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Abstract. In this paper, using variational methods, we establish the existence and multi-
plicity of multi-bump solutions for the following nonlinear magnetic Schrödinger equation

−(∇ + iA(x))2u + (λV (x) + Z(x))u = f (|u|2)u in R
2,

where λ > 0, f (t) is a continuous function with exponential critical growth, the magnetic
potential A : R

2 → R
2 is in L2loc(R

2) and the potentials V , Z : R
2 → R are continuous

functions verifying some natural conditions. We show that if the zero set of the potential
V has several isolated connected components �1, . . . , �k such that the interior of � j is

non-empty and ∂� j is smooth, then for λ > 0 large enough, the equation has at least 2k − 1
multi-bump solutions.

1. Introduction and main results

This paper is devoted to the qualitative analysis of solutions for the nonlinear mag-
netic Schrödinger equation in R

2. We are concerned with the existence and multi-
plicity of multi-bump solutions if the reaction has an exponential critical behavior.
In the first part of this section, we recall some significant historical moments related
to the development of the Schrödinger theory. The main result and an associated
multiplicity property are described in the second part of the present section.

1.1. Historical comments

The Schrödinger equation is central in quantum mechanics and it plays the role of
Newton’s laws and conservation of energy in classical mechanics, that is, it predicts
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the future behaviour of a dynamical system. It is striking to point out that talking
about his celebrating equation, Erwin Schrödinger said: “I don’t like it, and I’m
sorry I ever had anything to do with it". The linear Schrödinger equation is a central
tool of quantum mechanics, which provides a thorough description of a particle in
a non-relativistic setting. Schrödinger’s linear equation is

�u + 8π2m

�2
(E − V (x)) u = 0 ,

where u is the Schrödinger wave function, m is the mass of the particle, � denotes
Planck’s renormalized constant, E is the energy, and V stands for the potential
energy.

Schrödinger also established the classical derivation of his equation, based
upon the analogy between mechanics and optics, and closer to de Broglie’s ideas.
He developed a perturbation method, inspired by the work of Lord Rayleigh in
acoustics, proved the equivalence between his wave mechanics and Heisenberg’s
matrix, and introduced the time dependent Schrödinger’s equation

i�ut = − �
2

2m
�u + V (x)u − γ |u|p−1u x ∈ R

N (N ≥ 2), (1.1)

where p < 2N/(N − 2) if N ≥ 3 and p < +∞ if N = 2.
In physical problems, a cubic nonlinearity corresponding to p = 3 in Eq. (1.1)

is common; in this case problem (1.1) is called the Gross–Pitaevskii equation.
In the study of Eq. (1.1), Floer and Weinstein [24] and Oh [37] supposed that the
potential V is bounded and possesses a non-degenerate critical point at x = 0.More
precisely, it is assumed that V belongs to the class (Va) (for some real number a)
introduced in Kato [30]. Taking γ > 0 and � > 0 sufficiently small and using a
Lyapunov–Schmidt type reduction, Oh [37] proved the existence of bound state
solutions of problem (1.1), that is, a solution of the form

u(x, t) = e−i Et/�u(x) . (1.2)

Using the Ansatz (1.2), we reduce the nonlinear Schrödinger equation (1.1) to the
semilinear elliptic equation

− �
2

2m
�u + (V (x) − E) u = |u|p−1u .

The change of variable y = �
−1x (and replacing y by x) yields

− �u + 2m (V�(x) − E) u = |u|p−1u x ∈ R
N , (1.3)

where V�(x) = V (�x).
Let us also recall that in his 1928 pioneering paper, Gamow [25] proved the

tunneling effect, which lead to the construction of the electronic microscope and
the correct study of the alpha radioactivity. The notion of “solution" used by him
was not explicitly mentioned in the paper but it is coherent with the notion of weak
solution introduced several years later by other authors such as J. Leray, L. Sobolev
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and L. Schwartz. Most of the study developed by Gamow was concerned with the
bound states u(x, t) defined in (1.2), where u solves the stationary equation

−�u + V (x)u = λu in R
N ,

for a given potential V (x). Gamow was particularly interested in the Coulomb
potential but he also proposed to replace the resulting potential by a simple potential
that keeps the main properties of the original one. In this way, if � is a subdomain
of R

N , Gamow proposed to use the finite well potential

Vq,�(x) =
{

V (x) if x ∈ �

q if x ∈ R
N \ �

for some q ∈ R.

It seems that the first reference dealing with the limit case, the so-called infinite
well potential,

V∞(x; R, V0) =
{

V0 if x ∈ �

+∞ if x ∈ R
N \ �

for some V0 ∈ R,

was the book by the 1977Nobel PrizeMott [36]. Themore singular case inwhich V0
is the Dirac mass δ0 is related with the so-called Quantum Dots, see Joglekar [29].
In contrast with classical mechanics, in quantummechanics the incertitude appears
(the Heisenberg principle). For instance, for a free particle (i.e. with V (x) ≡ 0),
in nonrelativistic quantum mechanics, if the wave function u(·, t) at time t = 0
vanishes outside some compact region � then at an arbitrarily short time later the
wave function is nonzero arbitrarily far away from the original region �. Thus, the
wave function instantaneously spreads to infinity and the probability of finding the
particle arbitrarily far away from the initial region is nonzero for all t > 0. We
refer to Díaz [20] for more details. Finally, we point out that sublinear Schrödinger
equations with lack of compactness and indefinite potentials have been studied by
Bahrouni, Ounaies and Rădulescu [10,11].

1.2. Main results

Consider the following nonlinear Schrödinger equation

−�u + (λV (x) + Z(x))u = f (u), x ∈ R
N , (1.4)

where λ > 0 is a parameter, V, Z , f are continuous functions verifying some
assumptions, has been studied by many researchers. In [21], Ding and Tanaka
studied problem (1.4) assuming f (t) = |t |q−1t . In thismentioned paper, the authors
established the existence of multi-bump positive solutions for the problem

{ − �u + (λV (x) + Z(x))u = u p, x ∈ R
N ,

u ∈ H1(RN ),
(1.5)

where 2 < p < 2N/(N − 2) for N ≥ 3 and 2 < p < ∞ for N = 1, 2. The
authors showed that problem (1.5) has at least 2k − 1 multi-bump solutions for λ
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large enough. These solutions have the following properties: for each non-empty
subset 	 ⊂ {1, 2, . . . , k} and ε > 0 fixed, there is λ∗ > 0 such that problem (1.5)
possesses a solution uλ for all λ ≥ λ∗ = λ∗(ε), satisfying:
∣∣∣
∫

� j

(|∇uλ|2 + (λV (x) + Z(x))|uλ|2
)
dx −

(1
2

− 1

p + 1

)−1
c j
∣∣∣ < ε, ∀ j ∈ 	

and ∫
RN \�	

(|∇uλ|2 + (λV (x) + Z(x))|uλ|2
)
dx < ε,

where �	 = ⋃
j∈	

� j and c j is the minimax level of the energy functional related to

the problem ⎧⎪⎨
⎪⎩

− �u + Z(x)u = u p, in � j ,

u > 0, in � j ,

u = 0, on ∂� j .

In [2], using variational methods, Alves et al. considered the existence of multi-
bump positive solutions for the following problem with critical growth

−�u + (λV (x) + Z(x))u = βu p + u2
∗−1, x ∈ R

N , (1.6)

where λ, β > 0, p ∈ (1, 2∗ −1), 2∗ = 2N/N −2, N ≥ 3. In [2], due to the critical
growth of the nonlinearity in R

N , the method applied in [21] does not hold. In [8],
using a new approach, Alves et al. established the same results for the following
equation

−�u + (λV (x) + Z(x))u = f (u), x ∈ R
2, (1.7)

where f is continuouswith exponential critical growth. Due to the exponential criti-
cal growth of the nonlinearity in R

2, some estimates in [8] are completely different
from the case N ≥ 3. For the further research about the nonlinear Schrödinger
equation with the deepening potential well, we refer to [1,4–7,9,12,27,34] and
their references.

In recent years, the nonlinear magnetic Schrödinger equation

i�
∂u

∂t
=
(

�

i
∇ − A(x)

)2
u +U (x)u − f (|u|2)u in R

N × R. (1.8)

has also received considerable attention. This class of problems has some relevant
physical applications, such as nonlinear optics and plasma physics. The function
u(x, t) takes on complex values, � is the Planck constant, i is the imaginary unit,
A : R

2 → R
2 is the magnetic potential.

When one looks for standing wave solutions u(x, t) := e−i Et/�u(x), with
E ∈ R, of Eq. (1.8), the problem can be reduced by

(ε
i
∇ − A(x)

)2
u + V (x)u = f (|u|2)u in R

N . (1.9)
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As far as we know, the first result seems to be established in [23], where the
existence of standing waves to problem (1.9) has been obtained for � > 0 fixed and
for special classes of magnetic fields. In this way, the authors obtained the existence
of solutions by solving an appropriate minimization problem for the corresponding
energy functional in the cases N = 2 and N = 3. After that, Kurata [31] proved that
the problem has a least energy solution for any ε > 0 when a technical condition
relating V (x) and A(x) is assumed. Under this technical condition, Kurata proved
that the associated energy functional satisfies the Palais–Smale condition at any
level. In [3], by combining a local assumption on V , the penalization techniques
of del Pino and Felmer [19] and the Ljusternik–Schnirelmann theory, Alves et al.
obtained the multiple solutions. We would like to refer to [16–18,22,28,35] for
other results related with the problem (1.9).

Recently, there aremanyworks concerning the followingmagnetic Schrödinger
equation with deepening potential well

−(∇ + iA(x))2u + (λV (x) + Z(x))u = f (|u|2)u in R
N . (1.10)

In particular, Tang [39] considered multi-bump solutions of problem (1.10) with
critical frequency in which Z(x) ≡ 0 and f satisfies subcritical growth. Liang and
Shi [33] consideredmulti-bump solutions of problem (1.10) with critical nonlinear-
ity for the case N ≥ 3. It is quite natural to consider multi-bump solutions for the
problem when the nonlinearity satisfies the exponential critical growth in N = 2.
To the best of our knowledge, this problem has not been considered. Motivated by
[3,8,33], the main goal of the present paper is to prove the existence of multi-bump
solutions for problem (1.10), considering a class of nonlinearity with exponential
critical growth in R

2. Because the nonlinearity has exponential critical growth in
R
2, some properties that are valid for N ≥ 3, do not necessarily hold for the class

of problems studied in this paper. Therefore, we need to take different approaches
in some estimates. On the other hand, as we will see later, due to the presence of
the magnetic field A(x), problem (1.10) cannot be changed into a pure real-valued
problem, hence we should deal with a complex-valued directly, which causes sev-
eral new difficulties in employing the methods in dealing with our problem. Our
problem is more complicated than the pattern studied in [8] and we need additional
technical estimates.

We now present the general assumptions used in the statement of themain result
of this paper.

(A) A : R
2 → R

2 is in L2
loc(R

2).
(V1) V (x) ∈ C(R2, R) with V (x) ≥ 0.
(V2) The potential well � = int V−1(0) is a non-empty bounded open set with

smooth boundary ∂� and � = V−1(0), � can be decomposed in k connected
components �1, . . . , �k with dist(�i ,� j ) > 0, i �= j .

(V3) There exist two positive constants M0 and M1 such that

λV (x) + Z(x) ≥ M0, ∀x ∈ R
2, λ ≥ 1,

and
|Z(x)| ≤ M1, ∀x ∈ R

2.
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We assume that the reaction f is a continuous function satisfying the following
conditions.

( f1) f (t) = 0 if t ≤ 0.
( f2) We have

lim
t→+∞

f (t2)t

eαt2
=
{
0, for α > 4π,

+∞, for 0 < α < 4π .

( f3) There is a positive constant θ > 2 such that

0 <
θ

2
F(t) ≤ t f (t), ∀t > 0,

where F(t) = ∫ t0 f (s)ds.
( f4) There exist constants p > 2 and Cp > 0 such that

f (t) ≥ Cpt
(p−2)/2 for all t > 0,

where

Cp >
( kθ(p − 2)

M∗ p(θ − 2)

)(p−2)�2
S p
p , M∗ = min{1, M0},

Sp = max

⎧⎪⎨
⎪⎩ inf

ϕ∈H0,1
A (� j )\{0}

( ∫
� j

(|∇Aϕ|2 + Z(x)|ϕ|2)dx
)1/2

( ∫
� j

|ϕ|pdx
)1/p , j = 1, . . . , k

⎫⎪⎬
⎪⎭ .

( f5) f (t) is an increasing function in [0,∞).

The main result in this paper is stated below.

Theorem 1.1. Assume that (A), (V1)–(V3) and ( f1)–( f5) hold. Then, for any non-
empty subset 	 of {1, 2, . . . , k}, there exists λ∗ such that for all λ ≥ λ∗, problem
(1.10) has a nontrivial solution uλ. Moreover, the family {uλ}λ≥λ∗ has the following
properties: for any sequence λn → ∞, we can extract a subsequence λni such that
uλni

converges strongly in H1
A(R2, C) to a function u which satisfies u(x) = 0 for

x /∈ �	 and the restriction u|� j is a least energy solution of{
− (∇ + iA(x))2u + Z(x)u = f (|u|2)u, in �	,

u = 0, on ∂� j ,

where �	 = ⋃
j∈	

� j .

Corollary 1.2. Under the assumptions of Theorem 1.1, there exists λ∗ > 0 such
that for all λ ≥ λ∗, problem (1.10) has at least 2k − 1 nontrivial solutions.

The paper is organized as follows. In Sect. 2 we introduce the functional setting
and we give some preliminary results. In Sect. 3, we study the modified problem.
We prove the Palais–Smale condition for the modified energy functional for λ large
and study L∞-estimates for the solution and the behavior of (PS)∞ sequences. In
Sect. 4, we adapt the deformation flow method in order to establish the existence
of a special critical point, which is crucial for showing the existence of multi-bump
solutions for λ large enough and hence to prove Theorem 1.1. We refer to the recent
monograph by Papageorgiou, Rădulescu and Repovš [38] for some of the abstract
methods used in this paper.
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Notation

• C,C1,C2, . . . denote positive constants whose exact values are inessential and
can change from line to line;

• BR(y) denotes the open disk centered at y ∈ R
2 with radius R > 0 and Bc

R(y)
denotes the complement of BR(y) in R

2;
• ‖ · ‖, ‖ · ‖q , and ‖ · ‖L∞(�) denote the usual norms of the spaces H1(R2, R),

Lq(R2, R), and L∞(�, R), respectively, where � ⊂ R
2;

• on(1) denotes a real sequence with on(1) → 0 as n → +∞.

2. Abstract setting and preliminary results

In this section, we outline the variational framework for problem (1.10) and give
some auxiliary properties.

For u : R
2 → C, let us denote by

∇Au := (∇ + i A)u.

and
H1

A(R2, C) := {u ∈ L2(R2, C) : |∇Au| ∈ L2(R2, R)}.
The space H1

A(R2, C) is a Hilbert space endowed with the scalar product

〈u, v〉 := Re
∫

R2

(
∇Au∇Av + uv

)
dx, for any u, v ∈ H1

A(R2, C),

where Re and the bar denote the real part of a complex number and the complex
conjugation, respectively. Moreover, we denote by ‖u‖A the norm induced by this
inner product. The spaces H1

A(R2, C) and H1(R2, R) are not comparable, more
precisely, in general H1

A(R2, C) �⊂ H1(R2, R) and H1(R2, R) �⊂ H1
A(R2, C).

By hypothesis (A), on the space H1
A(R2, C)we have the following diamagnetic

inequality (see e.g. [32, Theorem 7.21]):

|∇Au(x)| ≥ |∇|u(x)||. (2.1)

Let

Eλ(R
2, C) :=

{
u ∈ H1

A(R2, C) :
∫

R2
λV (x)|u|2dx < ∞

}
,

with the norm

‖u‖2λ =
∫

R2
(|∇Au|2 + (λV (x) + Z(x))|u|2)dx .

For λ ≥ 1, it is easy to see that (Eλ(R
2, C), ‖ · ‖λ) is a Hilbert space and

Eλ(R
2, C) ⊂ H1

A(R2, C).
Let K ⊂ R

2 be an open set. We define
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H1
A(K ) := {u ∈ L2(K , C) : |∇Au| ∈ L2(K , R)},

‖u‖H1
A(K ) =

( ∫
R2

(|∇Au|2 + |u|2)dx
) 1

2
,

Eλ(K , C) :=
{
u ∈ H1

A(K , C) :
∫
K

λV (x)|u|2dx < ∞
}
,

‖u‖2λ,K =
∫
K
(|∇Au|2 + (λV (x) + Z(x))|u|2)dx .

Let H0,1
A (K , C) be the Hilbert space defined by the closure of C∞

0 (K , C) under
the norm ‖u‖H1

A(K ).

The diamagnetic inequality (2.1) implies that if u ∈ Eλ(R
2, C), then

|u| ∈ H1(R2, R) and ‖u‖ ≤ C‖u‖λ. Therefore, the embedding Eλ(R
2, C) ↪→

Lr (R2, C) is continuous for r ≥ 2 and the embedding Eλ(R
2, C) ↪→ Lr

loc(R
2, C)

is compact for r ≥ 1.

Remark 2.1. Since the embedding H1
A(R2, C) ↪→ Lr

loc(R
2, C) is compact for r ≥

1, a standard argument shows that the following infimum in ( f4) is achieved and

inf
ϕ∈H1

A(� j )\{0}

( ∫
� j

(|∇Aϕ|2 + Z(x)|ϕ|2)dx
)1/2

( ∫
� j

|ϕ|pdx
)1/p > 0,

for j = 1, . . . , k.

We recall that u ∈ Eλ(R
2, C) is a weak solution of (1.10), if

Re
∫

R2
(∇Au∇Aφ + (λV (x) + Z(x))uφ)dx = Re

∫
R2

f (|u|2)uφdx,

for all φ ∈ Eλ(R
2, C).

The weak solutions of problem (1.10) are the critical points of Iλ :
Eλ(R

2, C) → R given by

Iλ(u) = 1

2

∫
R2

(|∇Au|2 + (λV (x) + Z(x))|u|2)dx − 1

2

∫
R2

F(|u|2)dx,

where F(t) = ∫ t0 f (s)ds. It is easy to prove that Iλ ∈ C1(Eλ(R
2, C), R).

In view of (V3), for any open set K ⊂ R
2, it is easy to see that

M0‖u‖22,K ≤
∫
K

(
|∇Au|2+(λV (x)+Z(x))|u|2

)
dx for all u ∈ Eλ(K ), and λ ≥ 1,

where ‖u‖22,K = ∫K |u|2dx . The following property is an immediate consequence
of the above consideration.

Lemma 2.2. There exist δ0, ν0 > 0 with δ0 ∼ 1 and ν0 ∼ 0 such that for any open
set K ⊂ R

N

δ0‖u‖2λ,K ≤ ‖u‖2λ,K − ν0‖u‖22,K , for all u ∈ Eλ(K , C), and λ ≥ 1.
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The below estimates involving f are the key points in this paper. By ( f1) and
( f2), fixed q > 2, for any ζ > 0 and α > 4π , there exists a constant C > 0
depending on q, α, ζ , such that

f (t) ≤ ζ + Ct (q−2)/2(eαt − 1) for all t ≥ 0 (2.2)

and, using ( f3), we have

F(t) ≤ ζ t + Ctq/2(eαt − 1) for all t ≥ 0. (2.3)

Moreover, by (2.2) and (2.3),

f (t2)t2 ≤ ζ t2 + C |t |q(eαt2 − 1) for all t ∈ R (2.4)

and

F(t2) ≤ ζ t2 + C |t |q(eαt2 − 1) for all t ∈ R. (2.5)

Now we recall a version of the Trudinger-Moser inequality in the whole
space R

2 due to Cao [15] (see also [13], Lemma 2.3) for functions belonging
to H1(R2, R).

Lemma 2.3. If α > 0 and u ∈ H1(R2, R), then∫
R2

(eαu2 − 1)dx < +∞.

Moreover, if ‖∇u‖22 ≤ 1, ‖u‖2 ≤ M < +∞, and 0 < α < 4π , then there exists a
positive constant C(M, α), which depends only on M and α, such that∫

R2
(eαu2 − 1)dx ≤ C(M, α).

To finish this section, in what follows, for each j ∈ {1, 2, . . . , k}, we fix a
bounded open subset �′

j with smooth boundary such that

(i) � j ⊂ �′
j ;

(i i) �′
i

⋂
�′

j = ∅ for all i �= j .

3. An auxiliary problem

Since R
2 is unbounded, we know that the Sobolev embeddings are not compact, as

so Iλ cannot verify the Palais–Smale condition. In order to overcome this difficulty,
we adapt an argument of the penalizationmethod introduced by del Pino and Felmer
[19] and Ding and Tanaka [21].

Let ν0 > 0 be a constant given in Lemma 2.2, κ > θ
θ−2 > 1 and a > 0 verifying

f (a) = ν0
κ
and f̃ , F̃ : R → R given by

f̃ (t) =
{

f (t), t ≤ a,
ν0

κ
, t ≥ a,
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and

F̃(t) =
∫ t

0
f̃ (s)ds.

Note that

f̃ (t) ≤ f (t), t ≥ 0. (3.1)

From now on, we fix a non-empty subset 	 ⊂ {1, . . . , k} and

�	 =
⋃
j∈	

� j , �′
	 =
⋃
j∈	

�′
j ,

χ	(x) :=
{
1 for x ∈ �′

	,

0 for x /∈ �′
	,

the function

g(x, t) = χ	(x) f (t) + (1 − χ	(x)) f̃ (t) (3.2)

G(x, t) =
∫ t

0
g(x, s)ds = χ	(x)F(t) + (1 − χ	(x))F̃(t). (3.3)

It follows from (3.1) that g satisfies the following inequality

g(x, |u|2)|u|2 ≤ f (|u|2)|u|2. (3.4)

Let �λ : Eλ(R
2, C) → R be the functional defined by

�λ(u) = 1

2

∫
R2

(|∇Au|2 + (λV (x) + Z(x))|u|2)dx − 1

2

∫
R2

G(x, |u|2)dx .

Standard arguments show that �λ ∈ C1(Eλ(R
2, C), R) and its critical points

are weak solutions of

−(∇ + iA(x))2u + (λV (x) + Z(x))u = g(x, |u|2)u, x ∈ R
2. (3.5)

Our aim is to obtain nontrivial solutions of (3.5) which are solutions of the orig-
inal problem (1.10). More precisely, if uλ is a nontrivial solution of (3.5) verifying
|uλ(x)|2 ≤ a in R

2\�′
	 , then it is a nontrivial solution to (1.10).

3.1. The Palais–Smale condition and consequences

We start this subsection studying the boundedness of the Palais–Smale sequence
related to �λ, that is, a sequence (un) ⊂ Eλ(R

2, C) verifying

�λ(un) → c and �′
λ(un) → 0

for some c ∈ R(shortly (un) is a (PS)c sequence).
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Lemma 3.1. If (un) is a (PS)c sequence to �λ, it follows that

lim sup
n→∞

‖un‖2λ ≤
(1
2

− 1

θ

)−1
δ−1
0 c,

where δ0 is given in Lemma 2.2.

Proof. From the definition of Palais–Smale sequence, we have

�λ(un) − 1

θ
�′

λ(un)un = c + on(1) + on(1)‖un‖λ.

On the other hand, from (3.6), (3.2), κ > θ/(θ −2), ( f3) and Lemma 2.2, we obtain

�λ(un) − 1

θ
�′

λ(un)un =
(1
2

− 1

θ

) ∫
R2

(|∇Aun|2 + (λV (x) + Z(x))|un|2)dx

+
∫

R2

(1
θ
g(x, |un|2)|un|2 − 1

2
G(x, |un |2)

)
dx

≥
(1
2

− 1

θ

) ∫
R2

(|∇Aun|2 + (λV (x) + Z(x))|un|2)dx

+
∫

R2\�′
	

(1
θ
f̃ (|un|2)|un|2 − 1

2
F̃(|un|2)

)
dx

≥
(1
2

− 1

θ

) ∫
R2

(|∇Aun|2 + (λV (x) + Z(x))|un|2)dx

− 1

2

∫
R2\�′

	

F̃(|un|2)dx

≥
(1
2

− 1

θ

) ∫
R2

(|∇Aun|2 + (λV (x) + Z(x))|un|2)dx

− ν0

2κ

∫
R2

|un|2dx

≥
(1
2

− 1

θ

)
(‖un‖2λ − ν0‖un‖22)

≥
(1
2

− 1

θ

)
δ0‖un‖2λ.

Therefore,

(1
2

− 1

θ

)
δ0‖un‖2λ ≤ c + on(1) + on(1)‖un‖λ.

This shows that (un) is bounded and

lim sup
n→∞

‖un‖2λ ≤
(1
2

− 1

θ

)−1
δ−1
0 c,

which completes the proof. ��
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For each fixed j ∈ 	, let us denote by c j the minimax level of the functional
I j : H0,1

A (� j ) → R given by

I j (u) = 1

2

∫
� j

(
|∇Au|2 + Z(x)|u|2

)
dx − 1

2

∫
� j

F(|u|2)dx .

and
c j = inf

γ∈� j
max
t∈[0,1] I j (γ (t)),

where

� j =
{
γ ∈ C([0, 1], H0,1

A (� j , C)) : γ (0) = 0, I j (γ (1)) < 0
}
.

It is well known that the critical points of I j are weak solutions of the following
problem

{
− (∇ + iA(x))2u + Z(x)u = f (x, |u|2)u, in � j ,

u = 0, on ∂� j .
(3.6)

In the next lemma, we denote by S the following real number

S =
k∑
j=1

c j .

Lemma 3.2. If ( f1) − ( f5) hold, then 0 < S < M∗δ0( 12 − 1
θ
).

Proof. For each j ∈ {1, . . . , k}, we may choose a function ϕ j ∈ H0,1
A (� j , C) such

that

Sp, j = min
ϕ∈H0,1

A (� j )\{0}

( ∫
� j

(|∇Aϕ|2 + Z(x)|ϕ|2)dx
)1/2

( ∫
� j

|ϕ|pdx
)1/p

=
( ∫

� j
(|∇Aϕ j |2 + Z(x)|ϕ j |2)dx

)1/2
( ∫

� j
|ϕ j |pdx

)1/p .

Notice that

c j ≤ max
t≥0

I j (tϕ j )

≤ max
t≥0

( t2
2

∫
� j

(|∇Aϕ j |2 + Z(x)|ϕ j |2)dx − t pCp

p

∫
� j

|ϕ j |pdx
)

= p − 2

2p

S
2p
p−2
p, j

C
2

p−2
p
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≤ p − 2

2p

S
2p
p−2
p

C
2

p−2
p

.

Hence

S =
k∑
j=1

c j ≤ k
p − 2

2p

S
2p
p−2
p

C
2

p−2
p

.

On the other hand, by ( f4) we have

k
p − 2

2p

S
2p
p−2
p

C
2

p−2
p

<

(
1

2
− 1

θ

)
M∗.

Since δ0 may be chosen close to 1, the last inequality implies that

S < M∗δ0
(
1

2
− 1

θ

)
.

This completes the proof of the lemma. ��
Proposition 3.3. For any λ ≥ 1, the functional �λ satisfies the (PS)c condition
for all c ∈ (0, S], that is, if c ∈ (0, S], any (PS)c-sequence (un) ⊂ Eλ(R

2, C) of
�λ has a strongly convergent subsequence in Eλ(R

2, C).

Proof. Let (un) ⊂ Eλ(R
2, C) be a (PS)c-sequence for �λ at the level c ∈ (0, S].

By Lemmas 3.1 and 3.2 we obtain

lim sup
n→∞

‖un‖2λ < 1.

Thus, up to a subsequence, un ⇀ u in Eλ(R
2, C) and un → u in Lq

loc(R
2, C) for

all q ≥ 1 as n → +∞. Moreover, by (3.6) and (2.2), fixed q > 2, for any ζ > 0
and α > 4π , there exists a constant C > 0, which depends on q, α, ζ , such that
for any φ ∈ Eλ(R

2, C),
∣∣∣∣Re
∫

R2
g(x, |un|2)unφdx

∣∣∣∣ ≤ ζ

∫
R2

|un||φ|dx + C
∫

R2
|φ||un|q−1(eα|un |2 − 1)dx .

Arguing as in [18, Lemma 2.5], we have

Re
∫

R2
g(x, |un|2)unφdx → Re

∫
R2

g(εx, |u|2)uφdx .

Thus, u is a critical point of �λ.
Now, we take R > 0 such that�′

	 ⊂ B R
2
(0). Let φR ∈ C∞(R2, R) be a cut-off

function such that

φR = 0 x ∈ B R
2
(0), φR = 1 x ∈ Bc

R(0), 0 ≤ φR ≤ 1, and |∇φR | ≤ C/R,
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where C > 0 is a constant independent of R. By a direct computation, one has

< �′
λ(un), unφR >→ 0,

and
∇A(unφR) = un∇φR + φR∇Aun .

Therefore,

on(1) =< �′
λ(un), unφR > =

∫
R2

(|∇Aun|2φR + (λV (x) + Z(x))|un|2φR)dx

+ Re

(∫
R2

un∇Aun∇φRdx

)

−
∫

R2
f̃ (|un|2)|un|2φRdx .

Notice that ∣∣∣Re(un∇Aun)
∣∣∣ = ∣∣∣Re((∇un + i Aun)un)

∣∣∣ = ∣∣∣Re(un∇un)
∣∣∣

= |un|
∣∣∣Re( un

|un|∇un)
∣∣∣ = |un|

∣∣∣∇|un|
∣∣∣. (3.7)

Using the Hölder inequality and (3.7) we obtain

lim sup
n→∞

∣∣∣Re(
∫

R2
un∇Aun∇φRdx)

∣∣∣ ≤ C

R
.

Moreover, we have∫
R2

(
|∇Aun|2φR + (λV (x) + Z(x))|un|2φR

)
dx

≤
∫

R2
f̃ (|un|2)|un|2φRdx + C

R
+ on(1)

≤ ν0

κ

∫
R2

|un|2φRdx + C

R
+ on(1),

which implies that for any ζ > 0, there exists R∗ > 0 large, if R > R∗, one has

lim sup
n→∞

∫
R2\BR(0)

(|∇Aun|2 + (λV (x) + Z(x))|un|2)dx ≤ ζ. (3.8)

Similarity, by (3.6) and (2.2), fixed q > 2, for any ζ > 0 and α > 4π , there
exists a constant C > 0, which depends on q, α, ζ , such that

g(x, |un|2)|un|2 ≤ ζ |un|2 + C |un|q(eα|un |2 − 1). (3.9)

Since un → u in Lr
loc(R

2, C), for all r ≥ 1, up to a subsequence, we have that

|un| → |u| a.e. in R
2 as n → +∞.
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Then

g(x, |un|2)|un|2 → g(x, |u|2)|u|2 a.e. in R
2 as n → +∞.

Moreover, |un| → |u| in Lr
loc(R

2, R) for all r ≥ 1.
Let

P(x, t) := g(x, t2)t and Q(t) := eαt2 − 1, t ∈ R,

where α > 4π with α‖|un|‖ < 4π for n large. Using (3.6) and ( f2), it is easy to
see that

lim
t→+∞

P(x, t)

Q(t)
= 0 uniformly for x ∈ R

2

and by Lemma 2.3,

sup
n

∫
R2

Q(|un|)dx ≤ C.

Then [14, Theorem A.I] implies

lim
n

∫
BR(0)

∣∣∣g(x, |un|2)|un|2 − g(x, |u|2)|u|2
∣∣∣dx = 0.

Moreover, by (3.8) and the definition of g, we have∫
Bc
R(0)

∣∣∣g(x, |un|2)|un|2 − g(x, |u|2)|u|2
∣∣∣dx

≤ 2ν0
κ

∫
Bc
R(0)

(|∇Aun|2 + (λV (x) + Z(x))|un|2)dx <
2ν0ζ

κ

for any ζ > 0.
Hence ∫

R2
g(x, |un|2)|un|2dx →

∫
R2

g(x, |u|2)|u|2dx as n → +∞.

Finally, since �′
λ(u) = 0, we have

on(1) = �′
λ(un)[un] = ‖un‖2λ −

∫
R2

g(x, |un|2)|un|2dx = ‖un‖2λ − ‖u‖2λ + on(1).

Thus, the sequence (un) strong converges to u in Eλ(R
2, C). ��

Our next step is to study the behavior of a (PS)∞,c sequence, that is, a sequence
(un) ⊂ H1

A(R2, C) satisfying

un ∈ Eλn (R
2, C) and λn → ∞,

�λn (un) → c,

‖�′
λn

(un)‖E∗
λn

→ 0, as n → ∞.
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Proposition 3.4. Let (un) be a (PS)∞,c sequence with c ∈ (0, S]. Then, for some
subsequence, still denoted by (un), there exists u ∈ H1

A(R2, C) such that

un ⇀ u weakly in H1
A(R2, C).

Moreover,

(i) u ≡ 0 in R
2\�	 and u|� j is a solution of (3.6), for ∀ j ∈ 	;

(i i) ‖un − u‖λn → 0;
(i i i) un also satisfies

λn

∫
R2

V (x)|un|2dx → 0,

‖un − u‖2
λn ,R2\�	

→ 0,

‖un‖2λn ,R2\�′
j
→
∫

� j

(|∇Au|2 + Z(x)|u|2)dx .

Proof. As in the proof of Proposition 3.3, it is easy to check that

lim sup
n→∞

‖un‖2λn < 1.

Thus (un) is bounded in H1
A(R2, C) and we may assume that for some u ∈

H1
A(R2, C), up to a subsequence, if necessary

un ⇀ u weakly in H1
A(R2, C),

un → u strongly in Lr
loc(R

2, C), ∀r ≥ 1,

|un| → |u| a.e. in R
2. (3.10)

To show (i), we fix the set Cm = {x ∈ R
2 : V (x) ≥ 1

m }. Then, for n large

∫
Cm

|un|2dx ≤ m

λn

∫
R2

λnV (x)|un|2dx

≤ 2m

λn

∫
R2

(
|∇Aun|2 + (λnV (x) + Z(x))|un|2

)
dx

= 2m

λn
‖un‖2λn .

The last inequality together with Fatou’s lemma imply

∫
Cm

|u|2dx = 0, ∀m ∈ N.

Therefore, u(x) = 0 on
⋃+∞

m=1 Cm = R
2\�, from which we can assert that u|� j ∈

H0,1
A (� j , C) for any j ∈ {1, 2, . . . , k}.
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Since �′
λn

(un)ϕ → 0 as n → ∞, for each ϕ ∈ C∞
0 (� j , C)(and hence for

each ϕ ∈ H0,1
A (� j , C)), from (3.9) and the similar arguments in Proposition 3.3,

we have

Re
( ∫

� j

(|∇Au∇Aϕ + Z(x)uϕ)dx −
∫

� j

g(x, |u|2)uϕ)dx
)

= 0, (3.11)

showing that u|� j is a solution of problem (3.6) for each j ∈ {1, . . . , k}.
For each j ∈ {1, . . . , k}\	, setting ϕ = u|� j in (3.11), we have

∫
� j

(|∇Au|2 + Z(x)|u|2)dx −
∫

� j

f̃ (|u|2)|u|2dx = 0.

By Lemma 2.2 and the fact that f̃ (t2)t2 ≤ ν0
κ
t2 for all t ∈ R, it yields

δ0‖u‖2λ,� j
≤ ‖u‖2λ,� j

− ν0

k
‖u‖22,� j

≤
∫

� j

(|∇Au|2 + Z(x)|u|2)dx −
∫

� j

f̃ (|u|2)|u|2dx = 0.

Thus u = 0 in � j for j ∈ {1, 2, . . . , k}\	, it means that (i) holds.
For (ii), using the similar arguments in the proof of Proposition 3.3, for each

ζ > 0, there exists R > 0 such that
∫

R2\BR(0)
(|∇Aun|2 + (λnV (x) + Z(x))|un|2)dx ≤ ζ, for n ∈ N .

Using the same arguments as in the proof of Proposition 3.3 and (i), the above
inequality implies that

∫
R2

g(x, |un|2)|un|2dx →
∫

R2
g(x, |u|2)|u|2dx

=
∫

�	

f (|u|2)|u|2dx as n → +∞,

Now, by (i) again, we have

on(1) = �′
λn

(un)[un] = ‖un‖2λ −
∫

R2
g(x, |un|2)|un|2dx

= ‖un‖2λn − ‖u‖2λn + on(1).

Thus, the sequence (un) strong converges to u in Eλn (R
2, C) and (ii) holds.

To prove (iii), notice that from (i) and (ii),

λn

∫
R2

V (x)|un|2dx = λn

∫
R2

V (x)|un − u|2dx
≤ C‖un − u‖2λn → 0 as n → ∞.



526 C. Ji, V. D. Rădulescu

Moreover, from (i) and (ii), it is also easy to obtain that as n → ∞

‖un − u‖2
λn ,R2\�	

→ 0,

‖un‖2λn ,R2\�′
j
→
∫

� j

(|∇Au|2 + Z(x)|u|2)dx for all j ∈ 	.

Therefore, the proof is complete. ��

Proposition 3.5. For each λ ≥ 1, let uλ be a nontrivial solution of problem (3.5)
with ‖uλ‖2λ < 1. Then, there exists K , λ∗ > 0 such that

‖|uλ|‖2L∞(R2)
≤ K ∀λ ≥ λ∗.

Proof. Let (λn) be a sequence with λn → ∞ and define un(x) = uλn (x). For any
R > 0 and 0 < r ≤ R/2, let η ∈ C∞(R2), 0 ≤ η ≤ 1 with η(x) = 1 if |x | ≥ R
and η(x) = 0 if |x | ≤ R − r and |∇η| ≤ 2/r .
For each n ∈ N and L > 0, we consider the functions

uL ,n(x) :=
{ |un(x)| if |un(x)| ≤ L ,

L if |un(x)| > L ,
zL ,n := η2u2(β−1)

L ,n un , and wL ,n := ηuβ−1
L ,n |un |,

where β > 1 will be determined later.
By straightforward computations, we have

∇AzL ,n = η2u2(β−1)
L ,n ∇Aun + un∇(η2u2(β−1)

L ,n )

and

∇Aun∇AzL ,n = |∇Aun|2η2u2(β−1)
L ,n + un∇Aun∇(η2u2(β−1)

L ,n ).

Taking the real part of∇Aun∇AzL ,n and using the diamagnetic inequality (2.1), we
obtain

Re(∇Aun∇AzL ,n) = |∇Aun|2η2u2(β−1)
L ,n + Re(un∇Aun∇(η2u2(β−1)

L ,n ))

≥ |∇|un||2η2u2(β−1)
L ,n + |un|∇|un|∇(η2u2(β−1)

L ,n )

≥ |∇|un||2η2u2(β−1)
L ,n + 2η∇ηu2(β−1)

L ,n |un|∇|un|. (3.12)

Taking zL ,n as the test function, we have

Re
∫

R2
(∇Aun∇AzL ,n + (λV (x) + Z(x))uλzL ,n)dx = Re

∫
R2

g(x, |un|2)unzL ,ndx .
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By (3.12), the Young inequality (with τ > 0), (3.6), (2.4), for α > 4π and for a
fixed q > 2, given 0 < ζ < M0, there exists C > 0 such that

∫
R2

|∇|un||2η2u2(β−1)
L ,n dx ≤

∫
R2

|∇|un||2η2u2(β−1)
L ,n dx

+ 2
∫

R2
η∇ηu2(β−1)

L ,n |un|∇|un|dx

+
∫

R2
(λV (x) + Z(x))u2(β−1)

L ,n η2|un|2dx

+ 2
∫

R2
η|∇η|u2(β−1)

L ,n |un||∇|un||

− ζ

∫
R2

u2(β−1)
L ,n η2|un|2dx

≤ Re
∫

R2
(∇Aun∇AzL ,n + (λV (x) + Z(x))unzL ,n)dx

+ τ

∫
R2

|∇|un||2η2u2(β−1)
L ,n dx

+ 1

τ

∫
R2

|∇η|2u2(β−1)
L ,n |un|2dx

− ζ

∫
R2

u2(β−1)
L ,n η2|un|2dx

≤
∫

R2
g(x, |un|2)η2|un|2u2(β−1)

L ,n dx

+ τ

∫
R2

|∇|un||2η2u2(β−1)
L ,n dx

+ 4

τr2

∫
R−r≤|x |≤R

u2(β−1)
L ,n |un|2dx

− ζ

∫
R2

η2u2(β−1)
L ,n |un|2dx

≤ C
∫

R2
|un|q(eα|un |2 − 1)η2u2(β−1)

L ,n dx

+ τ

∫
R2

|∇|un||2η2u2(β−1)
L ,n dx

+ 4

τr2

∫
R−r≤|x |≤R

|un|2βdx .

(3.13)

Hence, choosing τ > 0 sufficiently small, we get

∫
R2

|∇|un||2η2u2(β−1)
L ,n ≤ C

[ ∫
|x |≥R−r

|un|q+2(β−1)(eα|un |2 − 1)dx

+ 1

r2

∫
R−r≤|x |≤R

|un|2βdx
]
. (3.14)
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Moreover, arguing similarly to (3.13), we can conclude that∫
R2

η2u2(β−1)
L ,n |un|2dx ≤ C

[ ∫
|x |≥R−r

|un|q+2(β−1)(eα|un |2 − 1)dx

+ 1

r2

∫
R−r≤|x |≤R

|un|2βdx
]
. (3.15)

On the other hand, using the Sobolev embedding, (3.14), (3.15), the Hölder inequal-
ity with t, σ, τ > 1, 1/σ + 1/τ = 1/t , σ(q − 2) ≥ 2, and the inequality
(et − 1)s ≤ ets − 1, for s > 1 and t ≥ 0, we have

‖wL ,n‖2q ≤ C
∫

R2
(|∇wL ,n|2 + |wL ,n|2)dx

≤ C
( ∫

R2
|∇η|2|un|2βdx + β2

∫
R2

η2u2(β−1)
L ,n |∇|un||2dx

+
∫

R2
η2u2(β−1)

L ,n |un|2dx
)

≤ Cβ2
( 1
r2

∫
R−r≤|x |≤R

|un|2βdx

+
∫

|x |≥R−r
|un|q+2(β−1)(eα|un |2 − 1)dx

)

≤ Cβ2
[
R2/t

r2
+
( ∫

|x |≥R−r
|un|σ(q−2)dx

)1/σ
( ∫

R2
(eτα|un |2 − 1)dx

)1/τ]

( ∫
|x |≥R−r

|un|2βt/(t−1)dx
)(t−1)/t

.

(3.16)

Since (un) ⊂ H1
A(R2, C) is a a (PS)∞,c sequence, up to a subsequence, by Propo-

sition 3.4, we have un → u in H1
A(R2, C). By (3.16), it follows that

( ∫
|x |≥R

uqβL ,ndx
)2/q ≤ ‖wL ,n‖2q ≤ Cβ2

(
1 + R2/t

r2

)( ∫
|x |≥R−r

|un|2βt/(t−1)
)(t−1)/t

and, applying the Fatou’s Lemma as L → +∞, we obtain

( ∫
|x |≥R

|un|qβdx
)2/q ≤ Cβ2

(
1 + R2/t

r2

)( ∫
|x |≥R−r

|un|2βt/(t−1)
)(t−1)/t

.

Next, if we take ζ := q(t−1)
2t , β := ζm , with m ∈ N

∗, and s := 2t
t−1 , we obtain

( ∫
|x |≥R

|un|sζm+1
dx
)1/(sζm+1)

≤ Cζ−m
ζmζ−m

(
1 + R2/t

r2

)1/(2ζm )( ∫
|x |≥R−r

|un|sζm
)1/(sζm )
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for every m ∈ N
∗. Then, for r = rm := R/2m , m ∈ N

∗, using also that 2/t < 2,
we get

( ∫
|x |≥R

|un|sζm+1
dx
)1/(sζm+1)

≤
( ∫

|x |≥R−rm+1

|un|sζm+1
dx
)1/(sζm+1)

≤ C
∑m

i=1 ζ−i
ζ
∑m

i=1 iζ
−i
exp
( m∑

i=1

ln(1 + 22(i+1))

2ζ i

)( ∫
|x |≥R/2

|un|sζdx
)1/(sζ )

.

Hence, passing to the limit as m → +∞ in the last inequality, we obtain

‖un‖L∞(Bc
R(0)) ≤ C

( ∫
|x |≥R

|un|qdx
)1/q

. (3.17)

For x0 ∈ R
2, we can use the same argument taking η ∈ C∞

0 (R2, [0, 1]) with
η(x) = 1 if |x − x0| ≤ ρ̃, η(x) = 0 if |x − x0| > 2ρ, with ρ̃ < ρ, and |∇η| ≤ 2/ρ̃,
to prove that

‖un‖L∞(B2ρ(x0))
≤ C
( ∫

|x |≤2ρ
|un|qdx

)1/q
. (3.18)

Thus, by (3.17), (3.18), and using a standard covering argument and the bounded-
ness of (|uλ|) in Lq(R2, R), it follows that there exists K > 0 such that

‖|un|‖L∞(R2) ≤ K ∀n large.
Hence the proof is complete. ��

Proposition 3.6. Let (uλ) be a family of nontrivial solutions of problem (3.3) with
‖uλ‖2λ < 1 and λ ≥ 1. Then, there exists λ∗ > 0 such that

‖|uλ|‖2L∞(R2\�′
	)

≤ a, ∀λ ≥ λ∗.

Proof. We use notation Br (x) = {y ∈ R
2 : |x − y| < r}. Since uλ ∈ Eλ(R

2, C) is
a critical point of �λ(u), that is, uλ satisfies the following equation

−(∇ + iA(x))2uλ + (λV (x) + Z(x))uλ = g(x, |uλ|2)uλ, x ∈ R
2.

By Kato’s inequality

�|uλ| ≥ Re
( uλ

|uλ| (∇ + i A(x))2uλ(x)
)
,

there holds

�|uλ(x)| − (λV (x) + Z(x))|uλ(x)| − g(x, |uλ|2)|uλ(x)| ≥ 0, x ∈ R
2,

since |uλ| ≥ 0 and (λV (x) + Z(x)) ≥ M0 > 0 if λ ≥ 1, we have

�|uλ(x)| − g(x, |uλ|2)|uλ(x)| ≥ 0, x ∈ R
2.
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Using Proposition 3.5 and the subsolution estimate (see [26] Theorem 8.17), there
exists a constant C(r) such that

sup
y∈Br (x)

|uλ(y)| ≤ C(r)
( ∫

B2r (x)
|uλ|2dy

)1/2
.

By Proposition 3.4, for any sequence λn → ∞, we can extract a subsequence λni
such that

uλni
→ u0 ∈ H0,1

A (�	, C) strongly in H1
A(R2, C).

In particular,

uλni
→ 0 strongly in L2(R2\�	, C).

Since λn → ∞ is arbitrary, we have

uλ → 0 strongly in L2(R2\�	, C) as λ → ∞.

Thus, choosing r ∈ (0, dist(�	, R
2\�′

	)), we have uniformly in x ∈ R
2\�′

	 that

|uλ(y)| ≤ C(r)‖uλ‖L2(B2r (x))

≤ C(r)|Br (x)‖uλ‖L2(R2\�′
	)

→ 0.

The proof is now complete. ��

4. The existence of multi-bump positive solutions

In this section, for each j ∈ 	, we denote by�λ, j : H1
A(�′

j , C) → R the functional
given by

�λ, j (u) = 1

2

∫
�′

j

(|∇Au|2 + (λV (x) + Z(x))|u|2)dx − 1

2

∫
�′

j

F(|u|2)dx .

It is easy to check that the functional�λ, j satisfies the mountain pass geometry.
In what follows, we denote by cλ, j theminimax level related to the above functional
defined by

cλ, j = inf
γ∈�λ, j

max
t∈[0,1] �λ, j (γ (t)),

where

�λ, j =
{
γ ∈ C([0, 1], H1

A(�′
j , C)) : γ (0) = 0,�λ, j (γ (1)) < 0

}
.

Therefore, there exist (un) ⊂ H0,1
A (� j , C) and (uλ,n) ⊂ H1

A(�′
j , C) verifying

I j (un) → c j and I ′
j (un) → 0,
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and
�λ, j (uλ,n) → cλ, j and �′

λ, j (uλ,n) → 0.

From ( f1) and ( f3) − ( f5), it is easy to prove that

sup
n∈N

‖un‖H0,1
A (� j )

< 1 and sup
n∈N

‖uλ,n‖H1
A(�′

j )
< 1,

and these inequalities imply that I j and �λ, j satisfy the (PS)c j and (PS)cλ, j

conditions, respectively. Therefore, it is easy to prove that there exist two nontrivial
functions w j ∈ H0,1

A (� j ) and wλ, j ∈ H1
A(�′

j ) verifying

I j (wλ, j ) = c j and I ′
j (wλ, j ) = 0,

and
�λ, j (wλ, j ) = cλ, j and �′

λ, j (wλ, j ) = 0.

Moreover, we have the following lemma.

Lemma 4.1. The following assertions hold:

(i) 0 < cλ, j ≤ c j for λ ≥ 1 and j ∈ 	.
(i i) c j (cλ, j respectively) is a least energy level for I j (u)(�λ, j (u) respectively), that

is
c j = inf

{
I j (u) : u ∈ H0,1

A (� j )\{0}, I ′
j (u)u = 0

}
,

and
cλ, j = inf

{
�λ, j (u) : u ∈ H1

A(�′
j )\{0},�′

λ, j (u)u = 0
}
.

(i i i) c j = maxt>0 I j (tw j ), cλ, j = maxt>0 �λ, j (twλ, j ).
(iv) cλ, j → c j as λ → ∞ for any j ∈ 	.

Proof. From ( f4), it is easy to prove that cλ, j > 0 and c j > 0 for any j ∈ 	 and
λ ≥ 1.

Now for any u ∈ H0,1
A (� j ), we may extend u to ũ ∈ H1

A(�′
j ) by

ũ(x) :=
{
u(x), in � j ,

0 in �′
j\� j ,

and H0,1
A (� j ) ⊂ H1

A(�′
j ). Thus, we have � j ⊂ �λ, j and

cλ, j = inf
γ∈�λ, j

max
t∈[0,1] �λ, j (γ (t))

≤ inf
γ∈� j

max
t∈[0,1] �λ, j (γ (t))

= inf
γ∈� j

max
t∈[0,1] I j (γ (t)) = c j .

Thus (i) holds. The proof of (ii) and (iii) is standard by using the monotonicity of
the term f (t) with respect to t for t > 0.
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Now we prove (iv). Using Proposition 3.4, we may extract a subsequence λn → ∞
such that

wλn , j → u0 strongly in H1
A(�′

j ),

where u0 ∈ H0,1
A (� j ) is a solution of (3.6) and

�λn , j (wλn , j ) → I j (u0).

By the definition of c j , we have

lim sup
λ→∞

cλ, j = lim sup
λ→∞

�λ, j (wλ, j ) ≥ I j (u0) ≥ c j .

Together with (i), we get (iv). ��

4.1. A special critical value of �λ

In what follows, let us fix R > 1 such that∣∣∣∣I j
(
1

R
w j

)∣∣∣∣ < 1

2
c j , ∀ j ∈ 	

and

|I j (Rw j ) − c j | ≥ 1, ∀ j ∈ 	.

From the definition of c j , it is easy to check that

max
s∈[1/R2,1]

I j (sRw j ) = c j , ∀ j ∈ 	.

We consider 	 = {1, 2, . . . , l}(l ≤ k), and the maps

γ0(s1, s2, . . . , sl)(x) =
l∑

j=1

s j Rw j (x) ∀(s1, s2, . . . , sl) ∈
[
1/R2, 1

]l
, (4.1)

�∗ =
{
γ ∈ C

([
1/R2, 1

]l
, Eλ(R

2, C)\{0}
)

: γ = γ0 on ∂

([
1/R2, 1

]l)}
,

(4.2)

and

bλ,� = inf
γ∈�∗

max
(s1,s2,...,sl )∈[1/R2,1]l

�λ(γ (s1, s2, . . . , sl)).

We remark that γ0 ∈ �∗, so �∗ �= ∅ and bλ,� is well defined.

Lemma 4.2. For any γ ∈ �∗, there exists (t1, t2, . . . , tl) ∈ [1/R2, 1
]l
such that

�′
λ, j (γ (t1, t2, . . . , tl))(γ (t1, t2, . . . , tl)) = 0 for all j ∈ {1, 2, . . . , l}.
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Proof. For a given γ ∈ �∗, let us consider the map γ̃ : [1/R2, 1
]l → R

l defined
by

γ̃ (s1, s2, . . . , sl) = (�′
λ,1(γ )(γ ),�′

λ,2(γ )(γ ), . . . , �′
λ,l(γ )(γ )),

where

�′
λ, j (γ )(γ ) = �′

λ, j (γ (s1, s2, . . . , sl))(γ (s1, s2, . . . , sl)) for all j ∈ 	.

For any (s1, s2, . . . , sl) ∈ ∂([1/R2, 1]l), it follows that
γ (s1, s2, . . . , sl) = γ0(s1, s2, . . . , sl)£¬

and

�′
λ, j (γ0(s1, s2, . . . , sl))(γ0(s1, s2, . . . , sl)) = 0 ⇒ s j /∈ {1/R2, 1}, ∀ j ∈ 	.

Thus,

(0, 0, . . . , 0) /∈ γ̃

(
∂

([
1/R2, 1

]l))
.

Using this fact, it follows from the topological degree

deg

(
γ̃ ,
(
1/R2, 1

)l
, (0, 0, . . . , 0)

)
= (−1)l �= 0.

Hence, there exists (t1, t2, . . . , tl) ∈ (1/R2, 1
)l
satisfying

�′
λ, j (γ (t1, t2, . . . , tl))(γ (t1, t2, . . . , tl)) = 0 for all j ∈ {1, 2, . . . , l}.

The proof is thus completed. ��
In the sequel, let us denote by c	 =∑l

j=1 c j . From ( f4), we know that

c	 ∈ (0, S].
Proposition 4.3. The following facts hold

(i)
∑l

j=1 cλ, j ≤ bλ,	 ≤ c	 for all λ ≥ 1.
(i i) �λ(γ (s1, s2, . . . , sl)) < c	 for all λ ≥ 1, γ ∈ �∗ and (s1, s2, . . . , sl) ∈

∂([1/R2, 1]l).
Proof. Since γ0 defined in (4.3) belongs to �∗, we have

bλ,	 ≤ max
(s1,s2,...,sl )∈[1/R2,1]l

�λ(γ0(s1, s2, . . . , sl))

= max
(s1,s2,...,sl )∈[1/R2,1]l

l∑
j=1

I j (sRw j )

=
l∑

j=1

c j = c	.
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Fixing (t1, t2, . . . , tl) ∈ [1/R2, 1]l given in Lemma 4.2 and recalling that cλ, j can
be characterized by

cλ, j = inf{�λ, j (u) : u ∈ H1
A(�′

j )\{0},�′
λ, j (u)u = 0}.

It follows that
�λ, j (γ (t1, t2, . . . , tl)) ≥ cλ, j ∀ j ∈ 	.

On the other hand, recalling that �λ,R2\�′
	
(u) ≥ 0 for all u ∈ H1

A(R2\�′
	), we

have

�λ(γ (s1, s2, . . . , sl)) ≥
l∑

j=1

�λ, j (γ (s1, s2, . . . , sl)).

Thus

max
(s1,s2,...,sl )∈[1/R2,1]l

�λ(γ (s1, s2, . . . , sl)) ≥ �λ(γ (t1, t2, . . . , tl)) ≥
l∑

j=1

cλ, j .

From the definition of bλ,	 , we can obtain

bλ,	 ≥
l∑

j=1

cλ, j .

This completes the proof of (i).
Since γ (s1, s2, . . . , sl) = γ0(s1, s2, . . . , sl) on ∂([1/R2, 1]l), we have

�λ(γ0(s1, s2, . . . , sl)) =
l∑

j=1

I j (s j Rw j ).

Moreover, I j (s j Rw j ) ≤ c j for all j ∈ 	 and for some j0 ∈ 	, s j0 ∈ {1/R2, 1}
and I j0(s j0 Rw j0) ≤ c j0

2 . Therefore,

�λ(γ0(s1, s2, . . . , sl)) ≤ c	 − ε,

for some ε > 0. This completes the proof of (ii). ��
Corollary 4.4. The following claims hold:

(i) bλ,	 → c	 as λ → ∞.
(i i) bλ,	 is a critical value of �λ for large λ.

Proof. (i) For all λ ≥ 1 and for each j , we have 0 < cλ, j ≤ c j . Using the same
arguments in the proof of Proposition 3.4, we can prove that cλ, j → c j as λ → ∞
and thus, from Proposition 4.3, bλ,	 → c	 as λ → ∞.

(ii) Using the fact that �λ verifies that Palais–Smale condition, we can use
well known arguments involving deformation lemma [40] to conclude that bλ,	 is
a critical level to �λ for large λ. ��
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4.2. Proof of the main result

To prove Theorem 1.1, we need to find a nontrivial solution uλ for the large λ

which approaches a least energy solution in each � j ( j ∈ 	) and to 0 elsewhere as
λ → ∞. To this end, we will show two propositions which imply together with the
estimates made in the previous section that Theorem 1.1 holds.

Let

M = 1 +
k∑
j=1

√
(
1

2
− 1

θ
)−1c j ,

BM+1(0) = {u ∈ Eλ(R
2, C) : ‖u‖λ ≤ M + 1}.

For small μ > 0, we define

Aλ
μ = {u ∈ BM+1(0) : ‖u‖λ,R2\�′

j
≤ μ, |�λ, j (u) − c j | ≤ μ,∀ j ∈ 	}.

W also use the notation:

�
c	
λ = {u ∈ Eλ(R

2, C) : �λ(u) ≤ c	}
and remark thatw =∑l

j=1 w j ∈ Aλ
μ ∩�

c	
λ , this shows that Aλ

μ ∩�
c	
λ �= ∅. Fixing

0 < μ <
1

3
min{c j , j ∈ 	}. (4.3)

We have the following uniform estimate of ‖�′
λ(u)‖λ on the annulus (Aλ

2μ\Aλ
μ) ∩

�
c	
λ .

Proposition 4.5. Let μ > 0 satisfies (4.3). Then there exist σ0 > 0 and λ∗ ≥ 1
independent of λ such that

‖�′
λ(u)‖λ ≥ σ0 for λ ≥ λ∗ for all u ∈ (Aλ

2μ\Aλ
μ) ∩ �

c	
λn

.

Proof. Arguing by contradiction, we assume that there exist λn → ∞ and un ∈
(Aλn

2μ\Aλn
μ ) ∩ �

c	
λn

such that ‖�′
λ(un)‖λn → 0.

Since un ∈ Aλn
2μ and {‖un‖λn } is a bounded sequence, this shows that {�λn (un)}

is also bounded. Thus, we may assume that

�λn (un) → c ∈ (−∞, c	]
up to a subsequence.

Applying Proposition 3.4, we can extract a subsequence un → u in H1
A(R2)

where u ∈ H0,1
A (�	) is a solution of (4.1) with

lim
n→∞ �λn (un) =

l∑
j=1

I j (u) ≤ c	,

‖un‖2λn ,�′
j
→
∫

� j

(|∇Au|2 + Z(x)|u|2)dx, for all j ∈ 	, (4.4)
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λn

∫
R2

V (x)|un|2dx → 0, (4.5)

‖un‖2λn ,R2\�	
→ 0. (4.6)

Since c j is the least energy level for I j , we have two possibilities:

(i) I j (u |� j ) = c j for all j ∈ 	.
(i i) I j0(u |� j0

) = 0, that is u |� j0
≡ 0 for some j0 ∈ 	.

If (i) occurs, we have

1

2

∫
� j

(|∇Au|2 + Z(x)|u|2)dx − 1

2

∫
� j

F(|u|2)dx = c j , for all j ∈ 	.

From (4.6)–(4.8), we have un ∈ Aλn
μ for large n, which is a contradiction to the

assumption un ∈ (Aλn
2μ\Aλn

μ ).

If (ii) occurs, from (4.7) and un → u in H1
A(R2), it follows that

|�λn , j0(un) − c j0 | → c j0 ≥ 3μ

which is a contradiction with the fact that un ∈ (Aλn
2μ\Aλn

μ ). Thus neither (i) nor
(ii) can hold, and the proof is completed. ��
Proposition 4.6. Let μ > 0 satisfies (4.3) and λ∗ ≥ 1 be a constant given by in
Proposition 4.5. Then, for λ ≥ λ∗, there exists a nontrivial solution uλ of (3.5)
satisfying uλ ∈ Aλ

μ ∩ �
c	
λ .

Proof. Assuming by contradiction that there are no critical points in Aλ
μ ∩ �

c	
λ ,

since the Palais–Smale condition holds for�λ in the energy level (0, S], there exists
a constant dλ > 0 such that

‖�′
λ(u)‖ ≥ dλ for all u ∈ Aλ

μ ∩ �
c	
λ .

From hypothesis and Proposition 4.5, we also have

‖�′
λ(u)‖ ≥ σ0 for all u ∈ (Aλ

2μ\Aλ
μ) ∩ �

c	
λ ,

where σ0 > 0 is independent of λ. In what follows, � : Eλ(R
2, C) → R be a

continuous functional that verify

�(u) = 1 for u ∈ Aλ
3μ/2,

�(u) = 0 for u /∈ Aλ
2μ,

0 ≤ �(u) ≤ 1 for u ∈ Eλ(R
2, C),

and H : �
c	
λ → R be a continuous functional verify

H(u) :=
{

−�(u)
�′

λ(u)

‖�′
λ(u)‖λ

u ∈ Aλ
2μ,

0, u /∈ Aλ
2μ.
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Thus, we have the inequality

‖H(u)‖ ≤ 1 ∀λ ≥ �∗ and u ∈ �
c	
λ .

Considering the deformation flow η : [0,∞) × �
c	
λ → �

c	
λ defined by

dη

dt
= H(η) and η(0, u) = u ∈ �

c	
λ .

Thus η has the following properties

d

dt
�λ(η(t, u)) = −�(η(t, u))‖�′

λ(η(t, u))‖λ, (4.7)

η(t, u) = u for all t ≥ 0 and u ∈ �
c	
λ \Aλ

2μ, (4.8)

|�λ, j (u) − �λ, j (v)| ≤ K ∗‖u − v‖λ,�′
j

∀u, v ∈ BM+1(0) and j ∈ 	, (4.9)

where K ∗ > 0 be a constant.
Now let γ0(s1, s2, . . . , sl) ∈ �∗ be a path defined in (4.4) and we consider

η(t, γ0(s1, s2, . . . , sl)) for large t . Since for all (s1, s2, . . . , sl) ∈ ∂([1/R2, 1]l),
γ0(s1, s2, . . . , sl) /∈ Aλ

2μ, thus we have by (4.10) that

η(t, γ0(s1, s2, . . . , sl))=γ0(s1, s2, . . ., sl) for all (s1, s2, . . . , sl) ∈ ∂([1/R2, 1]l)
and η(t, γ0(s1, s2, . . . , sl)) ∈ �∗ for all t ≥ 0.
Since suppγ0(s1, s2, . . . , sl)(x) ⊂ �	 for all (s1, s2, . . . , sl) ∈ ∂([1/R2, 1]l), then
�λ(γ0(s1, s2, . . . , sl)) and ‖γ0(s1, s2, . . . , sl)‖λ, j etc. do not depend on λ ≥ 0. On
the other hand,

�λ(γ0(s1, s2, . . . , sl)) ≤ c	 ∀(s1, s2, . . . , sl) ∈ [1/R2, 1]l

and �λ(γ0(s1, s2, . . . , sl)) = c	 if and only if s j = 1
R , that is γ0(s1, s2, . . . , sl)(x)

|� j = w j for j ∈ 	. Thus, we have that

m0 := max{�λ(u) : u ∈ γ0([1/R2, 1]l)\Aλ
μ} (4.10)

is independent of λ and m0 < c	 . Since ‖ dη
dt ‖λ ≤ 1 for all t, u, it is easy to see that

for any t > 0

‖η(0, γ0(s1, s2, . . . , sl)) − η(t, γ0(s1, s2, . . . , sl))‖λ ≤ t.

Since �λ, j (u) ∈ C1(Eλ(R
2, C), R) for all j = 1, 2, . . . , l, and from the assump-

tions ( f1) − ( f5), it is easy to see that for a large number T > 0, there exists a
positive number ρ0 > 0 which is independent of λ such that for all j = 1, 2, . . . , l
and t ∈ [0, T ],

‖�λ, j (η(t, γ0(s1, s2, . . . , sl))‖λ ≤ ρ0. (4.11)
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We claim that for large T ,

max
(s1,s2,...,sl )∈[ 1

R2
,1]l

�λ(η(T, γ0(s1, s2, . . . , sl)(x))) < max

{
m0, c	 − 1

2
τ0μ

}
,

(4.12)

where m0 is given in (4.12), τ0 = max{σ0, σ0/ρ0}.
In fact, ifγ0(s1, s2, . . . , sl)(x) /∈ Aλ

μ, thenby (4.13),wehave�λ(η(T, γ0(s1, s2,

. . . , sl)(x))) ≤ m0 and thus (4.14) holds. If γ0(s1, s2, . . . , sl)(x) ∈ Aλ
μ, we need

to study the behavior of η̃(t) = η(t, γ0(s1, s2, . . . , sl). Setting d̃λ := min{dλ, σ0}
and T = σ0μ/(2dλ). Now we distinguish two cases:

(1) η̃(t) ∈ Aλ
3μ/2 for all t ∈ [0, T ].

(2) η̃(t0) ∈ ∂Aλ
3μ/2 for some t0 ∈ [0, T ].

If (1) holds, we have �(η̃(t)) ≡ 1 and ‖�′
λ(η̃(t))‖λ ≥ d̃λ for all t ∈ [0, T ]. Thus,

by (4.9), we have

�λ(η̃(T )) = �λ(γ0(s1, s2, . . . , sl)) +
∫ T

0

d

ds
�λ(η̃(t))ds

= �λ(γ0(s1, s2, . . . , sl)) −
∫ T

0
�(η̃(s))‖�′

λ(η̃(s))‖λds

≤ c	 −
∫ T

0
d̃λds

= c	 − d̃λT

= c	 − 1

2
σ0μ ≤ c	 − 1

2
τ0μ.

If (2) holds, there exists 0 ≤ t1 ≤ t1 ≤ T such that

η̃(t1) ∈ ∂Aλ
u, (4.13)

η̃(t2) ∈ ∂Aλ
3μ/2, (4.14)

η̃(t) ∈ Aλ
3μ/2\Aλ

u, for all t ∈ [t1, t2]. (4.15)

It follows from (4.17)

‖η̃(t2)‖λ,R2\�′
	

= 3μ

2
or

|�λ,�′
j0
(η̃(t2)) − c j0 | = 3μ

2
.

for some j0 ∈ 	.
Now we consider the latter case, the former case can be obtained in a similar

way. By (4.16),

|�λ,�′
j0
(η̃(t1)) − c j0 | ≤ μ,
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thus, we obtain ∣∣∣�λ,�′
j0
(η̃(t2)) − �λ,�′

j0
(η̃(t1))

∣∣∣
≥ |�λ,�′

j0
(η̃(t2)) − c j0 | − |�λ,�′

j0
(η̃(t1)) − c j0 |

≥ 1

2
μ.

On the other hand, by the mean value theorem, there exists t3 ∈ (t1, t2) such that

∣∣∣�λ,�′
j0
(η̃(t2)) − �λ,�′

j0
(η̃(t1))

∣∣∣ = ∣∣∣�′
λ,�′

j0
· dη̃

dt
(t3)
∣∣∣(t2 − t1).

Moreover, from (4.10) and (4.14), we have

t2 − t1 ≥ μ

2ρ0
.

Thus, one has

�λ(η̃(T )) = �λ(γ0(s1, s2, . . . , sl)) +
∫ T

0

d

ds
�λ(η̃(t))ds

= �λ(γ0(s1, s2, . . . , sl)) −
∫ T

0
�(η̃(s))‖�′

λ(η̃(s))‖λds

≤ c	 −
∫ t2

t1
�(η̃(s))‖�′

λ(η̃(s))‖λds

= c	 − σ0(t2 − t1)

= c	 − 1

2
σ0μ ≤ c	 − 1

2
τ0μ.

and so (4.15) is proved. Now we recall that η̃(T ) = η(T, γ0(s1, s2, . . . , sl)) ∈ �∗,
thus

bλ,	 ≤ �λ(η̃(T )) ≤ max{m0, c	 − 1

2
τ0μ}. (4.16)

But by Corollary 4.4, we know bλ,	 → c	 as λ → ∞, this is a contradiction to
(4.18), it shows that �λ(u) has a critical point u ∈ Aλ

u for large λ and we have
completed the proof of the proposition. ��
Proof of Theorem 1.1. From Proposition 4.6, there exists a family of nontrivial
solutions (uλ) to problem (3.5) verifying the following properties.
(i) For fixed μ > 0, there exists λ∗ such that

‖uλ‖λ,R2\�′
	

≤ μ, ∀λ ≥ λ∗.

Thus, from proof of Proposition 3.6, μ fixed sufficiently small, we can conclude
that

‖|uλ|‖2∞,R2\�′
	

≤ a, ∀λ ≥ λ∗,
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which shows that uλ is a nontrivial solution to problem (1.10).
(ii) Fixing λn → ∞ and μn → 0, the sequence {uλn } verifies

�′
λn

(uλn ) = 0 ∀n ∈ N ,

‖uλn‖λn ,R2\�′
	

→ 0,

�′
λn , j (uλn ) → c j ∀ j ∈ 	.

Thus, from proposition 3.2, we have

uλn → u in H1
A(R2) with u ∈ H0,1

A (�	),

from which the proof of Theorem 1.1 follows. ��
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