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We study an eigenvalue problem in the framework of difference equations. We show that
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problem. Some estimates for λ0 and λ1 are also given.
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1. Introduction and Main Results

Discrete boundary value problems have been intensively studied in the last decade.
The modeling of certain nonlinear problems from biological neural networks, eco-
nomics, optimal control and other areas of study have led to the rapid development
of the theory of difference equations (see the monographs of [1, 9] and the papers
of [2, 3, 6, 7, 12, 14, 15] and the reference therein).

††Corresponding author.
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In view of developing a viable theory of discrete boundary problems, special
attention has been given to the study of the spectrum of certain eigenvalue problems.
A classical result in the theory of eigenvalue problems involving difference equations
asserts that the spectrum of the problem{

−∆(∆u(k − 1)) = λu(k), k ∈ [1, T ],

u(0) = u(T + 1) = 0,
(1)

where T ≥ 2 is an integer, [1, T ] is the discrete interval {1, 2, . . . , T} and ∆u(k) =
u(k + 1) − u(k) is the forward difference operator, is finite and all the eigenvalues
are positive. Since u �→ ∆(∆u(·)) is a linear operator, the above statement is well
illustrated if one considers, instead of (1) the algebraic equation cs = λs, s ∈ R,
where c > 0 is a fixed number.

On the other hand, some recent advances obtained in [2, 6, 12] show that for
some eigenvalue problems involving difference operators the spectrum contains a
continuous family of eigenvalues.

The goal of this paper is to complete the studies begun in the above papers by
presenting a new phenomenon concerning the behavior of eigenvalues of a nonho-
mogeneous difference equation. Using the above notations, this paper is concerned
with the study of the eigenvalue problem{

−∆(∆u(k − 1)) + |u(k)|q−2u(k) = λg(k)|u(k)|r−2u(k), k ∈ [1, T ],

u(0) = u(T + 1) = 0,
(2)

where q and r are two real numbers satisfying 2 < r < q and g : [1, T ] → (0,∞) is
a given function.

Similar to the previous case, we formally consider instead of (2) the algebraic
equation

cs + |s|q−2s = λ|s|r−2s, s ∈ R. (2′)

Note that if we define f : (0,∞) → (0,∞) by f(t) = ct2−r + tq−r and the positive
number t0 = ( c(r−2)

q−r )
1

q−2 , Eq. (2′) has no nonzero solutions for 0 < λ < f(t0), while
for any λ ≥ f(t0), Eq. (2′) has nonzero solutions.

By finding solutions to problem (2), we expect to obtain a similar phenomenon
as the one we described for the algebraic equation (2′). Note, however, that the
presence of the function g as well as the nonhomogeneous nature of problem (2)
make this problem more difficult. We shall prove the existence of two positive num-
bers λ0 and λ1, with λ0 ≤ λ1 such that for λ ∈ (0, λ0) problem (2) has no nonzero
solutions while for any λ ∈ [λ1,∞) problem (2) has nonzero solutions in a specific
function space. Moreover, useful estimates will be also given for λ0 and λ1 with
respect to the initial data q, r, T and g.

In order to describe our result in its full generality we first define the function
space

H = {u : [0, T + 1] → R; u(0) = u(T + 1) = 0}.
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Clearly, H is a T -dimensional Hilbert space (see [2]) with the inner product

(u, v) =
T+1∑
k=1

∆u(k − 1)∆v(k − 1), ∀u, v ∈ H.

The associated norm is defined by

‖u‖ =

(
T+1∑
k=1

|∆u(k − 1)|2
)1/2

.

We say that λ ∈ R is an eigenvalue of problem (2) if there exists u ∈ H\{0} such
that

T+1∑
k=1

∆u(k − 1)∆v(k − 1) +
T∑

k=1

|u(k)|q−2u(k)v(k)

−λ

T∑
k=1

g(k)|u(k)|r−2u(k)v(k) = 0, ∀v ∈ H.

The function u in the above definition will be called an eigenvector of problem (2).
The set of all eigenvalues of problem (2) will be called the spectrum of problem (2).

The following theorem represents the main result of our paper.

Theorem 1. Let 2 < r < q, T ≥ 2 and g : [1, T ] → (0,∞) be a given function. Then
there exist two positive constants λ0 and λ1 with λ0 ≤ λ1 such that no λ ∈ (0, λ0) is
an eigenvalue of problem (2) while any λ ∈ [λ1,∞) is an eigenvalue of problem (2).
Moreover, we have

λ1 ≤ r

2
λ0 and

4
(T + 1)2|g|∞ ≤ λ0 ≤ λ1 ≤ r(q − 2)

(q − r)
T∑

k=1

g(k)

(
T (q − r)
q(r − 2)

) r−2
q−2

,

(3)

where |g|∞ = maxk∈[1,T ] g(k).

Notation. For any a and b integers satisfying a < b we denote by [a, b] the discrete
interval {a, a + 1, . . . , b}.

2. Some Estimates of Eigenvalues

In this section, we will point out certain remarks on how we can estimate the
positive eigenvalues corresponding to positive eigenvectors for the problem{

−∆(∆u(k − 1)) = λu(k), k ∈ [1, T ],

u(0) = u(T + 1) = 0.
(4)
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In this section, the main result is given by Theorem 2 which is of interest in its own
right as well:

Theorem 2. Let λ > 0 be an eigenvalue of problem (4) with the property that the
corresponding eigenvector u = {u(k) : k ∈ [0, T + 1]} is positive, i.e. u(k) > 0 for
any k ∈ [1, T ]. Then we have the estimates

4
(T + 1)2

< λ ≤ min
{

1,
1
T

·
(

1 +
max{u(1), u(T )}
min{u(1), u(T )}

)}
. (5)

Proof. First, we point out certain general remarks on the behavior of ∆u(k) for
k ∈ [0, T ]. Since u(k) > 0 for k ∈ [1, T ] satisfies Eq. (2) and λ > 0 we have

∆(∆u(k − 1)) = −λu(k) < 0, ∀k ∈ [1, T ].

Thus, we deduce that the sequence (∆u(k)) is decreasing for k ∈ [0, T ].
Second, we show that the left inequality holds true. In order to do that, we start

by defining

m = max{s ∈ [1, T ]; ∆u(s − 1) ≥ 0, ∆u(s) < 0}.
Undoubtedly, m can be defined as the above since we have u(T + 1) = 0 and
∆u(T ) = u(T +1)−u(T ) = −u(T ) < 0. (Actually, m is the largest local maximum
point of u in [1, T ].)

On the other hand, since ∆u(m) < 0 and (∆u(k)) is a decreasing sequence for
k ∈ [0, T ] we notice that

∆u(k) < 0, ∀k ∈ [m, T ],

and thus,

u(k + 1) < u(k), ∀k ∈ [m, T ],

i.e. the sequence (u(k)) is strictly decreasing for k ∈ [m, T ]. A similar argument,
based on the fact that ∆u(m−1) ≥ 0 implies that ∆u(k) ≥ 0 for any k ∈ [0, m−1],
i.e. the sequence (u(k)) is nondecreasing for k ∈ [0, m].

Adding the identities u(k) − u(k − 1) = ∆u(k − 1) for k ∈ [m + 1, T + 1] we
obtain u(T + 1) − u(m) =

∑T+1
k=m+1 ∆u(k − 1) ≥ (T + 1 − m)∆u(T ), i.e.

−u(m)
T + 1 − m

≥ ∆u(T ). (6)

Since by Eq. (4) we have that

∆(∆u(k − 1)) = −λu(k), ∀k ∈ [m, T ],

summing the above relations with respect to k ∈ [m, T ] we obtain

∆u(T ) − ∆u(m − 1) = −λ

T∑
i=m

u(i).
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Taking into account that ∆u(m − 1) ≥ 0 the above equality implies

∆u(T ) ≥ −λ

T∑
i=m

u(i).

The above inequality, relation (6) and the fact that the sequence (u(k)) is decreasing
for k ∈ [m, T ] yield

−u(m)
T + 1 − m

≥ −λ

T∑
i=m

u(i) ≥ −λu(m)
T∑

i=m

1

or

λ

T∑
i=m

1 ≥ 1
T + 1 − m

. (7)

In order to go further, we add the identities u(k) − u(k − 1) = ∆u(k − 1) for
k ∈ [1, m], obtaining that u(m) − u(0) =

∑m
k=1 ∆u(k − 1). This inequality and the

fact that the sequence (∆u(k)) is decreasing for k ∈ [0, T ] imply

∆u(0) ≥ u(m)
m

. (8)

Since by Eq. (4) we have that

∆(∆u(k − 1)) = −λu(k), ∀k ∈ [1, m],

summing the above relations with respect to k ∈ [1, m] we obtain

∆u(m) − ∆u(0) = −λ

m∑
i=1

u(i).

But ∆u(m) < 0 and taking into account that relation (8) holds true, we infer by
the above equality

u(m)
m

< λ
m∑

i=1

u(i).

Using the fact that (u(k)) is nondecreasing for k ∈ [0, m] we find

1
m

< λ
m∑

i=1

1. (9)

Now, by (7) and (9), we get

λ

T∑
i=m

1 + λ

m∑
i=1

1 >
1

T + 1 − m
+

1
m

.

Thus, we conclude that

λ(T + 1) >
4

T + 1
,

or

λ >
4

(T + 1)2
.
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Finally, we prove the second inequality. By Eq. (4) we have

∆u(k) − ∆u(k − 1) = −λu(k), ∀k ∈ [1, T ].

Summing the above relations, we find

u(T ) + u(1) = λ

T∑
i=1

u(i).

Since u(k) > 0 by using the above relation, we find, on the one hand, that

u(T ) + u(1) ≥ λT min
k∈[1,T ]

u(k),

or
u(T ) + u(1)

T mink∈[1,T ] u(k)
≥ λ, (10)

and on the other hand,

u(T ) + u(1) ≥ λ(u(1) + u(T )),

or

1 ≥ λ.

Furthermore, we notice that if u(k0) = mink∈[1,T ] u(k) then k0 ∈ {1, T }. Indeed, let
us assume by contradiction that k0 ∈ [1, T ]\{1, T }. Then, since

∆u(k0) − ∆u(k0 − 1) = −λu(k0),

or

0 ≤ u(k0 + 1) − 2u(k0) + u(k0 − 1) = −λu(k0) < 0,

we obtain a contradiction. Consequently, k0 ∈ {1, T }. That fact and relation (10)
yield

1
T

·
(

1 +
max{u(1), u(T )}
min{u(1), u(T )}

)
≥ λ.

Theorem 2 is completely proved.

Remark 1. We emphasize that for the estimate in the left-hand side of (5) we can
give an alternative proof. This idea is described in what follows. The eigenvalues
of problem (4) can be calculated directly, solving the linear second-order difference
equation

∆(∆u(k − 1)) + λu(k) = 0,

(see, e.g. [9, Chap. 3], [4, p. 38]). The eigenvalues of (4) are

λk = 2
(

1 − cos
(

kπ

T + 1

))
= 4 sin2

(
kπ

2(T + 1)

)
, k ∈ [1, T ],

and the corresponding eigenvectors are

ϕk =
{

0, sin
(

kπ

T + 1

)
, sin

(
2kπ

T + 1
,

)
, . . . , sin

(
Tkπ

T + 1
,

)
, 0
}

.
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Note that 0 < λk < 4 and the estimate from the left-hand side in (5) implies

m(T ) :=
4

(T + 1)2
< λ1 = 4 sin2

(
π

2(T + 1)

)
,

or, equivalently

1
(T + 1)

< sin
(

π

2(T + 1)

)
.

That fact follows also from the elementary inequality

x < sin
(πx

2

)
, ∀x ∈ (0, 1).

The last inequality is equivalent with the following fact

2
π

x < sin(x), ∀x ∈
(
0,

π

2

)
,

which geometrically means that the graph of sin(x) is above the chord which joints
the points (0, 0) and (π/2, 1).

Since problem (4) is homogeneous, we can assume that u(1) = 1. Then the
right-hand side estimate of (5) can be replaced by

M(u, T ) := min
{

1,
1 + u(T )
Tu(T )

,
1 + u(T )

T

}
,

and the corresponding eigenvector of λk can be chosen as

uk =
{

0, 1,
sin(2kπ/(T + 1))
sin(kπ/(T + 1))

, . . . ,
sin(Tkπ/(T + 1))
sin(kπ/(T + 1))

, 0
}

.

Note that sin(Tπ/(T + 1)) = sin(π/(T + 1)) which implies that M(u1, T ) = 2/T

and
4

(T + 1)2
< λ1 <

2
T

.

We also have sin(2Tπ/(T +1)) = − sin(2π/(T +1)), which implies that u2(T ) = −1
and M(u2, T ) = 0. In this case we obtain

λ2 = 4 sin 2
(

π

T + 1

)
> 0 = M(u2, T ),

and u2 is an oscillating eigenvector as well as u3, . . . , uT .

Remark 2. We point out that for a problem of type (4) there always exists at least
a positive eigenvalue with a positive corresponding eigenfunction, namely, the first
eigenvalue (see, e.g. [3] or [1]). Thus, denoting by λ1([0, T + 1]) the first eigenvalue
of Eq. (4), by using Theorem 2, we deduce that

4
(T + 1)2

< λ1([0, T + 1]) ≤ 1. (11)
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Moreover, we point out that the left-hand side inequality in (11) is a discrete variant
of the celebrated Faber–Krahn inequality which is valid in the continuous case (see,
e.g. [8, 10, 11]), since in the particular case when T = 2 a simple computation shows
that λ1([0, 3]) = 1 (actually, in this case 1 is the only eigenvalue of the problem),
and thus, the left-hand side of inequality (11) can be rewritten in the following way

4
(T + 1)2

λ1([0, 3]) < λ1([0, T + 1]), ∀T ≥ 2.

Remark 3. We notice that by a simple computation it can be proved that in the
degenerate case T = 1 the only eigenvalue of problem (4) is λ1([0, 2]) = 2 while
in the case T = 2 the two eigenvalues of problem (4) are equal to 1. Thus, under
these conditions, we have the equality case in the right-hand side of inequality (5).
In other words, the case when there is equality can occur.

We point out that with a similar proof the result of Theorem 2 can be extended
to the following:

Theorem 3. Let p > 1 be a fixed real number and let a ≥ 1 and b ≥ a + 2 be two
integers. Consider the problem{

−∆(|∆u(k − 1)|p−2∆u(k − 1)) = λ|u(k)|p−2u(k), k ∈ [a, b − 1],

u(a − 1) = u(b) = 0.
(12)

Let λ > 0 be an eigenvalue of problem (12) with the property that the corresponding
eigenvector u, u(k) > 0 for any k ∈ [a, b − 1]. Then we have the estimates

2p

(b − a + 1)p
< λ ≤ min

{
1,

1
b − a

·
(

1 +
max{u(1)p−1, u(T )p−1

min{u(1)p−1, u(T )p−1

)}
. (13)

In the case when p = 2, a = 1 and b = T +1 in Theorem 3, we obtain Theorem 2.
Finally, we recall that in the hypotheses of Theorem 3 the first eigenvalue,

λ1,p([a− 1, b]), is defined from a variational point of view by the so-called Rayleigh
quotient, that is

λ1,p([a − 1, b]) = inf
u�≡0

b∑
k=a

|∆u(k − 1)|p

b−1∑
k=a

|u(k)|p
. (14)

We note that in the case p = 2 we will use the notation λ1([a − 1, b]) instead of
λ1,2([a − 1, b]). Theorem 3 shows that relation (11) can be extended thanks to the
following relation

4
(b − a + 1)2

< λ1([a − 1, b]) ≤ 1. (15)
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3. Proof of Theorem 1

• First, we show the existence of λ0 > 0 such that any λ ∈ (0, λ0) is not an
eigenvalue of problem (2).

Define the Rayleigh type quotient

λ0 = inf
u∈H\{0}

T+1∑
k=1

|∆u(k − 1)|2 +
T∑

k=1

|u(k)|q

T∑
k=1

g(k)|u(k)|r
. (16)

In the first instance, we prove that λ0 > 0. In order to show that we start by
pointing out that relations (14) and (11) imply

T+1∑
k=1

|∆u(k − 1)|2 ≥ λ1([0, T + 1])
T∑

k=1

|u(k)|2 ≥ 4
(T + 1)2

T∑
k=1

|u(k)|2, ∀u ∈ H.

(17)

Since, we have 2 < r < q we deduce

|u(k)|2 + |u(k)|q ≥ |u(k)|r, ∀u ∈ H, ∀k ∈ [1, T ].

Summing the above inequalities we obtain
T∑

k=1

|u(k)|2 +
T∑

k=1

|u(k)|q ≥
T∑

k=1

|u(k)|r ≥ 1
|g|∞

T∑
k=1

g(k)|u(k)|r, ∀u ∈ H. (18)

Combining relations (17) and (18), we infer

T+1∑
k=1

|∆u(k − 1)|2 +
T∑

k=1

|u(k)|q ≥ min
{

4
(T + 1)2

, 1
}

1
|g|∞

T∑
k=1

g(k)|u(k)|r

=
4

(T + 1)2|g|∞
T∑

k=1

g(k)|u(k)|r, ∀u ∈ H. (19)

The last inequality shows that

λ0 ≥ 4
(T + 1)2|g|∞ > 0 . (20)

Let us now define, J1, I1, J0, I0 : H → R by

J1(u) =
1
2

T+1∑
k=1

|∆u(k − 1)|2 +
1
q

T∑
k=1

|u(k)|q, I1(u) =
1
r

T∑
k=1

g(k)|u(k)|r,

and

J0(u) =
T+1∑
k=1

|∆u(k − 1)|2 +
T∑

k=1

|u(k)|q, I0(u) =
T∑

k=1

g(k)|u(k)|r.
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Standard arguments imply that J1, I1 ∈ C1(H, R) with

〈J ′
1(u), v〉 =

T+1∑
k=1

∆u(k − 1)∆v(k − 1) +
T∑

k=1

|u(k)|q−2u(k)v(k),

and

〈I ′1(u), v〉 =
T∑

k=1

g(k)|u(k)|r−2u(k)v(k),

for any u, v ∈ H .

Lemma 1. Let λ0 be defined by relation (16). Then no λ ∈ (0, λ0) is an eigenvalue
of problem (2).

Proof. Indeed, assuming by contradiction that there exists λ ∈ (0, λ0) an eigen-
value of problem (2), it follows that we can find wλ ∈ H\{0} such that

〈J ′
1(wλ), v〉 = λ〈I ′1(wλ), v〉, ∀v ∈ H.

Letting v = wλ we deduce 〈J ′
1(wλ), wλ〉 = λ〈I ′1(wλ), wλ〉, or

J0(wλ) = λI0(wλ).

Since wλ �= 0 we have that J0(wλ) > 0 and thus, I0(wλ) > 0. Combining that fact
with the ideas that λ ∈ (0, λ0) and λ0 = infu∈H\{0}

J0(u)
I0(u) we infer

J0(wλ) ≥ λ0I0(wλ) > λI0(wλ) = J0(wλ),

which is a contradiction. The proof of Lemma 1 is complete.

• Secondly, we show that there exists λ1 such that any λ ∈ (λ1,∞) is an eigenvalue
of problem (2).

For any λ > 0 we define the functional Sλ : H → R by

Sλ(u) = J1(u) − λI1(u), ∀u ∈ H.

We notice that Sλ ∈ C1(H, R) with the derivative given by

〈S′
λ(u), v〉 = 〈J ′

1(u), v〉 − λ〈I ′1(u), v〉, ∀u, v ∈ H.

Thus, λ is an eigenvalue of problem (2) if and only if there exists uλ ∈ H\{0} a
critical point of Sλ.

Lemma 2. For any λ ∈ (0,∞) the functional Sλ is coercive, i.e. lim‖u‖→∞
Sλ(u) = ∞.
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Proof. It is obvious that

Sλ(u) ≥ 1
2
‖u‖2 +

1
q

T∑
k=1

|u(k)|q − |g|∞
r

T∑
k=1

|u(k)|r,

for any u ∈ H . For any m ≥ 2 let us denote

|u|m =

(
T∑

k=1

|u(k)|m
)1/m

.

It is not difficult to notice that each | · |m, m ≥ 2, is a norm on H . Since H is
a finite dimensional Hilbert space we deduce that for any m1, m2 ≥ 2 the norms
| · |m1 , | · |m2 and ‖ · ‖ are equivalent.

The above pieces of information imply that there exist two positive constants
C1 and C2 such that

Sλ(u) ≥ 1
2
‖u‖2 + C1‖u‖q − C2‖u‖r,

for any u ∈ H . Since 2 < r < q, the proof of Lemma 2 is complete.

Define

λ1 = inf
u∈H\{0}

1
2

T+1∑
k=1

|∆u(k − 1)|2 +
1
q

T∑
k=1

|u(k)|q

1
r

T∑
k=1

g(k)|u(k)|r
. (21)

Due to (16), a simple estimate shows that

r min
{

1
2
,
1
q

}
λ0 ≤ λ1 ≤ r max

{
1
2
,
1
q

}
λ0.

Since 2 < r < q, we clearly have

r

q
λ0 ≤ λ1 ≤ r

2
λ0. (22)

In particular, (20) and the left-hand size of (22) imply λ1 > 0.

Lemma 3. Any λ ∈ (λ1,∞) is an eigenvalue of problem (2).

Proof. We fix λ ∈ (λ1,∞). By Lemma 2, we deduce that Sλ is coercive. On the
other hand, it is clear that the functional Sλ is weakly lower semi-continuous. These
two facts enable us to apply [13, Theorem 1.2] in order to prove that there exists
uλ ∈ H a global minimum point of Sλ.
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Next, we show that uλ is not trivial. Indeed, since λ1 = infu∈H, u�=0
J1(u)
I1(u) and

λ > λ1 it follows that there exists vλ ∈ H such that

J1(vλ) < λI1(vλ),

or

Sλ(vλ) < 0.

In particular, infH Sλ < 0, and we conclude that uλ �= 0.
Next, we show that λ is an eigenvalue of problem (2). Let v ∈ H fixed. The

above property of uλ gives that

d

dε
Sλ(uλ + εv)|ε=0 = 0,

or

〈J ′
1(uλ), v〉 − λ〈I ′1(uλ), v〉 = 0, ∀v ∈ H,

that means λ is an eigenvalue of problem (2). The proof of Lemma 3 is
complete.

• Next, we show that λ1 is also an eigenvalue of problem (2). In order to do that
we first prove the following result.

Lemma 4. lim‖u‖→0
J0(u)
I0(u) = lim‖u‖→∞

J0(u)
I0(u) = ∞.

Proof. Considering again the norms, |·|m, m ≥ 2, defined in Lemma 2 and recalling
that they are equivalent with the norm ‖ · ‖ we find that there exist two positive
constants D1 and D2 such that

J0(u)
I0(u)

≥ ‖u‖2 + D1‖u‖q

D2‖u‖r
, ∀u ∈ H\{0}.

Now taking into account that 2 < r < q, the conclusion of Lemma 4 immediately
holds.

Lemma 5. The real number λ1, given by relation (21), is an eigenvalue of
problem (2).

Proof. Let (λn) be a sequence in R such that λn ↘ λ1 as n → ∞. By Lemma 3,
we deduce that for each n there exists un ∈ H\{0} such that

〈J ′
1(un), v〉 − λn〈I ′1(un), v〉 = 0, ∀v ∈ H. (23)

Taking v = un in the above equality we find

J0(un) = λnI0(un), ∀n. (24)

The above equality and Lemma 4 imply that (un) is a bounded sequence in H .
Indeed, assuming by contradiction that (un) is not bounded in H it follows that
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passing eventually to a subsequence, still denoted by (un) we have ‖un‖ → ∞. On
the other hand, the fact that λn ↘ λ1 and relation (24) imply that for each n large
enough it holds true

J0(un)
I0(un)

= λn ≤ λ1 + 1.

Lemma 4 shows that the above inequality and the fact that ‖un‖ → ∞ lead to
a contradiction. Consequently, (un) is bounded in H . We deduce the existence of
u ∈ H such that, passing eventually to a subsequence, un converges to u in H .
Passing to the limit as n → ∞ in (23) we get

〈J ′
1(u), v〉 − λ1〈I ′1(u), v〉 = 0, ∀v ∈ H,

i.e. λ1 is an eigenvalue of problem (2) provided that u �= 0.
Finally, we explain why u �= 0. Assuming by contradiction that u = 0 we deduce

that un converges to 0 in H . By relation (24) we deduce that for any n the following
equality holds

J0(un)
I0(un)

= λn.

Passing to the limit as n → ∞ and taking into account the result of Lemma 4
and the fact that λn ↘ λ1 we obtain a contradiction. The proof of Lemma 5 is
complete.

• Finally, we point out that the conclusion of Theorem 1 holds true.

Proof of Theorem 1. In order to obtain the first part, it is enough to combine
Lemmas 1, 3 and 5; in particular, we clearly have λ0 ≤ λ1. The first two inequalities
of (3) come from (22) and (20), respectively.

It remains to prove the right-hand side inequality of (3), i.e. λ1 ≤ A, where we
use the notation A = r(q−2)

(q−r)
PT

k=1 g(k)
(T (q−r)

q(r−2) )
r−2
q−2 . Fix ũ ∈ H\{0} by ũ(k) = s >

0, k ∈ [1, T ]. Due to (21), we have

λ1 ≤

1
2

T+1∑
k=1

|∆ũ(k − 1)|2 +
1
q

T∑
k=1

|ũ(k)|q

1
r

T∑
k=1

g(k)|ũ(k)|r
=

r

(
s2 +

T

q
sq

)

sr

T∑
k=1

g(k)

.

Taking the function h : (0,∞) → (0,∞) defined by

h(s) =
r

(
s2 +

T

q
sq

)

sr

T∑
k=1

g(k)

,

one can easily show that its minimum is attained at the point s0 = ( q(r−2)
T (q−r) )

1
q−2 ,

the minimum value being h(s0) = A. This concludes the proof.
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Remark 4. We notice that the spectrum of problem (2) is not completely described
by our paper. Although we have estimates for λ0 and λ1, at this stage we are not
able to say if λ0 = λ1 or λ0 < λ1. Note that λ0 and λ1 are very close to each
other whenever r is close to 2; in that sense, see the first inequality in (3). Due to
the nonhomogeneous nature of the problem (2), we are strongly convinced that we
usually have λ0 < λ1, i.e. there is a gap between λ0 and λ1. If so, the problem of the
existence/nonexistence of eigenvalues in the interval [λ0, λ1) should be elucidated.
This problem will hopefully be considered in a forthcoming paper.
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[10] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math.
Ann. 94 (1925) 97–100.

[11] E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two
domains, Invent. Math. 74 (1983) 441–448.



December 20, 2010 15:24 WSPC/S0219-1997 152-CCM
S0219199710004093

Spectral Estimates for a Nonhomogeneous Difference Problem 1029
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