the last inequality with relation (17) we infer that relation (16) holds true.
Similar arguments as those used in the proof of relation (16) combined with the fact that since r− > N

m− we also

have r− > N
m+ imply that there exists D′′

ε ,∫
Ω

∣∣V (x)
∣∣ · |u|m+

dx � ε

∫
Ω

|∇u|m+
dx + D′′

ε |V |r−
∫
Ω

|u|m+
dx, ∀u ∈ W

1,m+
0 (Ω). (18)

Using relation (11) we deduce that m− � m+ < (ϕ1)0 and thus, implies that W
1,(ϕ1)0
0 (Ω) ⊂ W

1,m±
0 (Ω). On the other

hand, similar arguments as those used in the proof of [21, Lemma 2] show that W 1
0 LΦ1(Ω) ⊂ W

1,(ϕ1)0
0 (Ω). The above

facts imply that relations (16) and (18) hold true for any u ∈ X. Moreover, in the right-hand sides of inequalities (16)
and (18) we can take |V |r(x) instead of |V |r− since Lr(x)(Ω) is continuously embedded in Lr−

(Ω) via inequality (7).
Finally, we point out that since by (11) we have (ϕ2)

0 < m− � m(x) � m+ < (ϕ1)0 for each x ∈ Ω we deduce that∣∣∣∣
∫
Ω

V (x)

m(x)
|u|m(x) dx

∣∣∣∣ � 1

m−

∫
Ω

∣∣V (x)
∣∣ · (|u|m− + |u|m+)

dx, ∀u ∈ X, (19)

and ∫
Ω

(|∇u|m− + |∇u|m+)
dx �

∫
Ω

(|∇u|(ϕ2)
0
dx + |∇u|(ϕ1)0

)
dx, ∀u ∈ X. (20)

Relations (16), (18), (19), (20), (11) and (15) and [21, Lemma 3] lead to the idea that Lemma 3.1 holds true. �
Lemma 3.2. The following relations hold true:

lim‖u‖1→∞
JV (u)

I (u)
= ∞, (21)

and

lim‖u‖1→0

JV (u)

I (u)
= ∞. (22)

Proof. First, we point out that by (11) q2(x) < m± < q1(x) for any x ∈ Ω . Thus, it is clear that∣∣u(x)
∣∣m− + ∣∣u(x)

∣∣m+
� 2

(∣∣u(x)
∣∣q1(x) + ∣∣u(x)

∣∣q2(x))
, ∀x ∈ Ω and ∀u ∈ X.

Integrating over Ω the above inequality we infer that∫
Ω

(|u|m− + |u|m+
) dx∫

Ω
(|u|q1(x) + |u|q2(x)) dx

� 2, ∀u ∈ X. (23)

Using Lemma 3.1 we find that for an ε ∈ (0,1) there exists Cε > 0 such that

JV (u)

I (u)
�

(1 − ε)
∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx − Cε |V |r(x)

∫
Ω

(|u|m− + |u|m+
) dx

1
q−

2

∫
Ω

(|u|q1(x) + |u|q2(x)) dx
,

for any u ∈ X.
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By the above inequality and relation (23) we deduce that there exist some positive constants β > 0 and γ > 0 such
that

JV (u)

I (u)
�

β
∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx∫
Ω

(|u|q1(x) + |u|q2(x)) dx
− γ |V |r(x), ∀u ∈ X. (24)

For any u ∈ X with ‖u‖1 > 1 relation (24) implies:

JV (u)

I (u)
�

β
∫
Ω

Φ1(|∇u|) dx

|u|q
−
1

q−
1

+ |u|q
+
1

q+
1

+ |u|q
−
2

q−
2

+ |u|q
+
2

q+
2

− γ |V |r(x), ∀u ∈ X with ‖u‖1 > 1.

Now, taking into account the continuous embedding of X in Lq±
i (Ω) for i = 1,2 (given by relations (11) and (15))

and the result of relation (5) we deduce the existence of a positive constant δ > 0 such that

JV (u)

I (u)
�

δ‖u‖(ϕ1)0
1

‖u‖q−
1

1 + ‖u‖q+
1

1 + ‖u‖q−
2

1 + ‖u‖q+
2

1

− γ |V |r(x), ∀u ∈ X with ‖u‖1 > 1.

Since (ϕ1)0 > q+
1 � q−

1 � q+
2 � q−

2 , passing to the limit as ‖u‖1 → ∞ in the above inequality we deduce that
relation (21) holds true.

Relation (15) shows that the space W 1
0 LΦ1(Ω) is continuously embedded in W 1

0 LΦ2(Ω). Thus, if ‖u‖1 → 0 then
‖u‖2 → 0.

The above remarks enable us to affirm that for any u ∈ X with ‖u‖1 < 1 small enough we have ‖u‖2 < 1.
Using again relation (15) we deduce that W 1

0 LΦ2(Ω) is continuously embedded in Lq±
i (Ω) with i = 1,2. It follows

that there exist four positive constants di1 and di2 with i = 1,2 such that

‖u‖2 � di1 · |u|q+
i
, ∀u ∈ W 1

0 LΦ2(Ω) and i = 1,2 (25)

and

‖u‖2 � di2 · |u|q−
i
, ∀u ∈ W 1

0 LΦ2(Ω) and i = 1,2. (26)

Thus, for any u ∈ X with ‖u‖1 < 1 small enough, relation (24) implies:

JV (u)

I (u)
�

β
∫
Ω

Φ2(|∇u|) dx

|u|q
−
1

q−
1

+ |u|q
+
1

q+
1

+ |u|q
−
2

q−
2

+ |u|q
+
2

q+
2

− γ |V |r(x).

Next, relations (4), (25), (26) yield that there exists a constant ξ > 0 such that

JV (u)

I (u)
�

ξ‖u‖(ϕ2)
0

2

‖u‖q−
1

2 + ‖u‖q+
1

2 + ‖u‖q−
2

2 + ‖u‖q+
2

2

− γ |V |r(x),

for any u ∈ X with ‖u‖1 < 1 small enough. Since (ϕ2)
0 < q−

2 � q+
2 � q−

1 � q+
1 , passing to the limit as ‖u‖1 → 0

(and thus, ‖u‖2 → 0) in the above inequality we deduce that relation (22) holds true. The proof of Lemma 3.2 is
complete. �
Remark 2. We point out that by relation (24) and using similar arguments as in the proof of Theorem 1 (Step 1)
in [21] we can find that for V given and satisfying (13) the quotient JV (u)

I (u)
is bounded from below for u ∈ X \ {0}, i.e.

A(V ) is a real number. Similarly, it can be proved that B(V ) is also a real number.

Lemma 3.3. There exists u ∈ X \ {0} such that JV (u)
I (u)

= A(V ).

Proof. Let (un) ⊂ X \ {0} be a minimizing sequence for A(V ), that is,

lim
n→∞

JV (un)

I (un)
= A(V ). (27)
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By relation (21) it is clear that {un} is bounded in X. Since X is reflexive it follows that there exists u ∈ X such that,
up to a subsequence, (un) converges weakly to u in X. On the other hand, similar arguments as those used in the proof
of [19, Theorem 2] (see also [21, Step 3]) show that the functional J0 (obtained for V = 0 on Ω) is weakly lower
semi-continuous. Thus, we find:

lim inf
n→∞ J0(un) � J0(u). (28)

By the compact embedding theorem for Sobolev spaces and assumptions (11), (12) and (13) it follows that X is
compactly embedded in Lσ(x)(Ω) (where σ(x) = m(x) · r(x)/(r(x) − 1)) and Lqi(x)(Ω) with i = 1,2. Thus, (un)

converges strongly in Lσ(x)(Ω) and Lqi(x)(Ω) with i = 1,2. Then, by relations (7) and (15) it follows that

lim
n→∞ I (un) = I (u), (29)

and

lim
n→∞

∫
Ω

V (x)|un|m(x) dx =
∫
Ω

V (x)|u|m(x) dx. (30)

Relations (28), (29) and (30) imply that if u �≡ 0, then

JV (u)

I (u)
= A(V ).

Thus, in order to conclude that the lemma holds true it is enough to show that u is not trivial. Assume by contradiction
the contrary. Then un converges weakly to 0 in X and strongly in Ls(x)(Ω) for any s(x) ∈ C(Ω) with 1 < s(x) <
N(ϕ1)0

N−(ϕ1)0
on Ω . In other words, we will have:

lim
n→∞ I (un) = 0, (31)

and

lim
n→∞

∫
Ω

V (x)|un|m(x) dx = 0. (32)

Letting ε ∈ (0, |A(V )|) be fixed by relation (27) we deduce that for n large enough we have:∣∣JV (un) − A(V )I (un)
∣∣ < εI (un),

or (∣∣A(V )
∣∣ − ε

)
I (un) < JV (un) <

(∣∣A(V )
∣∣ + ε

)
I (un).

Passing to the limit in the above inequalities and taking into account that relation (31) holds true we find:

lim
n→∞JV (un) = 0.

Next, by relation (32) we get:

lim
n→∞J0(un) = 0.

That fact combined with relation (4) implies that actually un converges strongly to 0 in X, i.e. limn→∞ ‖un‖1 = 0. By
this information and relation (22) we get:

lim
n→∞

JV (un)

I (un)
= ∞,

and this is a contradiction. Thus, u �≡ 0. The proof of Lemma 3.3 is complete. �
By Lemma 3.3 we conclude that there exists u ∈ X \ {0} such that

JV (u)

I (u)
= A(V ) = inf

w∈X\{0}
JV (w)

I (w)
. (33)
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Then, for any w ∈ X we have:

d

dε

JV (u + εw)

I (u + εw)

∣∣∣∣
ε=0

= 0.

A simple computation yields
〈
J ′

V (u),w
〉
I (u) − JV (u)

〈
I ′(u),w

〉 = 0, (34)

for all w ∈ X. Relation (34) combined with the fact that JV (u) = A(V ) · I (u) and I (u) �= 0 implies the fact that A(V )

is an eigenvalue of problem (1).
Next, we show that any λ ∈ (A(V ),∞) is an eigenvalue of problem (1).
Let λ ∈ (A(V ),∞) be arbitrary but fixed. Define TV,λ :X → R by:

TV,λ(u) = JV (u) − λI (u).

Clearly, TV,λ ∈ C1(X,R) with
〈
T ′

V,λ(u), v
〉 = 〈

J ′
V (u), v

〉 − λ
〈
I ′(u), v

〉
, ∀u ∈ X.

Thus, λ is an eigenvalue of problem (1) if and only if there exists uλ ∈ X \ {0} a critical point of TV,λ.
With similar arguments as in the proof of relation (21) we can show that TV,λ is coercive, i.e. lim‖u‖→∞ TV,λ(u) =

∞. On the other hand, as we have already remarked, similar arguments as those used in the proof of [19, Theorem 2]
show that the functional TV,λ is weakly lower semi-continuous. These two facts enable us to apply [27, Theorem 1.2]
in order to prove that there exists uλ ∈ X a global minimum point of TV,λ and thus, a critical point of TV,λ. It is enough
to show that uλ is not trivial. Indeed, since A(V ) = infu∈X\{0} JV (u)

I (u)
and λ > A(V ) it follows that there exists vλ ∈ X

such that

JV (vλ) < λI (vλ),

or

TV,λ(vλ) < 0.

Thus,

inf
X

TV,λ < 0

and we conclude that uλ is a nontrivial critical point of TV,λ, or λ is an eigenvalue of problem (1).
Finally, we prove that each λ < B(V ) is not an eigenvalue of problem (1). With that end in view we assume by

contradiction that there exists λ < B(V ) an eigenvalue of problem (1). It follows that there exists uλ ∈ X \ {0} such
that

〈
J ′

V (uλ), uλ

〉 = λ
〈
I ′(uλ), uλ

〉
.

Since uλ �= 0 we have 〈I ′(uλ), uλ〉 > 0. Using that fact and the definition of B(V ) it follows that the following relation
holds true:

〈
J ′

V (uλ), uλ

〉 = λ
〈
I ′(uλ), uλ

〉
< B(V )

〈
I ′(uλ), uλ

〉
�

〈
J ′

V (uλ), uλ

〉
.

Obviously, this is a contradiction. We deduce that each λ ∈ (−∞,B(V )) is not an eigenvalue of problem (1). Further-
more, it is clear that A(V ) � B(V ).

The proof of Theorem 2.1 is complete.

Remark 3. We point out that in the case when V = 0 in Ω the same arguments as in the proof of Theorem 1 (Step 1)
in [21] assure that A(0) > 0.
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4. Proof of Theorem 2.2

Let S be a convex, bounded and closed subset of Lr(x)(Ω), and

A� := inf
V ∈S

A(V ).

Clearly, relation (24) assures that A� is finite.
On the other hand, let (Vn) ⊂ S be a minimizing sequence for A�, i.e.

A(Vn) → A�, as n → ∞.

Obviously, (Vn) is a bounded sequence and thus, there exists V� ∈ Lr(x)(Ω) such that Vn converges weakly to V� in
Lr(x)(Ω). Moreover, since S is convex and closed it is also weakly closed (see, e.g., Brezis [5, Theorem III.7]) and
consequently V� ∈ S.

Next, we will show that A(V�) = A�.
Indeed, by Theorem 2.1 we deduce that for each positive integer n there exists un ∈ X \ {0} such that

JVn(un)

I (un)
= A(Vn). (35)

Since (A(Vn)) is a bounded sequence and by relation (24) we have:

JVn(un)

I (un)
� β

J0(un)

I (un)
− C, for any n,

where C is a positive constant, we infer that (un) is bounded in X and it cannot contain a subsequence converging to 0
(otherwise we obtain a contradiction by applying Lemma 3.2). Thus, there exists u0 ∈ X \{0} such that (un) converges
weakly to u0 in X. Using relation (12) (and thus, W 1

0 LΦ1(Ω) ⊂ W
1,(ϕ1)0
0 (Ω)) and the Rellich–Kondrachov theorem

we deduce that (un) converges strongly to u0 in Ls(x)(Ω) for any s(x) ∈ C(Ω) satisfying 1 < s(x) <
N(ϕ1)0

N−(ϕ1)0
for

any x ∈ Ω . In particular, using conditions (11), (12) and (13) we get that (un) converges to u0 in Lm(x)(Ω) and in
Lm(x)·r ′(x)(Ω) where r ′(x) = r(x)

r(x)−1 . Using that information, inequality (7) and the fact that V� ∈ Lr(x)(Ω) and (Vn)

is bounded in Lr(x)(Ω) we find:

lim
n→∞

∫
Ω

V�(x)

m(x)
|un|m(x) dx =

∫
Ω

V�(x)

m(x)
|u0|m(x) dx, (36)

and

lim
n→∞

∫
Ω

(
Vn(x)

m(x)
|un|m(x) − Vn(x)

m(x)
|u0|m(x)

)
dx = 0. (37)

On the other hand, since (Vn) converges weakly to V� in Lr(x)(Ω) and u0 ∈ Lm(x)·r ′(x)(Ω), where r ′(x) = r(x)
r(x)−1 , we

deduce:

lim
n→∞

∫
Ω

Vn(x)

m(x)
|u0|m(x) dx =

∫
Ω

V�(x)

m(x)
|u0|m(x) dx. (38)

Combining the equality,∫
Ω

V�(x)

m(x)
|un|m(x) dx −

∫
Ω

Vn(x)

m(x)
|un|m(x) dx

=
∫
Ω

V�(x)

m(x)
|un|m(x) dx −

∫
Ω

V�(x)

m(x)
|u0|m(x) dx +

∫
Ω

V�(x)

m(x)
|u0|m(x) dx −

∫
Ω

Vn(x)

m(x)
|u0|m(x) dx

+
∫
Ω

Vn(x)

m(x)
|u0|m(x) dx −

∫
Ω

Vn(x)

m(x)
|un|m(x) dx,
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with relations (36), (37) and (38) we get:

lim
n→∞

∫
Ω

(
V�(x)

m(x)
|un|m(x) − Vn(x)

m(x)
|un|m(x)

)
dx = 0. (39)

Since

A(V�) = inf
u∈X\{0}

JV�(u)

I (u)
,

it follows that

A(V�) � JV�(un)

I (un)
.

Combining the above inequality and equality (35) we obtain:

A(V�) � JV�(un) − JVn(un)

I (un)
+ A(Vn).

Taking into account the result of relation (39), the fact that I (un) is bounded and does not converge to 0 and (A(Vn))

converges to A� then passing to the limit as n → ∞ in the last inequality we infer that

A(V�) � A�.

But using the definition of A� and the fact that V� ∈ S we conclude that actually

A(V�) = A�.

The proof of Theorem 2.2 is complete.

5. Proof of Theorem 2.3

(a) First, we show that function A� is not constant. Indeed, by Remark 3 we point out that A�(0) = A(0) > 0. On
the other hand, by [21, Theorem 1] it follows that

λm := inf
u∈X\{0}

∫
Ω

Φ1(|∇u|) dx + ∫
Ω

Φ2(|∇u|) dx∫
Ω

1
m(x)

|u|m(x) dx
> 0.

Moreover, [21, Lemma 5] implies that there exists um ∈ X \ {0} such that

λm =
∫
Ω

Φ1(|∇um|) dx + ∫
Ω

Φ2(|∇um|) dx∫
Ω

1
m(x)

|um|m(x) dx
.

Thus, taking Vm(x) = −λm for all x ∈ Ω it is clear that Vm ∈ L∞(Ω) ⊂ Lr(x)(Ω), and

JVm(um)

I (um)
= 0.

It follows that

A(Vm) � 0,

and we find,

A�(λm) � 0.

We conclude that A� is not constant. Furthermore, we point out that a similar proof as those presented above can show
that function A� takes also negative values. To support that idea we just notice that by [21, Theorem 1, Step 3] for
each λ > λm there exits uλ ∈ X \ {0} such that taking Vλ = −λ for all x ∈ Ω we have:

JVλ(uλ)

I (uλ)
< 0.
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Next, we point out that A� decreases monotonically. Indeed, if we consider 0 � R1 < R2 then it is clear that
BR1(0) ⊂ BR2(0). Then the definition of function A� implies A�(R1) � A�(R2).

(b) Finally, we show that the function A� is continuous. Let R > 0 and t ∈ (0,R) be fixed. We will verify that
limt↘0 A�(R + t) = limt↘0 A�(R − t) = A�(R).

First, we prove that limt↘0 A�(R + t) = A�(R). By Theorem 2.3(a) we have:

A�(R) � A�(R + t).

Moreover, by Theorem 2.2 it follows that there exists VR+t ∈ BR+t (0) (i.e. |VR+t |r(x) � R + t) such that

A(VR+t ) = A�(R + t).

Taking now VR,t := R
R+t

VR+t we have:

|VR,t |r(x) = R

R + t
|VR+t |r(x) � R,

or VR,t ∈ BR(0). Therefore, obviously, we have A(VR,t ) � A�(R).
On the other hand, by Theorem 2.1 there exists ut ∈ X \ {0} such that

A(VR+t ) = JVR+t
(ut )

I (ut )
.

Combining the above pieces of information we find:

A�(R + t) = A(VR+t ) = JVR+t
(ut )

I (ut )
=

JR+t
R

·VR,t
(ut )

I (ut )
= R + t

R
· JVR,t

(ut )

I (ut )
− t

R
· J0(ut )

I (ut )

� R + t

R
· A�(R) − t

R
· J0(ut )

I (ut )
.

On the other hand, by relation (24) we have that for each t ∈ (0,R) it holds:

A�(R) � A�(R + t) = A(VR+t ) = JVR+t
(ut )

I (ut )
� β1 · J0(ut )

I (ut )
− γ · |VR+t |r(x)

= β1 · J0(ut )

I (ut )
− γ · 2R,

where β1 > 0 and γ > 0 are real constants.
Combining the last two inequalities we deduce that

A�(R) � A�(R + t) � R + t

R
· A�(R) − t

R
· A�(R) + γ · 2R

β1
,

for each t ∈ (0,R).
We conclude that

lim
t↘0

A�(R + t) = A�(R).

In the following we argue that limt↘0 A�(R − t) = A�(R).
Obviously,

A�(R) � A�(R − t), ∀t ∈ (0,R).

By Theorem 2.2 there exists VR ∈ BR(0) such that

A�(R) = A(VR).

Moreover, by Theorem 2.1 there exists u0 ∈ X \ {0} such that

A(VR) = JVR
(u0)

I (u0)
.



Author's personal copy

146 M. Mihăilescu et al. / J. Math. Pures Appl. 93 (2010) 132–148

Define now:

Vt := R − t

R
VR, ∀t ∈ (0,R).

Clearly, Vt ∈ BR−t (0). Thus, it is clear that

JVt (u0)

I (u0)
� A�(R − t), ∀t ∈ (0,R).

Taking into account the above information we find:

A�(R) = A(VR) = JVR
(u0)

I (u0)
=

J R
R−t

Vt
(u0)

I (u0)
= JVt (u0)

I (u0)
+ t

R − t
·
∫
Ω

Vt (x)
m(x)

|u0|m(x) dx

I (u0)

� A�(R − t) + t

R
·
∫
Ω

VR(x)
m(x)

|u0|m(x) dx

I (u0)
, ∀t ∈ (0,R).

We infer

lim
t↘0

A�(R − t) = A�(R).

It follows that function A� is continuous. The proof of Theorem 2.3 is complete.

Remark 4. By Theorem 2.3(a) we get that A� decreases monotonically. We notice that in the particular case when
q1(x) = m(x) = q2(x) = q for each x ∈ Ω , where q > 1 is a real number for which conditions (11), (12) and (13) are
fulfilled, the above quoted result can be improved, in the sense that we can show that, actually, function A� is strictly
decreasing on [0,∞). Indeed, letting 0 � R1 < R2 be given, by Theorem 2.2 we deduce that there exists V1 ∈ BR1(0)

such that

A(V1) = A�(R1).

Then for each real number t ∈ (0,R2 − R1) we have V1 − t ∈ BR2(0) since |V1 − t |r(x) � |V1|r(x) + t � R2. Next, by
Theorem 2.1 there exists u1 ∈ X \ {0} such that

A(V1) = JV1(u1)

I (u1)
.

Taking into account all the above remarks we infer:

A�(R1) − t

2
= A(V1) − t

2
= JV1(u1)

I (u1)
− t

2
= JV1−t (u1)

I (u1)
� A(V1 − t) � A�(R2),

or

A�(R1) > A�(R2).

In the end of this remark we consider that it is important to highlight the idea that the above proof supports the fact
that in the case when we manipulate homogeneous quantities we obtain better results than in the case when we deal
with non-homogeneous quantities.

Remark 5. We point out that by Theorem 2.3(b) we deduce that

A�(R) = inf
s�R

A�(s) and A�(R) = sup
s�R

A�(s).

Remark 6. We also point out that function A� can be used in order to define a continuous set function on a subset of
Lr(x)(Ω). We still denote each closed ball centered in the origin of radius R from Lr(x)(Ω) by BR(0), i.e.

BR(0) := {
u ∈ Lr(x)(Ω); |u|r(x) � R

}
.

By Theorem 2.3(b) we deduce that A� is a continuous function. By the proof of Theorem 2.3(a) we have A�(0) > 0
and there exists R1 > 0 such that A�(R1) < 0. Thus, we infer that there exists R0 > 0 such that A�(R0) = 0.
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We define:

Γ = {
BR(0) \ BR0(0); R � R0

} ⊂ Lr(x)(Ω),

and μ :Γ → [0,∞) by:

μ
(
BR(0) \ BR0(0)

) = −A�(R), ∀R � R0.

By Theorem 2.3(a) we find that function μ has the following properties:

1) μ(∅) = 0;
2) For each S1, S2 ∈ Γ such that S1 ⊂ S2 we have μ(S1) � μ(S2).

Thus, μ is a set function on Γ . By Theorem 2.3(b) and Remark 4 we have that for each S ⊂ Γ it holds true that

μ(S) = sup
T ⊆S

μ(T ) and μ(S) = inf
T ⊇S

μ(T ).

We conclude that μ is a continuous set function on Γ .
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şi Singulare”. V. Rădulescu also acknowledges support through Grant CNCSIS PCCE-55/2008 “Sisteme Diferenţiale
în Analiza Neliniară şi Aplicaţii”. D. Repovš and V. Rădulescu were supported by the Slovenian Research Agency
grants 1000-08-780004, P1-0292-0101 and J1-9643-0101.

References

[1] M.S. Ashbaugh, E.M. Harrell, Maximal and minimal eigenvalues and their associated nonlinear equations, J. Math. Phys. 28 (1987) 1770–
1786.

[2] D.R. Adams, L.I. Hedberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles
of Mathematical Sciences), vol. 314, Springer-Verlag, Berlin, 1996.

[3] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[4] J.F. Bonder, L.M. Del Pezzo, An optimization problem for the first eigenvalue of the p-Laplacian plus a potential, Comm. Pure Appl. Anal. 5

(2006) 675–690.
[5] H. Brezis, Analyse fonctionnelle: théorie, méthodes et applications, Masson, Paris, 1992.
[6] Ph. Clément, M. García-Huidobro, R. Manásevich, K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. 11

(2000) 33–62.
[7] Ph. Clément, B. de Pagter, G. Sweers, F. de Thélin, Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces,

Mediterr. J. Math. 1 (2004) 241–267.
[8] D.E. Edmunds, J. Lang, A. Nekvinda, On Lp(x) norms, Proc. Roy. Soc. London Ser. A 455 (1999) 219–225.
[9] D.E. Edmunds, J. Rákosník, Density of smooth functions in Wk,p(x)(Ω), Proc. Roy. Soc. London Ser. A 437 (1992) 229–236.

[10] D.E. Edmunds, J. Rákosník, Sobolev embedding with variable exponent, Studia Math. 143 (2000) 267–293.
[11] H. Egnell, Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems, Ann. Scuola Norm. Sup. Pisa 14 (1987) 1–48.
[12] X. Fan, Remarks on eigenvalue problems involving the p(x)-Laplacian, J. Math. Anal. Appl. 352 (2009) 85–98.
[13] X. Fan, Q. Zhang, D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005) 306–317.
[14] M. Garciá-Huidobro, V.K. Le, R. Manásevich, K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz–

Sobolev space setting, Nonlinear Differential Equations Appl. (NoDEA) 6 (1999) 207–225.
[15] J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math.

Soc. 190 (1974) 163–205.
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