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We consider the discrete boundary value problem (P): —A(Au(k — 1)) = f(u(k)), k € [1,T],
u(0) = u(T + 1) = 0, where the nonlinear term f : [0,00) — R has an oscillatory behaviour
near the origin or at infinity. By a direct variational method we show that (P) has a sequence
of non-negative, distinct solutions which converges to 0 (resp. +00) in the sup-norm whenever
f oscillates at the origin (resp. at infinity).
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1. Introduction and main results

In many cases a problem in a continuous framework can be handled by using a
suitable method from discrete mathematics and conversely; a beautiful description
of such phenomena can be found in Lovész [12]. The modeling /simulation of certain
nonlinear problems from economics, biological neural networks, optimal control
and others enforced in a natural manner the rapid development of the theory of
difference equations. The reader may consult the comprehensive monographs of
Agarwal [1], Kelley-Peterson [10], Lakshmikantham-Trigiante [11].

Within the theory of difference equations, a large class of problems is the nonlin-
ear discrete boundary value problems. To be more precise, we consider the problem

{ —A(Au(k — 1)) = f(u(k), ke[1,T], (P)
u(0) =u(T'+1) =0,

where T' > 2 is an integer, [1,7] is the discrete interval {1,...,T}, Au(k) =
u(k + 1) — u(k) is the forward difference operator, and f is a continuous non-
linearity. In order to establish existence/multiplicity of solutions for (P) under
specific restrictions on f (sublinear or superlinear at infinity), the authors ex-
ploited various abstract methods as fixed point theorems, sub- and super-solution
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arguments, Brouwer degree and critical point theory. We refer the reader to the
recent papers of Agarwal-Perera-O’Regan [2, 3], Bereanu-Mawhin [4, 5], Bereanu-
Thompson [6], Bonanno-Candito [7], Cabada-Iannizzotto-Tersian [8], Cai-Yu [9],
Mihailescu-Radulescu-Tersian [13], Yu-Guo [15], Tang-Luo-Li-Ma [14], Zhang-Liu
[16], and references therein.

The main purpose of the present paper is to trait problem (P) when the nonlinear
term f : [0,00) — R has a suitable oscillatory behaviour. A direct variational
argument provides two results (see Theorems 1.1 and 1.2), guaranteeing sequences
of non-negative solutions with further asymptotic properties whenever f oscillates
near the origin or at infinity. Before to state our results, we mention that solutions
of (P) are going to be sought in the function space

X ={u:[0,T+1] - R; u(0) =u(T +1)=0}.
Clearly, X is a T-dimensional Hilbert space (see [2]) with the inner product

T+1
(u,v) = Z Au(k —1)Av(k—1), YuveX.
k=1

The associated norm is defined by

T+1 1/2
Jufl = (Z Aulh - 1)\2) |
k=1

The space X being finite-dimensional, the sup-norm || - || is equivalent to || - [|;
here, we denote [|ulloo = maxyep 7y u(k)], v € X.

In the sequel, we state our results. Let F(s) = [; f(t)dt, s € [0,00).

Our first result concerns the case when f has a certain type of oscillation near
the origin. To be more precise, we assume
F(s)
52
THEOREM 1.1. Let f € C°([0,00); R) werifying (HY). Then there exists a se-
quence {ud},, C X of non-negative, distinct solutions of (P) such that

(H%)  liminf,_ g+ @ < 0; limsup,_,g+ > %

lim Jup[loc = lim ||uy[| = 0. (1)
n— 00 n—oo

A perfect counterpart of Theorem 1.1 can be stated when the nonlinear term
oscillates at infinity. Instead of (H), we assume

(H*) liminf,_ @ < 0; limsup,_, Fs(f) > %

THEOREM 1.2. Let f € C°([0,00); R) werifying (H*®) and f(0) = 0. Then there
exists a sequence {uy’}, C X of non-negative, distinct solutions of (P) such that

Tim [l = lim [ui?] = oo. 2)

Example 1.3 (a) Let a, 8,7 € Rsuch that 0 < a« < 1 < a+ 3, and v € (0, 1).
Then, the function f : [0,00) — R defined by £(0) = 0 and f(s) = s*(y+sins?),
s > 0, verifies hypothesis (H?).

(b) Let a, 3,7 € R such that 1 < a, | — ] < 1, and v € (0,1). Then, the
function f : [0,00) — R defined by f(s) = s®(vy + sin s”) verifies (H>).
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The paper is divided as follows. In the next section we consider a related differ-
ence equation to (P); the existence of a non-negative solution is proved under some
generic assumptions. This result is used in Sections 3 and 4, where Theorems 1.1
and 1.2 are proved by a careful analysis of certain energy levels associated to (P).

2. A key result

For a fixed ¢ > 0, we consider the problem

{ —A(Au(k — 1)) + cu(k) = g(u(k)), kel[1,T], P)
u(0) =u(T +1) =0, ¢

where g : R — R is a continuous function. Moreover, let E. : X — R be the energy
functional associated to problem (P,) defined by

T

> (u(k)? = G(u), ueX,

k=1

Cc

1
Eulw) = S lull* + 3

where

T s
G(u) =Y G(u(k)), and G(s):/o g(t)dt, s€R.

k=1

It is immediate to show that E,. is well-defined, it belongs to C*(X;R) and

T
ElL(u)(v) = (u,v) + ¢ Y u(k)v(k) — Zg(u(k))v(k), Vu,v € X.

=
IIM’ﬂ
—

k=1
Since we have
T+1
() = = > A(Au(k - 1))v(k),
k=1

an element v € X is a solution for (P,) if E/(u)(v) = 0 for every v € X, i.e., uis a
critical point of F..
Let d < 0 < a < b some fixed numbers. We introduce the set

N ={ueX:d<u(k)<b forevery ke [l,T]}. (3)

We assume on g : R — R that

(Hg) g(s) =0 for s <0, and g(s) <0 for every s € [a,b].
The main result of this section is as follows.
PROPOSITION 2.1.  Assume that g : R — R wverifies (Hy). Then

(a) E,. is bounded from below on N® attaining its infimum at @ € N°;
(b) u(k) € [0,a] for every k € [1,T];
(¢) @ is a solution of (P,).
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Proof. (a) Since the norms || - ||oc and || - || are equivalent in the finite-dimensional
space X, the set N? is compact in X. Combining this fact with the continuity of
E,, we infer that E,|y» attains its infimum at @ € N°.

(b) Let K = {k € [1,T] : u(k) ¢ [0,a]} and suppose that K # (. Define the
truncation function 7 : R — R by 7(s) = min(s4, a), where s = max(s,0). Now,
set w = 7 o u. Since y(0) = 0 we have that w(0) = w(T'+ 1) =0, so w € X.
Moreover, w(k) € [0, a] for every k € [1,T]; thus w € N® C N°.

We introduce the sets

K_={keK: a(k)<0} and K,={keK: ak)>a).

Thus, K = K_ UK, and we have that w(k) = (k) for all k € [1,T]\ K, w(k) =0
for all k € K_, and w(k) = a for all k € K. Moreover, we have

T
Ee(w) — Ec(a) = é(HwH2 I1a]1%) + g > l(w(k))® = (@(k)*] - [G(w) - G(@)]
k=1
= §I1—|—§IQ—I3 (4)

Since 7 is a Lipschitz function with Lipschitz-constant 1, and w = ~ o @, we have

T+1
L= Jlw)? = [lal® = Y _[[Awlk = 1)) — |Ad(k - 1))
k=1
T+1

lw(k) = w(k = 1) = |a(k) — a(k - 1)]%]

|
(]

1

IA
=T

—~
ot

~—

Moreover, we have

T
L= [(w(k) — (a(k)’) = Y _[(w(k))* - (a(k))?]

k=1 kekK
=3 —(ak)?+ Y [a® — (a(k))?]
kek_ keKy
<0. (6)

Next, we estimate I3. First, let us point out that G(s) = 0 for s < 0; thus,
Y orer [G(w(k)) — G(a(k))] = 0. By the mean value theorem, for every k € K,
there exists ni € [a,u(k)] C [a,b] such that G(w(k)) — G(u(k)) = G(a) —
G(u(k)) = g(ng)(a — a(k)). Taking into account hypothesis (H,), we have that
G(w(k)) — G(a(k)) > 0 for every k € K. Consequently,
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Combining relations (5)-(7) with (4), we have that
E.(w)— E.(u) <0.

On the other hand, since w € N?, then E.(w) > E.(@) = inf yv E.. So, every term
in E.(w) — E.(@) should be zero. In particular, from I, we have

> (@k)? = [a® — (a(k)*] =0,

keK keK

which imply that a(k) = 0 for every k € K_ and u(k) = a for every k € K. By
definition of the sets K_ and K, we must have K_ = K, = (), which contradicts
K_ UK. =K#0.

(c) Let us fix v € X arbitrarily. Due to (b), it is clear that @ + ev € N for |¢]
small enough. Consequently, due to (a), the function j(¢) = E.(u + ev) has its
minimum at 0; being differentiable at 0, we have that j(0) = 0, i.e., E.L(4)(v) = 0,
which means that @ is a solution of (P.). This completes the proof. O

3. Proof of Theorem 1.1

We assume hypothesis (H?) holds. In particular, we have f(0) = 0. One may fix

co > 0 such that liminf, o+ @ < —cg < 0. Consequently, there is a sequence
{Sn}tn C (0,1) converging (decreasingly) to 0, such that

f(8n) < —coSp. (8)

Let us define the functions go, Gp : R — R by

go(s) = f(s4) +cosy+ and Go(s) = /OS go(t)dt, s€eR, (9)

where s = max(s,0). Due to (8), go(S,) < 0; so, there are two sequences {ay}n,
{bn}n C (0,1), both converging to 0, such that b,+1 < an, < 3, < b, for every
n € N and

go(s) <0 for all s € [ay,by).

In this way, hypothesis (H) is verified for go on every interval [ay,by,], n € N.
Applying Proposition 2.1 to every interval [a,, by],n € N, the problem

{—A(Au(k — 1)) + cou(k) = go(u(k)), ke[1,T], P )
uw(0) =u(T +1) =0, co
has a sequence of non-negative solutions {u?}, C X, where u0 is a relative mini-
mum of the functional E, associated to (P, ) on the set N bn n € N. Furthermore,
since go(s) = f(s) + cos on the interval (0, 1), the elements u0 are also solutions of
problem (P). Moreover, due to Proposition 2.1 (b), we also have

0 <ud(k) <a, forevery k€ [1,T], n € N. (10)
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In the sequel, carrying out an energy-level analysis, we prove that there are

infinitely many distinct elements in the sequence {ul}, C X. Due to (H°) and
(9), we have that limsup,_,q+ G;gs) > % + 9. In particular, there exists a sequence

{sp}tn with 0 < s, < ay, n € N, and

1 c
Go(sn) > (T + 2°> 2

Define the function w, € X by w,(k) = s, for every k € [1,T]. Then, we have

T+1 T T
1 c
Eey(wn) = 5 3 1w (b = D+ 23 (wa(8)? = 3 Go(wn (k)
k=1 k=1 k=1
T
=52 + COT.S% — TGo(sn)
C()T 1 Co
=0.
The above estimation and w,, € N°» C N show that
E.,(u?) = min Fe, < B, (wy) <0 for all n € N. (11)
Once we prove that
lim B, (u)) =0, (12)

n—oo

our claim holds. Indeed, (11) and (12) imply that there are infinitely many distinct
elements in the sequence {u}, C X. We clearly have

T+1 T T

By () = 5 SIS0k = DI + 23 () — 3 Go(wl ()
k=1 k=1 k=1
T T
> =Y Golup(k)) = =) up(k) e loo(s)
k=1 k=1 T

T
> — max |go(s)| > ub (k)
s€[0,a,] P

v

—a,T .
anT’ max l90(s)]

Since lim,,—.oc an = 0, the above estimate and (11) yield (12).

Relation (1) is an immediate consequence of (10), lim, . a, = 0, and to the
fact that the norms || - ||o and || - || are equivalent. The proof of Theorem 1.1 is
complete.
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4. Proof of Theorem 1.2

The proof is similar to that of Theorem 1.1. We assume hypothesis (H°°) holds.
We choose ¢y > 0 such that liminf,_ %‘Q’) < —Cxo < 0. Consequently, we may

fix a sequence {5, }, C (0,00) such that lim, S, = co and
f(8Bn) < —CooBn- (13)

We define the functions goo, G : R — R by

Joo(S) = f(54+) + coos+ and Goo(s) = /OS Joo(t)dt, s e€R. (14)

Due to the right hand side inequality of (H°°) and (14), we have that

limsup,_, o, G°S°2(S) > % + %=. In particular, for a small e, > 0, there exists a

sequence {sp}, tending to co such that

1 cxo 9
Goo(Sn) > (T + > + Eoo> Sp- (15)

Since lim,,_,+ S, = 00, one can fix a subsequence {s,,, }» of {S,}, such that s, <
Sm, for every n € N. On account of (13), goo(Sm,) < 0; thus, we may fix two
sequences {an }n, {bn}n C (0,00) such that a, < 5, < by < ap41 for every n € N,
lim, oo ap = limy,_ 50 b, = 00, and

Joo(8) <0 for all s € [ay, by].

Consequently, the function g fulfills (Hy) on every interval [an,b,], n € N. We
apply Proposition 2.1 to every interval [a,,b,],n € N, obtaining that the problem

{ —A(Au(k — 1)) + coou(k) = goo(u(k)), ke [1,T], P )
uw(0) =u(T+1)=0, Coo

has a sequence of non-negative solutions {uy°}, C X, where ul°® is a relative
minimum of the functional F. associated to (P, ) on the set N b2 n € N. Since
goo(8) = f(8) + coos on [0,00), the elements up® are solutions not only for (P, )
but also for (P).

Now, we are going to prove that there are infinitely many distinct elements in
the sequence {u$°}, C X. To do this, it is enough to show that

lim E._(u;’) = —o0. (16)

n—oo

Define the function w, € X by wy(k) = s, for every k € [1,T]. Then, by using
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(15), we have

| T+l T T
E._(w,) = Z\Awn (k—1)]*+ %OZ Q—ZGOO(QU”/{
k=1 k=1
T
=2+ CO; 2 TGoo(5n)
T 1
<33L+O;s721—T(T+C;°+€OO> 5721
= —T50032
By construction, we know that w, € N* C N thus
E. (u®)=minE._< E,_(w,) < —Texes> for all n € N. (17)

Nbn

Since lim,, .~ s, = 00, relation (17) implies (16).

It remains to prove (2). Since the norms || - || and || - || are equivalent, it is
enough to prove the former limit, i.e., lim, o ||uy°|loc = 00. By contradiction, we
assume that for a subsequence of {uf°},, still denoted by {u;°},, one can find a
constant C' > 0 such that ||u$°||s < C for every n € N. Therefore, we have

T
— ) Goou? (k) > =T max |Goo(s)| for every n € N,
1 s€[0,C]

This inequality contradicts relation (16) which completes the proof of Theorem 1.2.

Remark 1. When T = 2, the conclusions of Theorems 1.1 and 1.2 may be obtained
in a very simple way. In this case, it is enough to solve the system

2a —b= f(a)a
% —a = f(b), (P)
a,b> 0.

Indeed, a solution of (P) is any function « : [0, 3] — R defined by «(0) = u(3) =0,
u(1) = a, u(2) = b. As one can observe, if there is a sequence of distinct fixed points
for f, say {cy}n C (0,00), we have infinitely many solutions for problem (P’) of
the form (a,b) = (cp,cn). Let us assume the contrary, i.e., there is at most finite
number of distinct fixed points for f. Combining this assumption with the left hand
side of (HY), there exists a § > 0 such that f(s) < s for every s € (0,6). After an
integration we obtain that

F(s)
52

lim sup
s—0+

N =
N~

which contradicts the right hand side of (H). In a similar manner, when (H>)
holds, we can fix a compact set L C [0,00) such that f(s) < s for every s €
(0,00) \ L, which contradicts the right hand side of (H>).

The above arguments also suggest that the constant 7 in (H°) and (H™) is
optimal.
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