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Nonlinear elliptic problems on Riemannian manifolds
and applications to Emden–Fowler type equations

Received: 7 June 2012 / Revised: 5 August 2012
Published online: 18 November 2012

Abstract. The existence of one non-trivial solution for a nonlinear problem on compact
d-dimensional (d ≥ 3) Riemannian manifolds without boundary, is established. More pre-
cisely, a recent critical point result for differentiable functionals is exploited, in order to prove
the existence of a determined open interval of positive eigenvalues for which the considered
problem admits at least one non-trivial weak solution. Moreover, as a consequence of our
approach, a multiplicity result is presented, requiring the validity of the Ambrosetti–Rabino-
witz hypothesis. Successively, the Cerami compactness condition is studied in order to obtain
a similar multiplicity theorem in superlinear cases. Finally, applications to Emden-Fowler
type equations are presented.

1. Introduction

The purpose of the present paper is to establish a new existence result associated
with related energy estimates for elliptic problems defined on compact Riemannian
manifolds.

Let (M, g) be a compact d-dimensional Riemannian manifold without bound-
ary of dimension d ≥ 3 and let �g denote the Laplace–Beltrami operator whose
expression, in local coordinates, is given by

�gw := gi j
(

∂2w

∂xi∂x j
− �k

i j
∂w

∂xk

)
,

where �k
i j are the usual Christoffel’s symbols.
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We are interested in the existence of one non-trivial weak solution of the fol-
lowing non-autonomous problem

− �gw + α(σ)w = λK (σ ) f (w), (Pλ)

for every σ ∈ M and w ∈ H2
1 (M).

We assume that the mappings α, K : M → R satisfy

α, K ∈ �+(M) :=
{
β ∈ L∞(M; R) : ess inf

σ∈M
β(σ) > 0

}
,

λ is a positive parameter, and the nonlinearity f : R → R is continuous and

(h∞) | f (t)| ≤ a1 + a2|t |q−1, ∀ t ∈ R,

for some non-negative constants a1, a2, and q ∈]1, 2∗[, where 2∗ := 2d/(d − 2).

A remarkable case of problem (Pλ) is

− �hw + s(1 − s − d)w = λK (σ ) f (w), σ ∈ S
d , w ∈ H2

1 (Sd), (Sλ)

where S
d is the unit sphere in R

d+1, h is the standard metric induced by the embed-
ding S

d ↪→ R
d+1, s is a constant such that 1 − d < s < 0, and �h denotes the

Laplace-Beltrami operator on (Sd , h).
For completeness we observe that the existence of a smooth positive solution

for problem (Sλ), when s = −d/2 or s = −d/2 + 1, and f (t) = |t | 4
d−2 t, can be

viewed as an affirmative answer to the Yamabe problem [35] on S
d (see also the

Nirenberg problem [29]); for these topics we refer to Aubin [3], Cotsiolis and Ilio-
poulos [13,12], Hebey [15], Kazdan and Warner [18], Vázquez and Véron [34], and
to the excellent survey by Lee and Parker [25]. In these cases the right hand-side of
problem (Sλ) involves the critical Sobolev exponent. The Yamabe problem is often
referred to in the literature on elliptic type equations with critical Sobolev growth
and in terms of PDEs equations can be formulated as follows:

For any smooth compact Riemannian manifold (M, g) of dimension d ≥ 3,
there exists w ∈ C∞(M), w > 0, and λ ∈ R such that

− �gw + d − 2

4(d − 1)
Sgw = λw

d+2
d−2 , (Yλ)

where Sg denotes the scalar curvature that, through the symmetric Ricci tensor Ri j ,
has the form Sg = Ri j gi j .

Geometrically, the goal of this celebrated problem is to prove that, up to confor-
mal changes of the metric, there always exists a metric of constant scalar curvature.
This was announced to be true by Yamabe [35] in 1960. Roughly eight years later,
Trudinger [33] discovered a serious difficulty in the original Yamabe’s proof. He
repaired the proof when the conformal class of the reference metric is nonposi-
tive. Eight years later after Trudinger, Aubin [1] improved Yamabe’s approach and
reduced the problem to the proof of some strict inequality involving some geomet-
rical invariants of the manifold. Such an inequality was proved to be true by Aubin
in some cases, and then by Schoen [32] in the remaining more difficult cases. In
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particular, in his remarkable work, Schoen discovered the unexpected relevance of
the positive mass theorem. The Yamabe problem, whose origin goes back to the
beginning of the 1960’s, was solved something like twenty five years later.

Moreover, existence results for problem (Sλ), can be used in order to study the
existence of solutions for the following parameterized Emden-Fowler equation

− �u = λ|x |s−2 K (x/|x |) f (|x |−su), x ∈ R
d+1 \ {0}, (Fλ)

see, for instance, Sect. 4.
Problem (Pλ) has been studied for power-type nonlinearities, that is, provided

that f (t) = |t |p−1t , p > 1 see Cotsiolis and Iliopoulos in [12,13] for the case
of the sphere, and Vázquez and Véron [34] for a general compact manifold. In the
aforementioned papers the authors obtained existence and multiplicity results for
(Pλ) by using variational arguments.

More recently, in Kristály and Rădulescu [23], the authors are interested on
the existence of multiple solutions of problem (Pλ) in order to obtain solutions
for parameterized Emden-Fowler equation (Fλ) considering nonlinear terms of
sublinear type at infinity.

In particular, in [23, Theorem 1.1], for λ sufficiently large, the existence of
two nontrivial solutions for problem (Pλ) has been successfully obtained through
a careful analysis of the standard mountain pass geometry.

Furthermore, in Kristály et al. [24, Theorem 9.4, p. 222], the existence of an
open interval of positive parameters for which problem (Pλ) admits two distinct
nontrivial solutions is established by using an abstract three critical points theorem
contained in Bonanno [6].

Moreover in [9], through a novel approach developed by Bonanno and Molica
Bisci [8], the existence of a well localized open interval of positive parameters for
which problem (Pλ) admits at least three non-trivial solutions has been studied.

Finally, Kristály in [20], proved a bifurcation result for a perturbed sublinear
elliptic problem (Pλ,μ) defined on M. We just observe that for μ = 0 the cited
problem coincides with (Pλ) and, in particular, from [20, Theorem 1.1], it follows
that if the nonlinearity f belongs to the set

F :=
{

f ∈ C(R+; R+) \ {0} : lim
t→0+

f (t)

t
= lim

t→∞
f (t)

t
= 0

}
,

for λ sufficiently small, then problem (Pλ) admits only the identically zero solution.
For completeness, we just mention that, by using similar variational arguments, the
existence of multiple solutions for non-homogeneous Neumann problem on Rie-
mannian manifolds with boundary have been studied by Kristály et al. in [22].

The main result of this paper (Theorem 3.1) ensures the existence of precise
values of parameters λ for which (Pλ) admits at least one non-trivial solution. A
special case is also pointed out (Corollary 3.1) and a meaningful consequence for
a suitable class of functions with a certain asymptotic behaviour at the origin is
presented; see, for more details, Theorem 3.2.

We observe that when the nonlinear term is sublinear at infinity, then the corre-
sponding energy functional is coercive, hence the existence of one solution (possibly
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zero) is ensured from the direct methods theorem. It is worth noticing that, in our
cases, the potential may be also not coercive; see, for completeness, Example 3.1
and Remark 3.6. On the contrary, if the potential is coercive, our results ensure the
existence of at least one non-trivial solution; see Remark 3.3.

A basic tool used in the proofs is a recent critical point theorem obtained by
Bonanno in [7, Theorem 5.1] for functionals of the form Jλ := � − λ�, where λ

is a positive parameter; see Theorem 2.1 below.
We state in what follows a special case of our results, which establishes the

existence of a nontrivial solution in case of lower perturbations (small values of
the parameter). The following theorem also shows that the energies of the cor-
responding solutions become smaller and smaller as the parameter converges to
zero.

Theorem 1.1 Let d ≥ 3. Set α, K ∈ C∞(Sd) be two positive maps and f : R → R

be a continuous function such that

sup
t∈R

( | f (t)|
1 + |t |q−1

)
< +∞,

for some q ∈]1, 2∗[. Assume that

lim
t→0+

f (t)

t
= +∞.

Then, there exists λ
 > 0 such that for every λ ∈]0, λ
[, the following problem

− �hw + α(σ)w = λK (σ ) f (ω), σ ∈ S
d , w ∈ H2

1 (Sd), (Sα
λ )

admits at least one non-trivial weak solution w0,λ ∈ H2
1 (Sd). Finally, ‖w0,λ‖H2

1
→

0 as λ → 0+ and the map

λ 
→ 1

2

⎛
⎜⎝

∫

Sd

|∇w0,λ(σ )|2dσh +
∫

Sd

w0,λ(σ )2dσh

⎞
⎟⎠

−λ

∫

Sd

K (σ )

⎛
⎜⎝

w0,λ(σ )∫
0

f (t)dt

⎞
⎟⎠ dσh,

is negative and strictly decreasing in ]0, λ
[.
An explicit estimation of the parameter λ
 that appears in the above result is

given in Remark 3.2. For an exhaustive overview on elliptic equations with critical
exponent defined on Riemannian manifolds we refer to [24, Chapter 11] as well as
the exhaustive lecture notes [16] and the references therein.

Finally, in Theorem 3.3, we prove that, adding to hypotheses of Theorem 3.2 the
classical (AR) Ambrosetti and Rabinowitz condition, a second non-trivial solution
is achieved; see also Corollary 4.2.
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Successively, in Theorem 3.4 we establish a multiplicity result (similar to The-
orem 3.3) without assuming (AR) condition. In this setting the Euler-Lagrange
functional Jλ may possess unbounded Palais-Smale (briefly (PS)) sequences. The
key point in our proof is that, although Jλ possesses unbounded (PS) sequences,
under the assumptions of Theorem 3.4, the functional Jλ satisfies the Cerami condi-
tion. Our result is achieved through a local condition, namely (h∞,F ), near infinity,
previously adopted by Liu in [26] studying the existence of solutions for superlinear
p-Laplacian Dirichlet problems on bounded Euclidean domains; see also the work
of Jeanjean [17].

The paper is arranged as follows: in Sect. 2, we recall some basic definitions
and our main tool, while Sect. 3 is devoted to our main results. In the last section
we find existence results for singular elliptic problems of Emden-Fowler type as an
application of our theoretical approach. We cite the recent monograph by Kristály
et al. [24] as general reference on this subject.

2. Preliminaries

We start this section with a short list of notions in Riemmanian geometry. We refer
to Aubin [3] and Hebey [15] for detailed derivations of the geometric quantities,
their motivation and further applications; see also the work [2]. Let (M, g) be a
smooth compact d-dimensional (d ≥ 3) Riemannian manifold without boundary
and let gi j be the components of the metric g. As usual, we denote by C∞(M)

the space of smooth functions defined on M. Let α ∈ �+(M) and set ‖α‖∞ :=
ess supσ∈M α(σ).

For every w ∈ C∞(M), we denote

‖w‖2
H2

α
:=

∫
M

|∇w(σ)|2dσg +
∫
M

α(σ)w(σ)2dσg,

where ∇w is the covariant derivative of w, and dσg is the Riemannian measure. In
local coordinates (x1, . . . , xd), the components of ∇w are given by

(∇2w)i j = ∂2w

∂xi∂x j
− �k

i j
∂w

∂xk
,

where

�k
i j := 1

2

(
∂gl j

∂xi
+ ∂gli

∂x j
− ∂gi j

∂xk

)
glk,

are the usual Christoffel’s symbols and glk are the elements of the inverse matrix
of g. Here, and in the sequel, the Einstein’s summation convention is adopted.
Moreover, the measure element dσg assume the form dσg = √

det g dx , where dx
stands for the Lebesgue’s volume element of R

d . Hence, let

Volg(M) :=
∫
M

dσg.
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In particular, if (M, g) = (Sd , h), where S
d is the unit sphere in R

d+1 and h
is the standard metric induced by the embedding S

d ↪→ R
d+1, we set

ωd := Volh(Sd) :=
∫

Sd

dσh .

The Sobolev space H2
α (M) is defined as the completion of C∞(M) with respect to

the norm ‖ · ‖H2
α
. Then H2

α (M) is a Hilbert space endowed with the inner product

〈w1, w2〉H2
α

=
∫
M

〈∇w1(σ ),∇w2(σ )〉gdσg +
∫
M

α(σ)〈w1(σ ),w2(σ )〉gdσg,

for every w1, w2 ∈ H2
α (M), where 〈·, ·〉g is the inner product on covariant tensor

fields associated to g. Since α is positive, the norm ‖ · ‖H2
α

is equivalent with the
standard norm

‖w‖H2
1

:=
⎛
⎝∫

M
|∇w(σ)|2dσg +

∫
M

w(σ)2dσg

⎞
⎠

1/2

.

Moreover, if w ∈ H2
α (M), the following inequalities hold

min

{
1, ess inf

σ∈M
α(σ)1/2

}
‖w‖H2

1
≤ ‖w‖H2

α
≤ max

{
1, ‖α‖1/2∞

}
‖w‖H2

1
. (1)

By the Rellich-Kondrachov theorem for compact manifolds without boundary
we have

H2
α (M) ↪→ Lq(M),

for every q ∈ [1, 2d/(d − 2)]. In particular, the embedding is compact whenever
q ∈ [1, 2d/(d − 2)). Hence, there exists a positive constant Sq such that

‖w‖Lq (M) ≤ Sq‖w‖H2
α
, ∀ w ∈ H2

α (M), (2)

where the norm of the Lebesgue spaces Lq(M) are denoted by ‖ · ‖Lq (M) for all
q ∈ [1,∞[.

If K ∈ �+(M), we recall that a function w ∈ H2
1 (M) is a weak solution of

problem (Pλ) if∫
M

〈∇w(σ),∇v(σ )〉gdσg +
∫
M

α(σ)〈w(σ), v(σ )〉gdσg

= λ

∫
M

K (σ ) f (w(σ))v(σ )dσg,

for every v ∈ H2
1 (M).

Let X be a real Banach space. We say that a continuously Gâteaux differentiable
functional J : X → R verifies the Palais-Smale condition (in short (PS)-condition)
if any sequence {un} such that
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(j1) {J (un)} is bounded,
(j2) limn→∞ ‖J ′(un)‖X∗ = 0,

has a convergent subsequence.
For an exhaustive treatment of these topics we refer to [28,30] and the refer-

ences therein. Now, let �,� : X → R be two continuously Gâteaux differentiable
functions. Set

J = � − �,

and fix r1, r2 ∈ [−∞,+∞], with r1 < r2; we say that function J verifies the Palais-
Smale condition cut off lower at r1 and upper at r2 (in short [r1](PS)[r2]-condition)
if any sequence {un} such that (j1), (j2) hold and

(j3) r1 < �(un) < r2, ∀ n ∈ N,

has a convergent subsequence.
Clearly, if r1 = −∞ and r2 = +∞ it coincides with the classical (PS)-condi-

tion. Moreover, if r1 = −∞ and r2 ∈ R it is denoted by (PS)[r2], while if r1 ∈ R

and r2 = +∞ it is denoted by [r1](PS). Clearly, if J satisfies [r1](PS)[r2]-condi-
tion, then it satisfies [ρ1](PS)[ρ2]-condition for all ρ1, ρ2 ∈ [−∞,+∞] such that
r1 ≤ ρ1 < ρ2 ≤ r2.

In particular, we deduce that if J satisfies the classical (PS)-condition, then it
satisfies [ρ1](PS)[ρ2]-condition for all ρ1, ρ2 ∈ [−∞,+∞] with ρ1 < ρ2. Set

β(r1, r2) := inf
v∈�−1(]r1,r2[)

supu∈�−1(]r1,r2[) �(u) − �(v)

r2 − �(v)
, (3)

and

ρ2(r1, r2) := sup
v∈�−1(]r1,r2[)

�(v) − supu∈�−1(]−∞,r1]) �(u)

�(v) − r1
, (4)

for all r1, r2 ∈ R, with r1 < r2.
Now, for a fixed λ > 0, the function wλ(σ) = c ∈ R \ {0}, is a solution of (Pλ)

if and only if the mapping σ 
→ λK (σ )/α(σ ) is constant. In this case, nontrivial
constant solutions of (Pλ) appear as fixed points of the function t 
→ cλ f (t), where
cλ denotes the constant value λK (σ )/α(σ ).

A crucial role in the existence proof of one non-trivial (and non-constant) weak
solution for our problem is played by the following version of an abstract local
minimum theorem obtained in [7, Theorem 5.1], which we recall here for conve-
nience.

Theorem 2.1 Let X be a real Banach space and let �,� : X → R be two con-
tinuously Gâteaux differentiable functions. Assume that there are r1, r2 ∈ R, with
r1 < r2, such that

β(r1, r2) < ρ2(r1, r2),

where β and ρ2 are given by (3) and (4), and for each

λ ∈
] 1

ρ2(r1, r2)
,

1

β(r1, r2)

[
,

the function Jλ := � − λ� satisfies [r1](PS)[r2]-condition.
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Then, for each λ ∈
] 1

ρ2(r1, r2)
,

1

β(r1, r2)

[
there is u0,λ ∈ �−1(]r1, r2[) such

that Jλ(u0,λ) ≤ Jλ(u) for all u ∈ �−1(]r1, r2[) and J ′
λ(u0,λ) = 0.

Remark 2.1. We explicitly observe that Theorem 2.1 guarantees the existence of an
open interval of parameters such that for any

λ ∈
] 1

ρ2(r1, r2)
,

1

β(r1, r2)

[
,

the functional Jλ has a minimizer u0,λ with respect to the open sublevel
�−1(]r1, r2[), that is,

Jλ(u0,λ) ≤ Jλ(u), ∀ u ∈ �−1(]r1, r2[).
Since �−1(] − ∞, r [) ⊂ X is open, it follows that u0,λ must be a local minimizer
of Jλ, hence it is a critical point of Jλ. Therefore, Theorem 2.1 may be considered
also as a localization principle of critical points of Jλ that belong to the sublevel
�−1(]r1, r2[).

3. Main results

For every two nonnegative constants γ, δ, with γ �= δ, we set

aγ (δ) := A(γ ) − q F(δ)‖K‖L1(M)

‖α‖L1(M)(γ
2 − δ2)q

, (5)

where

A(γ ) := (q‖α‖1/2
L1(M)

γ S1a1 + ‖α‖q/2
L1(M)

γ q Sq
q a2)‖K‖∞,

and

F(ξ) :=
ξ∫

0

f (t)dt,

for every ξ ∈ R.
With the above notations we are able to prove the following result.

Theorem 3.1 Let f : R → R be a continuous function such that condition (h∞)

holds and assume that there exist three real constants γ1, γ2 and δ, with 0 ≤ γ1 <

δ < γ2, such that

aγ2(δ) < aγ1(δ). (6)

Then, for each parameter λ belonging to

� :=
]

1

2aγ1(δ)
,

1

2aγ2(δ)

[
,
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the problem (Pλ) admits at least one weak solution w0,λ ∈ H2
1 (M), such that

‖α‖1/2
L1(M)

γ1

max{1, ‖α‖1/2∞ }
< ‖w0,λ‖H2

1
≤

‖α‖1/2
L1(M)

γ2

min{1, ess infσ∈M α(σ)1/2} .

Proof. Our aim is to apply Theorem 3.1. Hence, let X := H2
1 (M) and consider

the functionals �,� : X → R defined by

�(w) :=
‖w‖2

H2
α

2
, �(w) :=

∫
M

K (σ )F(w(σ))dσg, for all w ∈ X.

Clearly � : X → R is a coercive, continuously Gâteaux differentiable. On the
other hand, � is well-defined and continuously Gâteaux differentiable. Moreover,
we have

�′(w)(v) =
∫
M

〈∇w(σ),∇v(σ )〉gdσg +
∫
M

α(σ)〈w(σ), v(σ )〉gdσg,

and

� ′(w)(v) =
∫
M

K (σ ) f (w(σ))v(σ )dσg,

for every w, v ∈ X . Fix λ > 0. A critical point of the functional Jλ := � − λ� is
a function w ∈ X such that

�′(w)(v) − λ� ′(w)(v) = 0,

for every v ∈ X . Hence, the critical points of the functional Jλ are the weak solu-
tions of problem (Pλ). Moreover, �(0X ) = �(0X ) = 0. Since condition (h∞)

holds, we have

F(ξ) ≤ a1|ξ | + a2
|ξ |q

q
, (7)

for every ξ ∈ R. Now, taking into account (7), it follows that

�(w) =
∫
M

K (σ )F(w(σ))dσg ≤ ‖K‖∞
(

a1‖w‖L1(M) + a2

q
‖w‖q

Lq (M)

)
.

Then, for every w ∈ X such that �(w) ≤ r , owing to (2), we get

�(w) ≤ ‖K‖∞
(
(2r)1/2S1a1 + 2q/2Sq

q a2

q
rq/2

)
.

Therefore

sup
w∈�−1(]−∞,r ])

�(w) ≤ ‖K‖∞
(
(2r)1/2S1a1 + 2q/2Sq

q a2

q
rq/2

)
. (8)
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Next, we set

r1 = ‖α‖L1(M)

2
γ 2

1 , r2 = ‖α‖L1(M)

2
γ 2

2 , and wδ(σ ) = δ, for every σ ∈M.

Clearly wδ ∈ X and we have

�(wδ)= 1

2

( ∫
M

|∇wδ(σ )|2dσg +
∫
M

α(σ)wδ(σ )2dσg

)
= δ2

2
‖α‖L1(M). (9)

Taking into account that γ1 < δ < γ2, by a direct computation, we deduce that
r1 < �(wδ) < r2. Moreover,

�(wδ) =
∫
M

K (σ )F(wδ(σ ))dσg = F(δ)‖K‖L1(M). (10)

From (8) it follows that

sup
w∈�−1(]−∞,r2[)

�(w) ≤ ‖K‖∞

(
(2r2)

1/2S1a1 + 2q/2Sq
q a2

q
rq/2

2

)
. (11)

as well as

sup
u∈�−1(]−∞,r1])

�(u) ≤ ‖K‖∞

(
(2r1)

1/2S1a1 + 2q/2Sq
q a2

q
rq/2

1

)
. (12)

Then r1 < �(wδ) < r2 and

β(r1, r2) := inf
v∈�−1(]r1,r2[)

supw∈�−1(]r1,r2[) �(w) − �(v)

r2 − �(v)

≤ supw∈�−1(]−∞,r2[) �(w) − �(wδ)

r2 − �(wδ)
,

and

ρ2(r1, r2) := supv∈�−1(]r1,r2[)
�(v)−sup

w∈�−1(]−∞,r1]) �(w)

�(v)−r1

≥ �(wδ)−sup
w∈�−1(]−∞,r1]) �(w)

�(wδ)−r1
.

Hence, by using the notation (5), and relations from (9) to (12) it follows that

β(r1, r2) ≤ 2aγ2(δ), and ρ2(r1, r2) ≥ 2aγ1(δ).

Finally, hypothesis (6) yields

β(r1, r2) < ρ2(r1, r2).

Now, from [7, Proposition 2.1], the functional Jλ satisfies [r1](PS)[r2]-condition for
all r1 and r2 with r1 < r2 < +∞. Therefore, owing to Theorem 2.1, for each
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λ ∈
]

1
2aγ1 (δ)

, 1
2aγ2 (δ)

[
, the functional Jλ admits at least one critical point w0,λ such

that

r1 < �(w0,λ) < r2,

that is

‖α‖1/2
L1(M)

γ1 < ‖w0,λ‖H2
α

< ‖α‖1/2
L1(M)

γ2.

The last part of our result is achieved from the above inequalities and taking into
account relation (1). ��

We now point out the following consequence of Theorem 3.1.

Corollary 3.1 Let f : R → R be a continuous function such that condition (h∞)

holds and assume that there exist two positive constants γ and δ, with γ > δ, for
which

F(δ)

δ2 >
A(γ )

qγ 2‖K‖L1(M)

. (13)

Then, for each parameter λ belonging to
] ‖α‖L1(M)δ

2

2‖K‖L1(M)F(δ)
,

q‖α‖L1(M)γ
2

2A(γ )

[
,

the problem (Pλ) admits at least one non-trivial weak solution w0,λ ∈ H2
1 (M),

such that

‖w0,λ‖H2
1

<
‖α‖1/2

L1(M)
γ

min{1, ess infσ∈M α(σ)1/2} .

Proof. Our aim is to apply Theorem 3.1. To this end we pick γ1 = 0 and γ2 := γ .
Bearing in mind (5), we obtain

aγ (δ) = A(γ ) − q‖K‖L1(M)F(δ)

‖α‖L1(M)(γ
2 − δ2)q

,

as well as

a0(δ) = ‖K‖L1(M)F(δ)

δ2‖α‖L1(M)

.

Now, inequality (13), immediately yields

aγ (δ) < a0(δ).

Hence, Theorem 3.1 ensures the conclusion. ��
Here is a direct result obtained by using Corollary 3.1.
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Theorem 3.2 Let f : R → R be a continuous function such that condition (h∞)

holds and assume that

lim
ξ→0+

F(ξ)

ξ2 = +∞. (h0,F )

Furthermore, for each γ > 0, set

λ

γ := q‖α‖L1(M)

2

γ 2

A(γ )
.

Then, for every λ ∈]0, λ

γ [, the problem (Pλ) admits at least one non-trivial weak

solution w0,λ ∈ H2
1 (M). Moreover, we have

lim
λ→0+ ‖w0,λ‖H2

1
= 0,

and the map

λ 
→
‖w0,λ‖2

H2
α

2
− λ

∫
M

K (σ )

⎛
⎜⎝

w0,λ(σ )∫
0

f (t)dt

⎞
⎟⎠ dσg,

is negative and strictly decreasing in ]0, λ

γ [.

Proof. Fix γ > 0 and λ ∈]0, λ

γ [. From (h0,F ) there exists a positive constant δ

with δ < γ such that

‖α‖L1(M)δ
2

2‖K‖L1(M)F(δ)
< λ <

q‖α‖L1(M)γ
2

2A(γ )
.

Hence, owing to Corollary 3.1, the problem (Pλ) admits at least one non-trivial
weak solution w0,λ ∈ X , such that

‖w0,λ‖H2
α

< ‖α‖1/2
L1(M)

γ .

Then, for every λ ∈]0, λ

γ [, there exists at least one non-trivial weak solution

w0,λ ∈ �−1(]0, r2[) of the problem (Pλ) and

‖w0,λ‖H2
1

<
‖α‖1/2

L1(M)
γ

min{1, ess infσ∈M α(σ)1/2} , (14)

for every λ ∈]0, λ

γ [.

Therefore, from (h∞), taking into account (2) and (14), it follows that there
exists a positive constant Cα,K

a1,a2,q such that
∣∣∣∣∣∣
∫
M

K (σ ) f (w0,λ(σ ))w0,λ(σ )dσg

∣∣∣∣∣∣ ≤ Cα,K
a1,a2,q , (15)

for every λ ∈]0, λ

γ [.



Nonlinear elliptic problems 169

Now, J ′
λ(w0,λ) = 0, for every λ ∈]0, λ


γ [ and in particular J ′
λ(w0,λ)(w0,λ) = 0,

that is,

‖w0,λ‖2
H2

α
= λ

∫
M

K (σ ) f (w0,λ(σ ))w0,λ(σ )dσg,

for every λ ∈]0, λ

γ [.

Then, from (15), it follows that

lim
λ→0+ ‖w0,λ‖2

H2
α

= lim
λ→0+ λ� ′(w0,λ)(w0,λ) = 0,

that implies limλ→0+ ‖w0,λ‖H2
1

= 0.

Finally, we claim that the mapping λ 
→ Jλ(w0,λ) is negative and strictly
decreasing in ]0, λ


γ [. Indeed, the restriction of the functional Jλ to �−1(]0, r2[),
where r2 := (‖α‖L1(M)/2)γ 2

2 , admits a global minimum, which is a critical point
(local minimum) of Jλ in X . Moreover, since wδ := δ ∈ �−1(]0, r2[) and

�(wδ)

�(wδ)
= ‖α‖L1(M)δ

2

2‖K‖L1(M)F(δ)
< λ,

we have

Jλ(w0,λ) ≤ Jλ(wδ) = �(wδ) − λ�(wδ) < 0.

Next, we observe that

Jλ(w) = λ

(
�(w)

λ
− �(w)

)
,

for every u ∈ X and fix 0 < λ1 < λ2 < λ

γ . Set

mλ1 :=
(

�(w0,λ1)

λ1
− �(w0,λ1)

)
= inf

w∈�−1(]0,r2[)

(
�(w)

λ1
− �(w)

)
,

and

mλ2 :=
(

�(w0,λ2)

λ2
− �(w0,λ2)

)
= inf

w∈�−1(]0,r2[)

(
�(w)

λ2
− �(w)

)
.

Clearly, as claimed before, mλi < 0 (for i = 1, 2), and mλ2 ≤ mλ1 thanks to
λ1 < λ2. Then the mapping λ 
→ Jλ(w0,λ) is strictly decreasing in ]0, λ


γ [ owing
to

Jλ2(w0,λ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Jλ1(w0,λ1).

This concludes the proof. ��
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Remark 3.1. A careful analysis of the proof of Theorem 3.2 ensures that the result
still remains true after replacing condition (h0,F ) with the more general assumption
at zero

lim sup
ξ→0+

F(ξ)

ξ2 = +∞. (h′′
0,F )

Moreover, if f has the following asymptotic behaviour

lim
t→0+

f (t)

t
= +∞, (h0)

then, obviously, hypothesis (h0,F ) is trivially verified. Hence, it is easy to see
that Theorem 1.1 in Introduction immediately follows from the above remark and
Theorem 3.2.

Remark 3.2. In other words, Theorem 3.2 ensures that if f has the global growth
given by (h∞) and the asymptotic condition at zero (h0,F ) is verified then, for every
parameter λ belonging to the real interval �M :=]0, λ
[, where

λ
 := q‖α‖L1(M)

2
sup
γ>0

γ 2

A(γ )
,

problem (Pλ) admits at least one non-trivial solution w0,λ ∈ H2
1 (M). Moreover

‖w0,λ‖H2
1

→ 0, as λ → 0+. Moreover, a straightforward computation shows that

λ
 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞ if 1 < q < 2
1

‖K‖∞S2
2 a2

if q = 2

q‖α‖1/2
L1(M)

γ max

2‖K‖∞(q S1a1+‖α‖(q−1)/2
L1(M)

Sq
q a2γ

q−1
max )

if q ∈
]
2, 2d

d−2

[
,

where

γ max := 1

‖α‖1/2
L1(M)

(
q S1a1

(q − 2)Sq
q a2

)1/(q−1)

.

We also note that in the case q ∈ ]
2, 2∗[, we have

‖u0,λ‖H2
1

<

(
q S1a1

(q − 2)Sq
q a2

)1/(q−1) (
1

min{1, ess infσ∈M α(σ)1/2}
)

,

uniformly for every λ ∈ �M.

Remark 3.3. From the above observation, it follows that if f is a sublinear function
at infinity, Theorem 3.2 ensures that, for each λ > 0, the problem (Pλ) admits at
least one non-zero weak solution. We explicitly observe that, in this case, also the
classical direct methods theorem ensures the existence of at least one weak solution.
However, in this case, it may be zero.
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Remark 3.4. In our context, a concrete upper bound for the constants Sq in The-
orem 3.2 is essential for a concrete evaluation of the interval �M. In the case
(M, g) = (Sd , h), if q ∈ [1, 2d/(d − 2)[, we have

Sq ≤ S

q := κq

min
{
1, ess infσ∈Sd α(σ)1/2

} , (16)

where, we set

κq :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω

2−q
2q

d if q ∈ [1, 2[,

max

⎧⎨
⎩
(

q−2

dω

q−2
q

d

)1/2

, 1

ω

q−2
2q

d

⎫⎬
⎭ if q ∈

[
2, 2d

d−2

[
.

Indeed, in Beckner [4], it is proved that for every 2 ≤ q < 2d/(d − 2) and any
w ∈ H2

1 (Sd),

⎛
⎜⎝
∫

Sd

|w(σ)|qdσh

⎞
⎟⎠

2/q

≤ q − 2

dω
1−2/q
d

∫

Sd

|∇w(σ)|2dσh + 1

ω
1−2/q
d

∫

Sd

w(σ)2dσh,

see also, for instance, Theorem 4.28 in Hebey [15]. Hence,

‖w‖Lq (Sd ) ≤ max

⎧⎪⎨
⎪⎩

⎛
⎜⎝ q − 2

dω

q−2
q

d

⎞
⎟⎠

1/2

,
1

ω

q−2
2q

d

⎫⎪⎬
⎪⎭

×
⎛
⎜⎝
∫

Sd

|∇w(σ)|2dσh +
∫

Sd

w(σ)2dσh

⎞
⎟⎠

1/2

,

for every w ∈ H2
1 (Sd). Owing to (1) the desiderated statement follows. On the

other hand, if q ∈ [1, 2[, as simple consequence of Hölder’s inequality, it follows
that

‖w‖Lq (Sd ) ≤ ω

2−q
2q

d ‖w‖L2(Sd ), for all w ∈ L2(Sd).

The thesis is achieved taking into account that

‖w‖L2(Sd ) ≤ ‖w‖H2
1

≤ ‖w‖H2
α

min
{
1, minσ∈Sd α(σ)1/2

} ,

for every w ∈ H2
1 (Sd). Note also that if d ≥ 4, it follows that

q − 2 <
2d

d − 2
− 2 ≤ d.
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In this case, clearly

q − 2

ω

q−2
q

d

<
d

ω

q−2
q

d

,

and we have κq = ω

2−q
2q

d , for every q ∈ [1, 2∗[. Consequently, if d ≥ 4, we obtain

S

q := ω

2−q
2q

d

min
{
1, ess infσ∈Sd α(σ)1/2

} ,

for every q ∈ [1, 2∗[.
Remark 3.5. We observe that if f is a non-negative function our results guarantee
that the attained weak solution is non-negative. From our goal, let w0 be a weak solu-
tion of problem (Pλ). Arguing by contradiction, assume that the set M0 := {

σ ∈
M : w0(σ ) < 0

}
has positive Riemannian measure. Put w(σ) := min{0, w0(σ )}

for all σ ∈ M. Clearly, w ∈ H2
1 (M) and

∫
M

〈∇w(σ),∇w(σ)〉gdσg +
∫
M

α(σ)〈w(σ),w(σ)〉gdσg

−λ

∫
M

K (σ ) f (w(σ))w(σ)dσg = 0,

that is,

∫
M0

|∇w0(σ )|2dσg +
∫

M0

α(σ)w0(σ )2dσg =λ

∫
M0

K (σ ) f (w(σ))w0(σ )dσg ≤0.

Hence
∫

M0

|∇w0(σ )|2dσg +
∫

M0

α(σ)w0(σ )2dσg = 0.

Then, w0 = 0 almost everywhere in M0. This is not possible by the definition of
M0, so it follows that w0 is non-negative. It is also evident that the above assertion
remains valid requiring only that f is non-negative in [0,+∞[.

The following example deals with a nonlinear problem on the unit sphere
endowed with the natural metric h and involving a nonlinearity with subcritical
growth.
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Example 3.1. Let (Sd , h) with d ≥ 3 and K ∈ �+(Sd). Further, consider the
following equation

− �hw + w = λK (σ )(|w|r−2w + |w|s−2w), (P̃λ)

for every σ ∈ S
d and w ∈ H2

1 (Sd), where 1 < r < 2 and 2 < s < 2∗. Then, for
every

λ ∈
]

0,
sω1/2

d γ max

4‖K‖∞(sS1 + ω
(s−1)/2
d Ss

s γ
s−1
max)

[
,

where

γ max := 1

ω
1/2
d

(
S1

Ss
s

(
s

s − 2

))1/(s−1)

,

the problem (P̃λ) admits at least one non-negative (and non-trivial) weak solution
w0,λ ∈ H2

1 (Sd) such that

‖w0,λ‖H2
1

<

(
S1

Ss
s

(
s

s − 2

))1/(s−1)

,

and limλ→0+ ‖w0,λ‖H2
1

= 0. To prove this, we can apply Theorem 3.2 with

f (t) := |t |r−2t + |t |s−2t,

for every t ∈ R. Indeed, it is easy to verify that

| f (t)| ≤ 2(1 + |t |s−1), ∀ t ∈ R.

Moreover, a direct computation shows that

lim
ξ→0+

F(ξ)

ξ2 ≥ 1

r

(
lim

ξ→0+
1

ξ2−r

)
= +∞.

Hence, all the assumptions of Theorem 3.2 are verified and the conclusion follows.

Remark 3.6. We point out that the energy functional Jλ associated to problem (P̃λ)

is unbounded from below. In fact, if we fix v ∈ H2
1 (Sd) and τ ∈ R, then

Jλ(τv) ≤ τ 2

2
‖v‖2

H2
α

− λ

[
τ r

r
‖v‖r

Lr (Sd )
+ τ s

s
‖v‖s

Ls (Sd )

]
ess inf
σ∈Sd

K (σ ).

So, as r < 2 < s, it follows that

lim
τ→+∞ Jλ(τv) = −∞.

Hence, as consequence, the functional Jλ is not coercive. Hence, the classical
Tonelli’s method cannot be applied to the above case.
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Example 3.2. Let α, K ∈ �+(Sd). Owing to Theorem 3.2 and taking into account
Remark 3.2, the following elliptic parametric problem

− �hw + α(σ)w = λK (σ )
√|w|, σ ∈ S

d , w ∈ H2
1 (Sd), (Sα

λ )

admits at least one non-trivial weak solution for all λ > 0. In this case Theorem
1.1 obtained in [20] cannot be applied just because the real function defined by
f (t) = √|t |, for every t ∈ R, does not belong to F .

Remark 3.7. We also point out that contributions on the existence of multiple solu-
tions for elliptic problems on the spherical case are contained in Kristály [19]; see
also the related paper Kristály and Marzantowicz [21].

In the sequel we prove how the previous results can be used in order to pass
from the existence of at least one nontrivial solution to the existence of at least two
nontrivial solutions. This goal will be achieved making use of the particular nature
of the first solution, namely the local minimum of the associated energy functional.
This information will be used to assure the existence of a second solution as a
critical point of mountain pass type. In this direction, we begin with the follow-
ing theorem, where the celebrated Ambrosetti–Rabinowitz condition is required.
As usual, this assumption plays a crucial role in proving that every Palais-Smale
sequence is bounded, as well as that the so called ‘mountain pass geometry’ is
satisfied.

Theorem 3.3 Let f : R → R be a continuous function such that

| f (t)| ≤ a1 + a2|t |q−1, ∀t ∈ R, (h′∞)

for some non-negative constants a1, a2, where q ∈]2, 2∗[. Furthermore, assume
that condition (h′′

0,F ) holds in addition to:
(AR) there are constants μ > 2 and r > 0 such that, for all |ξ | ≥ r ,

0 < μF(ξ) ≤ ξ f (ξ).

Then, for each λ ∈ �M, the problem (Pλ) admits at least two weak solutions.

Proof. Fix λ ∈ �M. Owing to (h′∞) and (h′′
0,F ), Theorem 3.2 ensures that the

problem (Pλ) admits at least one weak non-trivial solution w1 which is a local
minimum of the functional Jλ as defined in the proof of Theorem 3.1. In view of
assumption (AR), reasoning in a standard way, it is possible to verify that every
Palais-Smale sequence is bounded. This, leads to the fact that Jλ satisfies the clas-
sical Palais-Smale condition by the fact that �′ is a linear isomorphism, while � ′ is
compact; see [14, Proposition 3.8]. Moreover, it is well known that, again by (AR),
there exist suitable (positive) constants γ1, γ2 with

F(ξ) ≥ γ1|ξ |μ − γ2, ∀ ξ ∈ R. (17)

Let {ξn} be a sequence in R such that ξn → +∞ and consider the related sequence
of functions wn(σ ) := ξn for every σ ∈ M which belongs to X . Obviously, in
view of (17), we have

Jλ(wn) ≤ ξ2
n

2
‖α‖L1(M) − λ

(
γ1ξ

μ
n − γ2

) ‖K‖L1(M),
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that is

lim inf‖w‖X →∞ Jλ(w) = −∞,

and there exists some w0 ∈ X such that

Jλ(w0) < Jλ(w1). (18)

Now, we can assume that w1 is a strict local minimum for Jλ in X , otherwise there
exist infinitely many nontrivial critical points of Jλ. Hence, we can apply the clas-
sical mountain pass theorem and obtain a second critical point w2 ∈ X such that
Jλ(w2) > Jλ(w1), that is w1 �= w2 and the proof is complete. ��
Remark 3.8. The existence of two solutions for the problem (Pλ) has been investi-
gated by Kristály et al. in [24, Theorem 9.4, p. 222] and by Kristály and Rădulescu
in [23, Theorem 1.1]. Moreover, very recently, Kristály in [20] studied bifurcation
effects for a sublinear problem (Pλ,μ) defined on a compact Riemannian manifold
M without boundary. All the above cited results cannot be applied to our cases due
to the asymptotic condition (h0) that we assume at zero. Finally, we observe that
assuming f (0) �= 0, Corollary 3.3 ensures the existence of at least two non-zero
solutions for problem (Pλ); see also Corollary 4.2 in the sequel.

As usual, condition (AR) plays a crucial role in proving that every Palais-Smale
sequence is bounded, as well as that the so called ‘mountain pass geometry’ is sat-
isfied. However, even dealing with different problems than ours, several authors
studied more general or different assumptions that still allow to apply min-max
methods in order to assure the existence of critical points. Here we show a result
that moves in this direction. We recall that a C1-functional Jλ : X → R defined on
a real Banach space X satisfies the Cerami condition (briefly (C)) if

(C) Every sequence {xn} in X such that {Jλ(xn)} is bounded and

(1 + ‖xn‖X )‖J ′
λ(xn)‖X∗ → 0,

admits a strongly convergent subsequence in X. A sequence {xn} that satisfies
the above conditions is called a Cerami sequence.

We recall here, for reader’s convenience, the following Lemma due to Liu; see [26,
Lemma 2.5].

Lemma 3.1 Let f : R → R be a continuous function and set

F̃(ξ) := ξ f (ξ) − 2F(ξ), (F)

for every ξ ∈ R. Assume that
( f1) there exists ρ > 0 such that the function

g(t) := f (t)

t
,

is non-decreasing in t ≥ ρ and non-increasing in t ≤ −ρ.
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Then, the real mapping F̃, defined in (F), is non-decreasing in t ≥ ρ and
non-increasing in t ≤ −ρ. In particular, there is a constant C1 > 0 such that

F̃(ξ1) ≤ F̃(ξ2) + C1, (19)

for 0 ≤ ξ1 ≤ ξ2 or ξ2 ≤ ξ1 ≤ 0.

Proof. Let us consider only the case ξ1 ≤ ξ2 ≤ t . We have

F̃(ξ2) − F̃(ξ1) = 2

[
( f (ξ2)t − f (ξ1)ξ1) − (F(ξ2) − F(ξ1))

2

]

= 2
[ ξ2∫

ρ

g(ξ2)τdτ −
ξ1∫

ρ

g(ξ1)τdτ −
ξ2∫

ξ1

g(τ )τdτ

− g(ξ2)ρ
2

2
− g(ξ1)ρ

2

2

]

= 2
[ ξ2∫

ξ1

(g(ξ2) − g(τ ))τdτ +
ξ1∫

ρ

(g(ξ2) − g(ξ1))τdτ

+ ρ2

2
(g(ξ2) − g(ξ1))

]
≥ 0.

The case ξ2 ≤ ξ1 ≤ −ρ is similar. Furthermore, condition implies that F̃ ∈
C0(R; R) and

C1 := 1 + max
ξ∈[−ρ,ρ] F̃(ξ) − min

ξ∈[−ρ,ρ] F̃(ξ) < +∞.

With this positive constant C1 it is easy to see that condition (19) holds. ��
As consequence of Theorem 3.2 and the above Lemma we obtain the following

multiplicity result.

Theorem 3.4 Let f : R → R be a continuous function such that conditions (h′∞)

and ( f1) hold in addition to

lim|ξ |→∞
F(ξ)

ξ2 = +∞. (h∞,F )

Furthermore, assume that

lim
ξ→0+

F(ξ)

ξ2 = +∞. (h′
0)

Then, for each λ ∈ �M, the problem (Pλ) admits at least two weak solutions. If,
in addition, f (0) �= 0 the attained solutions are non-zero.



Nonlinear elliptic problems 177

Proof. Let X := H2
1 (M). Fix λ ∈ �M and argue as in the proof of Theorem 3.3

in order to assure the existence of a first non-trivial weak solution. Moreover, in
view of assumption (h∞,F ), it is possible to verify that

lim inf‖w‖X →+∞ Jλ(w) = −∞. (20)

Indeed, for

η >
‖α‖L1(M)

2λ‖K‖L1(M)

,

there exists τ > 0 such that F(ξ) > ηξ2 for every |ξ | > τ . Hence, if {ξn} is a
sequence in R with ξn → +∞ and we consider the sequence in X defined by
putting wn(σ ) = ξn for every σ ∈ M we have

Jλ(wn)= ‖α‖L1(M)

2
ξ2

n −λ‖K‖L1(M)F(ξn) <

(‖α‖L1(M)

2
−λ‖K‖L1(M)η

)
ξ2

n ,

for every n ∈ N large enough and (20) follows from the choice of η. Hence, there
exists u1 ∈ X such that (18) is true. To complete the proof, it is sufficient to prove
that, from Lemma 3.1, the functional Jλ satisfies the (C)-condition. For our goal we
argue following [26, Lemma 2.5]. Hence, let {wn} be a Cerami sequence of Jλ. We
observe that it suffices to show that {wn} is bounded. Indeed, if {wn} is a bounded
sequence in X such that {Jλ(wn)} is bounded and ‖J ′

λ(wn)‖X∗ → 0, since �′ is a
linear isomorphism and � ′ is compact, passing to a subsequence if necessary, {wn}
is strongly convergent in X ; see [14, Proposition 3.8]. At this point, in order to
prove the boundedness of {wn}, we argue by contradiction. If {wn} is unbounded,
up to a subsequence we may assume that there is c ∈ R such that:

Jλ(wn) → c

‖wn‖X → +∞
‖wn‖X‖J ′

λ(wn)‖X∗ → 0.

In particular, since J ′
λ(wn)(wn) → 0 (as n → ∞), we have

lim
n→∞

∫
M

K (σ )
F̃(wn(σ ))

2
dσg = limn→∞

{
Jλ(wn) − 1

2 J ′
λ(wn)(wn)

}
λ

= c

λ
.

(21)

Let xn := wn/‖wn‖H2
α

, for every n ∈ N. Up to a subsequence, we have that

xn ⇀ x in X

xn → x in Lq(M)

xn(σ ) → x(σ ) a.e. σ ∈ M.

If x = 0, we choose a sequence {tn} ⊂ [0, 1] such that

Jλ(tnwn) = max
t∈[0,1] Jλ(twn).
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For any m > 0, let vn := 2
√

mxn , for every n ∈ N.
At this point, owing to vn → 0 in Lq(M) (so vn → 0 in L1(M)) and

∫
M

|K (σ )F(vn(σ ))|dσg ≤ ‖K‖∞
(

a1‖vn‖L1(M) + a2

q
‖vn‖q

Lq (M)

)
→ 0,

as n → ∞. Thus

lim
n→∞

∣∣∣∣∣∣
∫
M

K (σ )F(vn(σ ))dσg

∣∣∣∣∣∣ = 0.

So, for n sufficiently large, 2
√

m/‖wn‖H2
α

∈]0, 1[, and

‖vn‖2
H2

α
= ‖2

√
mxn‖2

H2
α

=
∥∥∥∥∥2

√
m

wn

‖wn‖H2
α

∥∥∥∥∥
2

H2
α

= 4m.

Hence, there exists ν ∈ N such that for evert n ≥ ν, we can write

Jλ(tnwn) := max
t∈[0,1] Jλ(twn) ≥ Jλ(vn) ≥ 2m −

∣∣∣∣∣∣
∫
M

K (σ ) f (vn(σ ))dσg

∣∣∣∣∣∣ ≥ m.

Then, we have

Jλ(tnwn) → +∞, (22)

as n → ∞. Now, since Jλ(0) = 0 and Jλ(wn) → c, we deduce that tn ∈]0, 1[ and

‖tnwn‖2
H2

α
− λ

∫
M

K (σ ) f (tnwn(σ ))tnwn(σ )dσg = J ′
λ(tnwn)(tnwn)

= tn
d

dt
|t=tn Jλ(twn) = 0.

Therefore, using relation (19) in Lemma 3.1 and the above computation, we deduce
that

∫
M

K (σ )
F̃(wn(σ ))

2
dσg ≥

∫
M

K (σ )
F̃(tnwn(σ ))

2
dσg − C1

2
‖K‖L1(M)

= 1

2λ
‖tnwn‖2

H2
α

−
∫
M

K (σ )F(tnwn(σ ))dσg

− C1

2
‖K‖L1(M)

= Jλ(tnwn)

λ
− C1

2
‖K‖L1(M).
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Therefore, since (22) holds, it follows that
∫
M

K (σ )
F̃(wn(σ ))

2
dσg → +∞.

This relation contradicts with (21). If x �= 0 the sub-manifold

M� := {σ ∈ M : x(σ ) �= 0},
has positive Riemann measure. Since |wn(σ )| = |xn(σ )|‖wn‖H2

α
for every σ ∈ M,

for σ ∈ M�, we have |wn(σ )| → ∞ and thanks to (h∞,F ), we obtain

F(wn(σ ))

wn(σ )2 xn(σ )2 → +∞.

Hence, as n → ∞, the Fatou’s Lemma, implies∫
M�

F(wn(σ ))

wn(σ )2 xn(σ )2dσg → +∞. (23)

Since Jλ(wn) → c, clearly

1

2
‖wn‖2

H2
α

− λ

∫
M

K (σ )F(wn(σ ))dσg − c = o(1),

where o(1) → 0 as n → ∞. Then

1

2
− c + o(1)

‖wn‖2
H2

α

= λ

∫
M

K (σ )F(wn(σ ))

‖wn‖2
H2

α

dσg.

Consequently, we can write

1

2
− c + o(1)

‖wn‖2
H2

α

= λ

∫
M

K (σ )F(wn(σ ))

‖wn‖2
H2

α

dσg

= λ

∫
M�

K (σ )F(wn(σ ))

wn(σ )2 xn(σ )2dσg (24)

+ λ

∫
M\M�

K (σ )F(wn(σ ))

wn(σ )2 xn(σ )2dσg

On the other hand from hypothesis (h∞,F ) we have

lim|ξ |→∞ F(ξ) = +∞.

Hence, taking into account that F ∈ C0(R; R), there exists a positive constant �1
such that

F(ξ) ≥ −�1,
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for every ξ ∈ R. Then, since 1/‖wn‖H2
α

= xn/wn , it follows that
∫

M\M�

K (σ )F(wn(σ ))xn(σ )2

wn(σ )2 dσg ≥ −�1
‖K‖∞
‖wn‖2

H2
α

Volg(M \ M�).

The above inequality together (23) and (24) yield

1

2
− c + o(1)

‖wn‖2
H2

α

≥ λ ess inf
σ∈M

K (σ )

∫
M�

F(wn(σ ))

wn(σ )2 xn(σ )2dσg

− �1λ
‖K‖∞
‖wn‖2

H2
α

Volg(M \ M�).

This is clearly impossible. Hence, the sequence {wn} is bounded in X . In conclu-
sion, applying the version of the mountain pass theorem, where (PS) is replaced by
(C), the conclusion is achieved; see, for details, the work [11]. ��
Remark 3.9. Condition (h∞,F ) is a consequence of the following

lim|t |→∞
f (t)

t
= +∞,

that characterizes the problem (Pλ) as superlinear at infinity. As pointed out in prece-
dence the boundedness of Palais-Smale sequences of the Euler-Lagrange functional
Jλ can be obtained if the Ambrosetti–Rabinowitz condition is verified. However,
hypothesis (AR) can not be useful treating some nonlinearities. Indeed, if a function
f satisfies (AR) then there exist suitable (positive) constants γ1, γ2 with

F(ξ) ≥ γ1|ξ |μ − γ2, ∀ ξ ∈ R.

For this reason, in recent years, several authors studied superlinear problems trying
to drop the condition (AR); see for instance the works [26,27] and the references
therein.

Example 3.3. Set f : R → R be the continuous function given by

f (t) := t log(1 + |t |) + 1.

Hence, we deduce that

F(ξ) = |ξ |
2

+ (ξ2 − 1) log(|ξ | + 1)

2
− ξ2

4
+ ξ, ∀ ξ ∈ R

and it is easy to check that all the conditions of Theorem 3.4 hold. Then, with the
usual notations, the following equation

− �gw + α(σ)w = λK (σ )(w log(1 + |w|) + 1), (Cλ)

for every σ ∈ M and w ∈ H2
1 (M), admits at least two non-negative (and non-

trivial) weak solutions for every λ ∈ �M. Finally, since

lim|ξ |→+∞
ξ f (ξ)

F(ξ)
= lim|ξ |→+∞

4ξ(ξ log(|ξ | + 1) + 1)

2|ξ | + 2(ξ2 − 1) log(|ξ | + 1) − ξ(ξ − 4)
= 2,

the Ambrosetti–Rabinowitz hypothesis fails.
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4. Applications to singular elliptic problems

In this section d and s denote two real fixed constants with d ≥ 3 and 1−d < s < 0,

f : R → R is a locally Lipschitz continuous function (or more generally locally
Hölder continuous) and K is a smooth and positive map on the unit sphere S

d . Con-
sider the following parameterized Emden-Fowler problem that arises in astrophys-
ics, conformal Riemannian geometry, and in the theories of thermionic emission,
isothermal stationary gas sphere, and gas combustion:

− �u = λ|x |s−2 K (x/|x |) f (|x |−su), x ∈ R
d+1 \ {0}. (Fλ)

As pointed out in Introduction, equation (Fλ) has been studied by Cotsiolis–Iliopo-
ulos [13], Vázquez-Véron [34] by using either minimization or minimax methods.
More recently, in [23] and successively in [9], some existence results are achieved
by variational methods. The solutions of (Fλ) are being sought in the particular
form

u(x) = rsw(σ), (25)

where, (r, σ ) := (|x |, x/|x |) ∈ (0,∞) × S
d are the spherical coordinates in

R
d+1 \ {0} and w be a smooth function defined on S

d . This type of transformation
is also used by Bidaut-Véron and Véron [5], where the asymptotic of a special form
of (Fλ) has been studied. Throughout (25), taking into account that

�u = r−d ∂

∂r

(
rd ∂u

∂r

)
+ r−2�hu,

equation (Fλ) reduces to

−�hw + s(1 − s − d)w = λK (σ ) f (w), σ ∈ S
d , w ∈ H2

1 (Sd).

Due to our regularity assumptions on the data, the weak solutions of our prob-
lem are also classical as observed by Kristály and Rădulescu in [23]. Now, for every
two nonnegative constants γ, δ, with γ �= δ, let

a

γ (δ) := A
(γ ) − q F(δ)‖K‖L1(Sd )

s(1 − s − d)ωd(γ 2 − δ2)q
,

where

A
(γ ) := (q(s(1 − s − d)ωd)1/2γ S1a1 + (s(1 − s − d)ωd)q/2γ q Sq
q a2)‖K‖∞.

We have the following result.

Corollary 4.1 Let f : R → R is a locally Lipschitz continuous function such that
condition (h∞) holds. Assume that there are three real constants γ1, γ2 and δ, with
0 ≤ γ1 < δ < γ2, such that

a

γ2

(δ) < a

γ1

(δ). (26)
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Then, for each parameter λ belonging to

�

F :=

]
1

2a

γ1

(δ)
,

1

2a

γ2

(δ)

[
,

the following problem

− �u = λ|x |s−2 K (x/|x |) f (|x |−su), x ∈ R
d+1 \ {0}, (Fλ)

admits at least one classical solution.

Proof. Let us choose (M, g) = (Sd , h), and α(σ) := s(1−s −d) for every σ ∈ S
d

in Theorem 3.1. Clearly α ∈ C∞(Sd) and, thanks to 1−d < s < 0, α to be positive
on S

d . Thus, for every �

F ⊆ �, the problem

−�hw + s(1 − s − d)w = λK (σ ) f (w), σ ∈ S
d , w ∈ H2

1 (Sd),

has at least one non-trivial solution wλ ∈ H2
1 (Sd). On account of (25), the element

uλ(x) = |x |swλ(x/|x |), is a non-trivial solution of (Fλ). ��
A special case of Theorem 3.3, reads as follows.

Corollary 4.2 Let f : R → R be a locally Lipschitz continuous function such that
conditions (h′∞) and (h′′

0,F ) hold. Then, there exists λ

F > 0 such that for every

λ ∈]0, λ

F[, the following problem

− �u = λ|x |s−2 K (x/|x |) f (|x |−su), x ∈ R
d+1 \ {0}, (Fλ)

admits at least one non-trivial classical solution. Moreover if, in addition, the func-
tion f satisfies

0 < μ

t∫
0

f (s)ds ≤ t f (t),

for every |t | ≥ r , for some r > 0 and μ > 2, then, for each λ ∈]0, λ

F[, the problem

(Fλ) admits at least two non-trivial classical solutions.

Remark 4.1. Arguing as in Corollary 4.1, analogous of Theorems in Sect. 3 can be
easily obtained for our new setting. For instance, the first part of Corollary 4.2 is an
exhaustive version of Theorem 3.2 for Emden-Fowler type equations. In this case,
for every parameter λ ∈]0, λ


F[, the problem (Fλ) admits at least one non-trivial
solution. Moreover, the existence of a second non-trivial solution is obtained argu-
ing as in Theorem 3.3. Moreover, by using Remarks 3.2, a concrete expression for
the value of λ


F is given by

λ

F =

⎧⎪⎪⎨
⎪⎪⎩

+∞ if 1 < q < 2
1

‖K‖∞S2
2 a2

if q = 2

q(s(1−s−d)ωd )1/2γ max

2‖K‖∞(q S1a1+(s(1−s−d)ωd )(q−1)/2 Sq
q a2γ

q−1
max )

if q ∈
]
2, 2d

d−2

[
,
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where

γ max :=
(

S1a1

(q − 2)(s(1 − s − d))q/2ω
(q−1)/2
d Sq

q a2

)1/(q−1)

.

Finally, we give here a direct application of Corollary 4.2.

Example 4.1. Let K ∈ C∞(S3) be a positive mapping and consider the parametric
Emden-Fowler equation

− �u = λ|x |s−2 K (x/|x |)(1 + |x |−3su3), x ∈ R
4 \ {0}, (F′

λ)

where we fix s ∈] − 2, 0[. Then, for every λ belonging to the interval

�F′
λ

:=
⎤
⎦0,

1

3‖K‖∞S1

(
2

S4
4

)1/3
⎡
⎣ ,

the problem (F′
λ) admits at least two non-negative (and non-trivial) classical solu-

tions. To prove this, we can apply Corollary 4.2 to the locally Lipschitz continuous
function

f (t) := 1 + t3, ∀ t ∈ R,

bearing in mind Remark 4.1. Indeed, clearly the function f satisfies (h′∞) and, since

lim
t→0+

f (t)

t
= +∞,

also condition (h′′
0,F ) holds true. Moreover, taking into account that

lim|ξ |→∞
ξ f (ξ)

F(ξ)
= 4 lim|ξ |→∞

ξ3 + 1

ξ3 + 4
= 4 > 2,

there exist μ > 2 and r > 0 such that

0 < μF(ξ) ≤ ξ f (ξ),

for every |ξ | > r . Hence, all the assumptions of Corollary 3.3 are verified and the
conclusion follows.

Remark 4.2. It is well-known that sharp Sobolev inequalities are important in the
study of partial differential equations. In our context, a concrete upper bound for
the constants Sq in the above example is essential for an explicit evaluation of the
interval of parameters. Now, we observe that in Example 4.1 a more precise infor-
mation on the size of the interval �F′

λ
can be easily obtained taking into account

Remark 3.4. Indeed, if q ∈ [1, 5] and s ∈] − 2, 0[, we have

S

q = ω

2−q
2q

3

(−s(s + 2))1/2 .
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Consequently, for λ sufficiently small, more precisely

0 < λ <
(−s(s + 2))7/6

3

(
21/3

ω
1/6
3 ‖K‖∞

)
,

problem (F′
λ) admits at least two non-negative (and non-trivial) classical solutions.
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47/2011.
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[28] Motreanu, D., Rădulescu, V.: Variational and non-variational methods in nonlinear

analysis and boundary value problems. In: Nonconvex Optimization and Applications.
Kluwer, Dordrecht (2003)

[29] Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup.
Pisa 13, 115–162 (1959)

[30] Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to
Differential Equations, CBMS Reg. Conferences in Mathematics, vol. 65. AMS, Prov-
idence (1985)

[31] Ricceri, B.: A general variational principle and some of its applications. J. Comput.
Appl. Math. 113, 401–410 (2000)

[32] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curva-
ture. J. Differ. Geom. 20, 479–495 (1984)

[33] Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian struc-
tures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968)

[34] Vázquez, J.L., Véron, L.: Solutions positives d’équations elliptiques semi-linéaires sur
des variétés riemanniennes compactes. C. R. Acad. Sci. Paris, Sér. I Math. 312, 811–
815 (1991)

[35] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka
J. Math. 12, 21–37 (1960)


	Nonlinear elliptic problems on Riemannian manifolds and applications to Emden--Fowler type equations
	Abstract.
	1 Introduction
	2 Preliminaries
	3 Main results
	4 Applications to singular elliptic problems
	Acknowledgements.
	References


