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Abstract Weconsider a semilinearDirichlet problemdriven by the Laplacian andwith

an indefinite (that is, sign-changing) weight and a nonlinearity which is asymptotically

linear near ±∞. Using variational methods together with truncation techniques and

Morse theory, we show that the problem has at least three nontrivial solutions, two of

which have constant sign (one positive and the other negative).

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the existence of multiple nontrivial solutions for the following semilinear

Dirichlet problem:

−Δu(z) = β(z)f
(
u(z)

)
in Ω, u|∂Ω = 0.(1)

In this problem the weight function β ∈ L∞(Ω) is nodal (that is, sign chang-

ing) and f is a C1-nonlinearity which exhibits linear growth near ±∞ and is

superlinear near 0. Using variational methods coupled with suitable truncation

and comparison techniques and Morse theory (critical groups), we show that

(1) has at least three nontrivial solutions, two of which have constant sign (one

positive and the other negative).

Problems with an indefinite nonlinearity were first investigated by Ouyang

[11] on a compact Riemannian manifold using bifurcation theory. Subsequently,

Alama and Tarantello [1], [2] using variational methods extended the results of

Ouyang [11] by considering more general nonlinearities and assuming a thickness

condition of the form Ω+∩Ω− = ∅, where Ω+ = {z ∈Ω : β(z)> 0} and Ω− = {z ∈
Ω : β(z)< 0}. This condition was removed by Berestycki, Capuzzo-Dolcetta, and

Nirenberg [7], who proved the existence of solutions by deriving a priori bounds

and using topological methods. However, their condition on the weight β(·) is

stronger since β ∈C1(Ω), and they assume a nondegeneracy condition of the form

∇β(z) �= 0 when β(z) = 0. (That is, the level set [β = 0] is a C1-submanifold; so,

in this case the zero set is thin.) Three-solutions theorems for problems with
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a superlinear f(·) satisfying the Ambrosetti–Rabinowitz condition, without any

thickness or thinness condition, were proved for parametric problems and for

certain values of the parameter, by Chang and Jiang [8].

To the best of our knowledge, the first paper involving nonlinear elliptic

equations with asymptotically linear terms f(z,u) is due to Amann and Zehnder

[3], in the context of semilinear equations (i.e., if p = 2). They proved an exis-

tence theorem assuming that the limit limu→±∞ f(z,u)/u= λ ∈R exists, that it

does not belong to the spectrum of the Laplace operator in H1
0 (Ω) (nonresonance

at infinity), and that there is at least one eigenvalue between λ and λ+ f ′(0).

Related multiplicity results for Dirichlet elliptic problems involving asymptoti-

cally linear terms near ±∞ have been studied in some recent papers (see Hu

and Papageorgiou [10] and Papageorgiou and Smyrlis [14]). The hypotheses in

the present paper are more general than those imposed in [10] and [14]. For

instance, Hu and Papageorgiou [10] establish a three-nontrivial-solutions theo-

rem provided that f satisfies a local boundedness assumption and fu(z,u) has

q-polynomial growth for some 0< q < 4/(N − 2). Papageorgiou and Smyrlis [14]

produce five nontrivial smooth solutions, two positive, two negative, and one

nodal. This is done under several hypotheses, including the behavior of the quo-

tient f(z,u)/(|u|p−2u) with respect to the first two eigenvalues of the p-Laplace

operator, the existence of two zeros of the nonlinear term, and a certain mono-

tonicity assumption with respect to the mapping u 	→ f(z,u) + |u|p−2u (see [14,

pp. 3138, 3142]). With respect to these works, the main features of the present

paper are the following: (1) the presence of a sign-changing weight; and (2) the

study is performed for nonlinearities that fulfill general assumptions and whose

behavior is described with respect to certain eigenvalues of a weighted eigenvalue

problem that involves the indefinite potential.

Throughout this paper, for all x ∈R, we denote x± =max{±x,0}.

2. Mathematical background

In the analysis of problem (1), we will use the Sobolev space H1
0 (Ω) and the

Banach space C1
0 (Ω) = {u ∈C1(Ω) : u|∂Ω=0}. We know that C1

0 (Ω) is an ordered

Banach space with positive cone

C+(Ω) =
{
u ∈C1

0 (Ω) : u(z)≥ 0 for all z ∈Ω
}
.

This cone has a nonempty interior given by

intC+(Ω) =
{
u ∈C+(Ω) : u(z)> 0 for all z ∈Ω,

∂u

∂n

∣∣∣
∂Ω

< 0
}

with n(·) being the outward unit normal on ∂Ω. Also, prominent in our arguments

will be the spectrum of the following weighted linear eigenvalue problem:

−Δu(z) = λβ(z)u(z) in Ω, u|∂Ω = 0.(2)

When the weight β ∈ L∞(Ω) is nodal, it is well known (see, e.g., Gasinski

and Papageorgiou [9, p. 714]) that problem (2) has a double sequence of distinct
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eigenvalues

· · ·< λ̂−
k (β)< · · ·< λ̂−

2 (β)< λ̂−
1 (β)< 0< λ̂+

1 (β)< λ̂+
2 (β)< · · ·< λ̂+

k (β)< · · · .

Let | · |N denote the Lebesgue measure on R
N . If Ω+ = {z ∈ Ω : β(z) > 0}

and |Ω+|N > 0, then λ̂+
n (β)→+∞ as n→∞. Similarly, if Ω− = {z ∈ Ω : β(z)<

0} and |Ω−|N > 0, then λ̂−
n (β) → −∞. On the other hand, if |Ω+|N = 0, then

λ̂+
n (β) = 0 for all n≥ 1, while if |Ω−|N = 0, then λ̂−

n (β) = 0 for all n≥ 1.

Suppose that Ω+ is an open connected set with a C2-boundary ∂Ω+, and

consider the following weighted linear eigenvalue problem:

−Δu(z) = λβ+(z)u(z) in Ω+, u|∂Ω+ = 0.(3)

According to our previous discussion, problem (3) has only positive eigenval-

ues, namely, {λ̂Ω+

k (β+)}k≥1, λ̂
Ω+

k (β+)→+∞ as k →∞, and λ̂
Ω+

1 (β+)> 0, and

it is simple. We have the following variational characterization of λ̂
Ω+

1 (β+):

(4) λ̂
Ω+

1 (β+) = inf
[‖Du‖2L2(Ω+,RN )∫

Ω+
β+(z)u2 dz

: u ∈H1
0 (Ω+), u �= 0

]
.

The infimum in relation (4) is realized on the one-dimensional eigenspace

corresponding to λ̂
Ω+

1 (β+)> 0. Standard regularity theory implies that the ele-

ments of this eigenspace belong in C1
0 (Ω+). In fact from (4) we can see that they

do not change sign. In what follows by ũ1(Ω+) we denote the L
2-normalized (i.e.,

‖ũ1(Ω+)‖L2(Ω+) = 1) positive eigenfunction. Using the maximum principle (see,

e.g., Gasinski and Papageorgiou [9, p. 738]) we have ũ1(Ω+) ∈ intC+(Ω+).

Our variational approach will be based on the well-known mountain pass

theorem of Ambrosetti and Rabinowitz [5], formulated here in a slightly more

general form using the C-compactness condition on the functional instead of the

more common PS-condition (Palais–Smale condition; see [9, Theorem 5.2.5]).

So, letX be Banach, and letX∗ be its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗,X). Given ϕ ∈ C1(X), we say that ϕ satisfies

the C-condition, if the following is true:

Every sequence {un}n≥1 ⊆X such that {ϕ(un)}n≥1 ⊆R is bounded and(
1 + ‖un‖

)
ϕ′(un)→ 0 in X∗ as n→∞

admits a strongly convergent subsequence.

This compactness-type condition on ϕ leads to a deformation theorem, which

in turn produces a minimax theory for the critical values of ϕ. A major result in

that theory is the mountain pass theorem.

THEOREM 1

Assume that ϕ ∈ C1(X) satisfies the C-condition, and assume that u0, u1 ∈X,

ρ > 0, ‖u1 − u0‖> ρ,

max
{
ϕ(u0), ϕ(u1)

}
< inf

[
ϕ(u) : ‖u− u0‖= ρ

]
=mρ,
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and c = infγ∈Γmax0≤t≤1ϕ(γ(t)), where Γ = {γ ∈ C([0,1],X) : γ(0) = u0, γ(1) =

u1}. Then c≥mρ and c is a critical value of ϕ.

Also, we will use some tools from Morse theory (critical groups), which for the

benefit of the reader we briefly review below. So, for ϕ ∈ C1(X) and c ∈ R, we

introduce the following sets:

ϕc =
{
u ∈X : ϕ(u)≤ c

}
, Kϕ =

{
u ∈X : ϕ′(u) = 0

}
, and

Kc
ϕ =

{
u ∈Kϕ : ϕ(u) = c

}
.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆X . For every integer

k ≥ 0 by Hk(Y1, Y2) we denote the kth relative singular homology group with

integer coefficients for the pair (Y1, Y2). The critical groups of ϕ at an isolated

u ∈Kc
ϕ are defined by

Ck(ϕ,u) =Hk

(
ϕc ∩U,ϕc ∩U \ {u}

)
for all k ≥ 0,

where U is a neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u}. The excision

property of singular homology theory implies that this definition is independent

of the particular choice of the neighborhood U .

Suppose that ϕ ∈C1(X) satisfies the C-condition and inf ϕ(Kϕ)>−∞. Let

c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) =Hk(X,ϕc) for all k ≥ 0.

Using the second deformation theorem (see, e.g., Gasinski and Papageorgiou [9,

p. 628]), we see that this definition is independent of the particular choice of

the level c < inf ϕ(Kϕ). We know that if Ck(ϕ,∞) �= 0, then there exists u ∈Kϕ

such that Ck(ϕ,u) �= 0 (a consequence of the so-called Morse relation; see, e.g.,

Ambrosetti and Malchiodi [4, p. 222]).

Recently the authors proved the following result, which is useful in the com-

putation of critical groups at infinity (see Papageorgiou and Rădulescu [13]).

PROPOSITION 2

Assume that (t, u) 	→ ht(u) belongs to C1([0,1]×X) and maps bounded sets to

bounded sets, that the maps u→ (ht)
′(u) and t 	→ ∂tht(u) are both locally Lips-

chitz, that h0 and h1 satisfy the C-condition,∣∣∂tht(u)
∣∣≤ c1‖u‖p for all u ∈X,

with c1 > 0, 1< p<∞, and that there exist ξ0 ∈R and δ0 > 0 such that

ht(u)≤ ξ0 ⇒
(
1 + ‖u‖

)∥∥(ht)
′(u)

∥∥
∗ ≥ δ0‖u‖p for all t ∈ [0,1].

Then Ck(h0,∞) =Ck(h1,∞) for all k ≥ 0.

We conclude this section by fixing our notation. In what follows by ‖ ·‖ we denote

the norm of the Sobolev space H1
0 (Ω). By virtue of the Poincaré inequality, we
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have that

‖u‖= ‖Du‖L2(Ω,RN ) for all u ∈H1
0 (Ω).

For all u ∈H1
0 (Ω), we define u±(·) = u(·)±. We know that

u± ∈H1
0 (Ω), u= u+ − u−, |u|= u+ + u−.

Also, by Nf we denote the Nemitsky (superposition) operator corresponding to

f , that is,

Nf (u)(·) = f
(
u(·)

)
for all u ∈H1

0 (Ω).

Finally by A ∈ L(H1
0 (Ω),H

−1(Ω) =H1
0 (Ω)

∗) we denote the bounded linear oper-

ator defined by〈
A(u), y

〉
=

∫
Ω

(Du,Dy)RN dz for all u, y ∈H1
0 (Ω).

3. Multiplicity theorem

Our hypotheses on the data of problem (1) are the following.

H(β): β ∈ L∞(Ω), β+, β− �= 0, and Ω+ = {z ∈ Ω : β(z) > 0} is a connected

open set with a C2-boundary ∂Ω+.

H(f): f ∈C1(R), f(0) = 0, and

(i) |f ′(x)| ≤ a(1 + |x|r−1) for all x ∈R with a > 0 and

2≤ r < 2∗ =

{
2N
N−2 if N ≥ 3,

+∞ if N = 1,2;

(ii) there exists an integer m≥ 2 such that

λ̂
Ω+

1 (β+) < λ̂+
m(β),

λ̂+
m(β) < lim inf

x→±∞

f(x)

x
≤ limsup

x→±∞

f(x)

x
< λ̂+

m+1(β);

(iii) f ′(x) = limx→0 f(x)/x= 0.

First we will produce two constant-sign solutions, one positive and the other

negative. To this end, we introduce the positive and negative truncations of f(·),
namely, the C1-functions (see hypothesis H(f)(iii))

f+(x) = f(x+) and f−(x) = f(−x−) for all x ∈R.

Let F±(x) =
∫ x

0
f±(s)ds, and consider theC2-functionals ϕ± :H1

0 (Ω)→R defined

by

ϕ±(u) =
1

2
‖Du‖22 −

∫
Ω

β(z)F±
(
u(z)

)
dz for all u ∈H1

0 (Ω).

Also, let ϕ :H1
0 (Ω)→R be the energy functional for problem (1) defined by

ϕ(u) =
1

2
‖Du‖22 −

∫
Ω

β(z)F
(
u(z)

)
dz for all u ∈H1

0 (Ω),

where F (x) =
∫ x

0
f(s)ds. We know that ϕ ∈C2(H1

0 (Ω)).
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PROPOSITION 3

If hypotheses H(β) and H(f) hold, then the functionals ϕ± satisfy the C-

condition.

Proof

We do the proof for the functional ϕ+; the proof for ϕ− is similar.

So, let {un}n≥1 ⊆ H1
0 (Ω) be a sequence such that {ϕ+(un)}n≥1 ⊆ R is

bounded and

(5)
(
1 + ‖un‖

)
ϕ′
+(un)→ 0 in H−1(Ω) =H1

0 (Ω)
∗.

From (5), we have that∣∣∣〈A(un), h
〉
−
∫
Ω

β(z)f+(un)hdz
∣∣∣≤ εn‖h‖

1 + ‖un‖
(6)

for all h ∈H1
0 (Ω), with εn → 0+.

In (6) we choose h=−u−
n ∈H1

0 (Ω). Then

‖Du−
n ‖2L2(Ω,RN ) ≤ εn for all n≥ 1

⇒ u−
n → 0 in H1

0 (Ω).(7)

Suppose that ‖u+
n ‖→∞. We set yn = u+

n /‖u+
n ‖, n≥ 1. Then ‖yn‖= 1, yn ≥ 0 for

all n≥ 1. So, by passing to a suitable subsequence if necessary, we may assume

that

yn
w→ y in H1

0 (Ω) and yn → y in L2(Ω) as n→∞.(8)

From (5) and (6) it follows that∣∣∣〈A(yn), h〉−
∫
Ω

β(z)
f(u+

n )

‖u+
n ‖

hdz
∣∣∣≤ ε′n‖h‖

(9)
for all h ∈H1

0 (Ω), with ε′n → 0+ as n→∞.

From hypotheses H(β), H(f)(i), and H(f)(ii), we deduce that {βNf (u
+
n )/

‖u+
n ‖}n≥1 ⊆ L2(Ω) is bounded. So, if in (9) we choose h = yn − y ∈H1

0 (Ω) and

pass to the limit as n→∞, then using (8) we obtain that

lim
n→∞

〈
A(yn), yn − y

〉
= 0

⇒ ‖Dyn‖2L2(Ω,RN ) →‖Dy‖2L2(Ω,RN )

⇒ yn → y in H1
0 (Ω)

(10) (
by the Kadec–Klee property of Hilbert spaces; see (8)

)
⇒ ‖y‖= 1, y ≥ 0.(11)

Since {βNf (u
+
n )/‖u+

n ‖}n≥1 ⊆ L2(Ω) is bounded, by passing to a suitable subse-

quence if necessary and using hypothesis H(f)(ii), we obtain that

(12) β
Nf (u

+
n )

‖u+
n ‖

w→ βηy in L2(Ω) with η ∈
(
λ̂+
m(β), λ̂+

m+1(β)
)
.
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So, if in (9) we pass to the limit as n→∞ and use (10) and (12), then〈
A(y), h

〉
=

∫
Ω

β(z)ηyhdz for all h ∈H1
0 (Ω)

⇒ A(y) = β(z)ηy

⇒ −Δy(z) = ηβ(z)y(z) a.e. in Ω, y|∂Ω = 0.(13)

From (12) and (13) it follows that y = 0, which contradicts (11). This implies

that {u+
n }n≥1 ⊆ H1

0 (Ω) is bounded. This in conjunction with (7) implies that

{un}n≥1 ⊆H1
0 (Ω) is bounded. So, we may assume that

(14) un
w→ u in H1

0 (Ω) and un → u in L2(Ω).

In (6) we choose h= un − u ∈H1
0 (Ω), pass to the limit as n→∞, and use (6).

We have that

lim
n→∞

〈
A(un), un − u

〉
= 0

⇒ un → u in H1
0 (Ω) (as before via the Kadec–Klee property)

⇒ ϕ+ satisfies the C-condition.

In a similar fashion, we show that ϕ− satisfies the C-condition. �

Minor changes in the above proof lead to the following result.

PROPOSITION 4

If hypotheses H(β) and H(f) hold, then the energy functional ϕ satisfies the

C-condition.

Next we show that the functionals ϕ± satisfy the mountain pass geometry.

PROPOSITION 5

If hypotheses H(β) and H(f) hold, then there exist ρ± > 0 such that inf[ϕ±(u) :

‖u‖= ρ±] = m̂± > 0.

Proof

We do the proof for the functional ϕ+; the proof for ϕ− is similar.

Hypothesis H(f) implies that, given ε > 0 and ϑ ∈ (2,2∗), we can find c1 =

c1(ε,ϑ)> 0 such that∣∣f(x)∣∣≤ ε|x|+ c1|x|ϑ−1 for all x ∈R

⇒
∣∣F (x)

∣∣≤ ε

2
x2 + c2|x|ϑ for all x ∈R and with c2 =

c1
ϑ

> 0.(15)

Then for all u ∈H1(Ω), we have that

ϕ+(u) =
1

2
‖Du‖2L2(Ω,RN ) −

∫
Ω

β(z)F (u+)dz

≥ 1

2
‖u‖2 − ε

2
‖β‖L∞(Ω)‖u+‖2L2(Ω) − c2‖u+‖ϑLϑ(Ω)
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≥ 1

2

(
1−

ε‖β‖L∞(Ω)

λ̂+
1 (β)

)
‖u‖2 − c3‖u‖ϑ

for some c3 > 0
(
see (4) and (15)

)
.

Choosing ε ∈ (0, λ̂+
1 (β)/‖β‖L∞(Ω)), we obtain that

(16) ϕ+(u)≥
c4
2
‖u‖2 − c3‖u‖ϑ with c4 = c4(ε)> 0.

Because ϑ > 2, from (16) we see that, for ρ+ ∈ (0,1) small, we have

ϕ+(u)≥ m̂+ > 0 for all u ∈H1
0 (Ω), with ‖u‖= ρ+.

A similar proof holds for the functional ϕ−. �

Recall that ũ1(Ω+) ∈ intC+(Ω+) is the principal eigenfunction of −Δ in H1
0 (Ω+)

with weight β+ ∈ L∞(Ω)+. We extend ũ1 to all of Ω by setting ũ1 to be equal

to 0 on Ω \Ω+. We denote this extension by u1. Evidently u1 ∈C(Ω)∩H1
0 (Ω).

PROPOSITION 6

If hypotheses H(β) and H(f) hold, then limsupt→±∞ϕ±(tu1)< 0.

Proof

For t > 0, we have that

ϕ+(tu1) =
t2

2
‖Du1‖2L2(Ω,RN ) −

∫
Ω

β(z)F+(tu1)dz

=
t2

2
‖u1‖2 −

∫
Ω

β+(z)F (tu1)dz
(
note that u1 ≥ 0

)

⇒ ϕ+(tu1)

t2
=

1

2
‖u1‖2 −

∫
Ω

β+(z)
F (tu1)

t2
dz

⇒ limsup
t→+∞

ϕ+(tu1)

t2

≤ 1

2
‖u1‖2 −

∫
Ω

β+(z) lim inf
t→+∞

F (tu1)

t2
dz (by Fatou’s lemma)

≤ 1

2
‖u1‖2 −

η

2

∫
Ω

β+(z)u2
1 dz with η ∈

(
λ̂+
m(β), λ̂+

m+1(β)
)

(
see hypothesis H(f)(ii)

)
=

1

2
‖Dũ1‖2L2(Ω+,RN ) −

η

2

∫
Ω+

β+(z)ũ2
1 dz (recall the definition of u1)

≤ 1

2

[
1− η

λ̂
Ω+

1 (β+)

]
‖ũ1‖2H1

0 (Ω+)

(
see (4)

)
< 0

(
see H(f)(ii)

)
.

A similar proof holds for the functional ϕ−. �



Asymptotically linear elliptic equations 601

Now we are ready to produce constant-sign solutions.

PROPOSITION 7

If hypotheses H(β) and H(f) hold, then problem (1) has at least two nontrivial

constant-sign solutions

u0 ∈ intC+(Ω) and v0 ∈− intC+(Ω).

Proof

By virtue of Propositions 3, 5, and 6, we can apply Theorem 1 (the mountain

pass theorem) and obtain u0 ∈H1
0 (Ω) such that

(17) ϕ′
+(u0) = 0 and ϕ+(0) = 0< m̂+ ≤ ϕ+(u0).

From (17) it is clear that u0 �= 0. We have

A(u0) = β(z)Nf+(u0).(18)

On (18) we act with −u−
0 ∈H1

0 (Ω) and obtain

‖u−
0 ‖2 = 0; hence u0 ≥ 0, u0 �= 0.

Then (18) becomes

A(u0) = β(z)Nf (u0)

⇒ −Δu0(z) = β(z)u0(z) a.e. in Ω, u0|∂Ω = 0.

Standard regularity theory implies that u0 ∈ C+(Ω) \ {0}. Let ρ = ‖u0‖∞.

Hypotheses H(β), H(f)(i), and H(f)(iii) imply that we can find ξρ > 0 such

that

β(z)f(x) + ξρx≥ 0 for a.a. z ∈Ω, for all 0≤ x≤ ρ.

So, we have

−Δu0(z) + ξρu0(z) = β(z)f
(
u0(z)

)
+ ξρu0(z)≥ 0 a.e. in Ω

⇒ Δu0(z)≤ ξρu0(z) a.e. in Ω

⇒ u0 ∈ intC+(Ω) (by the maximum principle; see [9, p. 738]).

Similarly, working this time with the functional ϕ−, we obtain another nontrivial

constant-sign solution v0 ∈− intC+(Ω). �

Next we will produce a third nontrivial solution for problem (1). To do this, we

use tools from Morse theory (critical groups). So, we first compute the critical

groups of the energy functional ϕ at infinity. This particular computation will be

based on Proposition 2.

PROPOSITION 8

If hypotheses H(β) and H(f) hold, then Ck(τ,∞) = δk,dmZ for all k ≥ 0 with

some dm ≥ 2.
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Proof

Let η̂ ∈ (λ̂+
m(β), λ̂+

m+1(β)), and consider the C2-functional τ :H1
0 (Ω)→R defined

by

τ(u) =
1

2
‖Du‖22 −

η̂

2

∫
Ω

β(z)u2 dz for all u ∈H1
0 (Ω).

We consider the homotopy h(t, u) = ht(u) defined by

ht(u) = (1− t)ϕ(u) + tτ(u) for all (t, u) ∈ [0,1]×H1
0 (Ω).

CLAIM

There exist μ ∈R and δ > 0 such that

ht(u)≤ μ ⇒
(
1 + ‖u‖

)∥∥(ht)
′(u)

∥∥2
∗ ≥ δ‖u‖2 for all t ∈ [0,1].

We argue by contradiction. So, suppose that the claim is not true. Since the homo-

topy (t, u) 	→ ht(u) maps bounded sets to bounded sets, we can find {tn}n≥1 ⊆
[0,1] and {un}n≥1 ⊆H1

0 (Ω) such that

(19)

⎧⎨
⎩tn → t, ‖un‖→∞, htn(un)→−∞ as n→∞ and

|〈(htn)
′(un), v〉| ≤ ‖v‖

n(1+‖un‖)‖un‖2 for all v ∈H1
0 (Ω), for all n≥ 1.

From (19), we have that∣∣∣〈A(un), v
〉
− (1− tn)

∫
Ω

β(z)f(un)v dz − tnη̂

∫
Ω

β(z)unv dz
∣∣∣

(20)

≤ ‖v‖
n(1 + ‖un‖)

‖un‖2 for all n≥ 1.

Let yn = un/‖un‖, n≥ 1. Then ‖yn‖= 1 for all n≥ 1, and so we may assume

that

(21) yn
w→ y in H1

0 (Ω) and yn → y in L2(Ω).

From (20) we obtain that∣∣∣〈A(yn), v〉− (1− tn)

∫
Ω

β(z)
f(un)

‖un‖
v dz − tnη̂

∫
Ω

β(z)ynv dz
∣∣∣

(22)

≤ ‖v‖
n

for all n≥ 1.

Recall that {βNf (un)/‖un‖}n≥1 ⊆ L2(Ω) is bounded. So, if in (22) we choose

v = yn − y ∈H1
0 (Ω) and pass to the limit as n→∞, then we obtain that

lim
n→∞

〈
A(yn), yn − y

〉
= 0

⇒ yn → y in H1
0 (Ω) (as before via the Kadec–Klee property)(23)

⇒ ‖y‖= 1.(24)
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Moreover, we know that, at least for a subsequence, we have

β
Nf (un)

‖un‖
w→ ηβy

(25)
in L2(Ω) with η ∈

(
λ̂+
m(β), λ̂+

m+1(β)
) (

see hypothesis H(f)(ii)
)
.

So, if in (22) we pass to the limit as n→∞ and use (23) and (25), then

〈
A(y), v

〉
= ηt

∫
Ω

β(z)yv dz for all v ∈H1
0 (Ω) with ηt = (1− t)η+ tη̂

⇒ A(y) = ηtβ(z)y

⇒ −Δy(z) = ηtβ(z)y(z) a.e. in Ω, y|∂Ω = 0.(26)

Note that ηt ∈ (λ̂+
m(β), λ̂+

m+1(β)). Then from (26) it follows that y = 0, which

contradicts (24). This proves the claim.

From Proposition 4 we know that ϕ satisfies the C-condition. Similarly, since

η̂ ∈ (λ̂+
m(β), λ̂+

m+1(β)), it is easily seen that τ also satisfies the C-condition.

So, we can apply Proposition 2 and infer that

(27) Ck(ϕ,∞) =Ck(τ,∞) for all k ≥ 0.

The fact that η̂ ∈ (λ̂+
m(β), λ̂+

m+1(β)) implies that Kτ = {0}. Therefore

(28) Ck(τ,∞) =Ck(τ,0) for all k ≥ 0.

Moreover, u= 0 is a nondegenerate critical point of τ (i.e., τ ′′(0) is invertible),

and from the minimax characterization of the eigenvalues {λ̂+
k (β)}k≥1 (see Gasin-

ski and Papageorgiou [9, p. 714]), we see that the Morse index of τ at u= 0 is

dm ≥ 2. So, we have that

Ck(τ,0) = δk,dmZ for all k ≥ 0

⇒ Ck(τ,∞) = δk,dmZ for all k ≥ 0 with dm ≥ 2
(
see (27), (28)

)
.

This completes the proof. �

Now we can produce the third nontrivial solution.

PROPOSITION 9

If hypotheses H(β) and H(f) hold, then problem (1) has a third nontrivial solu-

tion y0 ∈C1
0 (Ω).

Proof

From Proposition 7 we already have two nontrivial solutions of constant sign

u0 ∈ intC+(Ω) and v0 ∈− intC+(Ω).

From the proof of that proposition, we know that

(i) u0 is a critical point of ϕ+ of mountain pass type;

(ii) v0 is a critical point of ϕ− of mountain pass type.
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Hence we have that

(29) C1(ϕ+, u0) �= 0 and C1(ϕ−, v0) �= 0.

Note that ϕ+|C+ = ϕ|C+ and ϕ−|−C+ = ϕ|−C+ . Since u0 ∈ intC+(Ω) and v0 ∈
− intC+(Ω) it follows that

(30)

{
Ck(ϕ+|C1

0 (Ω), u0) =Ck(ϕ|C1
0 (Ω), u0) for all k ≥ 0,

Ck(ϕ−|C1
0 (Ω), v0) =Ck(ϕ|C1

0 (Ω), v0) for all k ≥ 0.

Since C1
0 (Ω) is dense in H1

0 (Ω), from Palais [12] and (30), we have that

Ck(ϕ+, u0) =Ck(ϕ,u0) and Ck(ϕ−, v0) =Ck(ϕ,v0) for all k ≥ 0

⇒ C1(ϕ,u0) �= 0 and C1(ϕ,v0) �= 0
(
see (29)

)
⇒ Ck(ϕ,u0) =Ck(ϕ,v0) = δk,1Z for all k ≥ 0

(31)
(see Bartsch [6, Proposition 2.5]).

Also, using (15) we have that

ϕ(u)≥ c5‖u‖2 − c6‖u‖ϑ for all u ∈H1
0 (Ω) and some c5, c6 > 0 (recall ϑ > 2)

⇒ u= 0 is a local minimizer of ϕ

⇒ Ck(ϕ,0) = δk,0Z for all k ≥ 0.(32)

From Proposition 8 we know that Ck(ϕ,∞) = δk,dmZ for all k ≥ 0. This means

that there exists y0 ∈Kϕ such that

(33) Cdm(ϕ,y0) �= 0.

Since dm ≥ 2, comparing (32) with (30) and (31), we infer that

y0 /∈ {0, u0, v0}

⇒ y0 is a third nontrivial solution of (1) (since y0 ∈Kϕ).

Standard regularity theory implies that y0 ∈C1
0 (Ω). �

So, summarizing the situation, we can state the following multiplicity theorem

for problem (1).

THEOREM 10

If hypotheses H(β) and H(f) hold, then problem (1) has at least three nontrivial

solutions

u0 ∈ intC+(Ω), v0 ∈− intC+(Ω), and y0 ∈C1
0 (Ω).
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