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Abstract. In the present paper, by using variational methods, we study
the existence of multiple nontrivial weak solutions for parametric nonlocal
equations, driven by the fractional Laplace operator (−Δ)s, in which the
nonlinear term has a sublinear growth at infinity. More precisely, a critical
point result for differentiable functionals is exploited, in order to prove
the existence of an open interval of positive eigenvalues for which the
treated problem admits at least two nontrivial weak solutions in a suitable
fractional Sobolev space.
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1. Introduction

Nonlocal fractional equations appear in many fields and a lot of interest has
been devoted to this kind of problems and to their concrete applications; see,
for instance the seminal papers [5–7] and [1,2,4,8,9,11,16,20,25], as well as,
the references therein.
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In this note, motivated by this large interest in the current literature, ex-
ploiting variational methods, we study the existence of multiple weak solutions
for the following fractional problem{

(−Δ)su = λf(u) in Ω
u = 0 in R

n\Ω,
(1.1)

where Ω is an open bounded subset of R
n (n > 2s and s ∈]0, 1[) with Lip-

schitz boundary ∂Ω, λ is real parameter, (−Δ)s denotes the fractional Laplace
operator which, up to normalization factor, may be defined as

(−Δ)su(x) := −
∫
Rn

u(x + y) + u(x − y) − 2u(x)
|y|n+2s

dy, (∀x ∈ R
n) (1.2)

while f is a subcritical term.
Precisely, we assume that f : R → R is a continuous function that is

superlinear at zero, that is,

lim
t→0

f(t)
t

= 0, (1.3)

and sublinear at infinity, that is,

lim
|t|→+∞

f(t)
t

= 0. (1.4)

Further, we require that

sup
t∈R

F (t) > 0, (1.5)

where

F (t) :=
∫ t

0

f(z)dz,

for any t ∈ R.
Note that conditions (1.3) and (1.4) are standard assumptions to be sat-

isfied in presence of subcritical terms. Now, let us denote

X0 :=
{
v ∈ Hs(Rn) : v = 0 a.e. in R

n\Ω
}
, (1.6)

our ambient framework endowed by the norm

‖v‖X0 :=
(∫

Rn×Rn

(v(x) − v(y))2

|x − y|n+2s
dxdy

)1/2

,

in which the functional space Hs(Rn) denotes the fractional Sobolev space of
the functions v ∈ L2(Rn) such that

the map (x, y) �→ v(x) − v(y)

|x − y|n+2s
2

is in L2(Rn × R
n, dxdy

)
.

This analytical context is inspired by (but not equivalent to) the frac-
tional Sobolev spaces, in order to correctly encode the Dirichlet boundary
datum in the variational formulation.
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Indeed, the nonlocal analysis that we perform here in order to use our
abstract approach is quite general and successfully exploited for other goals in
several recent contributions; see [13–15,19,21–24] and [10] for an elementary
introduction to this topic and for a list of related references.

By a weak solution of (1.1) we mean a function u ∈ X0 such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Rn×Rn

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|n+2s

dxdy

= λ

∫
Ω

f(u(x))ϕ(x)dx, ∀ ϕ ∈ X0.

(1.7)

As direct computations prove, Problem (1.7) represents the Euler–Lagrange
equation of the C1-functional Jλ : X0 → R defined as

Jλ(u) :=
1
2

∫
Rn×Rn

(u(x) − u(y))2

|x − y|n+2s
dxdy

−λ

∫
Ω

F (u(x))dx, (1.8)

for every u ∈ X0.
The main multiplicity result of the present paper can be stated as follows:

Theorem 1. Let s ∈]0, 1[, n > 2s, Ω be an open bounded set of Rn with Lipschitz
boundary. Let f : R → R be a continuous function verifying conditions from
(1.3) to (1.5). Then, there exists an open interval Λ ⊂]0,+∞[ and a real
positive number κ such that for every λ ∈ Λ problem (1.1) has at least two
distinct, nontrivial weak solutions in X0 whose X0-norms are less than κ.

The above theorem will be proved by using variational techniques, in
particular performing a direct consequence of some general results given by
Ricceri in [17,18], which assures the existence of multiple critical points for a
functional, under suitable regularity assumptions on it (see Theorem 2 below).

We note that, in Theorem 1, the superlinearity of the function f at the
origin [that is, hypothesis (1.3)] is an indispensable fact. Indeed, for example,
if

f(t) := (arctan t)2, (∀ t ∈ R)

an easy computation shows that (1.1) possesses only the trivial solution, when-
ever

|λ| <
1

c2
2π

,

where c2 > 0 is the best Sobolev constant of the continuous embedding X0 ↪→
L2(Rn). For detailed comments and for a more general non-existence result,
see Proposition 7 in Subsect. 3.2.

Furthermore, we will give additional information as far as the localization
of the interval Λ is concerned. More precisely, by using the notations adopted
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724 G. Molica Bisci and V. D. Rădulescu NoDEA

along the paper, we show that

Λ ⊂

⎡
⎢⎢⎣λ1,s

cf
,

2
(1 − σ0)2

(1 − σn
0 )κ1κ2(

F (t0)σn
0 − (1 − σn

0 ) max
|t|≤|t0|

|F (t)|
) t20

τ2

⎤
⎥⎥⎦ ,

see Subsect. 3.2 for a detailed proof.
Finally, we point out that the results contained here can be proved, in a

similar way, for the nonlocal fractional operator defined by

LKu(x) := −
∫
Rn

(u(x + y) + u(x − y) − 2u(x))K(y)dy, x ∈ R
n,

where the kernel function K : Rn\{0} → ]0,+∞[ satisfies the following hy-
pothesis: there exists γ ∈ ]0, 1] such that

γ|x|−(n+2s) ≤ K(x) ≤ γ−1|x|−(n+2s),

for any x ∈ R
n\{0}.

Clearly, the paradigm of the above K is given by the singular kernel
K(x) := |x|−(n+2s); in this case LK reduces to the fractional Laplace operator
given in (1.2).

The present paper is organized as follows. In Sect. 2 we give some no-
tations and we recall some properties of the functional space we work in. We
also give some tools which will be useful along the manuscript. In Sect. 3 we
study problem (1.1) and we prove Theorem 1.

2. Some preliminaries

This section is devoted to the notations used along the paper. We also give
some preliminary results which will be useful in the sequel.

2.1. Notations and definitions

In this subsection we briefly recall some properties of the functional space X0,
firstly introduced in [21], and we give some notations. The reader familiar with
this topic may skip this section and go directly to the next one.

The space X0 is defined as in (1.6), where Hs(Rn) denotes the usual frac-
tional Sobolev space endowed with the norm (the so-called Gagliardo norm)

‖g‖Hs(Rn) = ‖g‖L2(Rn) +
(∫

Rn×Rn

(g(x) − g(y))2

|x − y|n+2s
dxdy

)1/2

. (2.1)

For further details on the fractional Sobolev spaces we refer to [10] and
to the references therein.

Of course, the space X0 is non-empty, since C2
0 (Ω) ⊆ X0 by [21, Lemma

5.1] and it depends on the set Ω. Moreover, by [22, Lemma 6] and the fact
that any function v ∈ X0 is such that v = 0 a.e. in R

n\Ω, in the sequel we can
take
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X0 � v �→ ‖v‖X0 =
(∫

Rn×Rn

(v(x) − v(y))2

|x − y|n+2s
dxdy

)1/2

(2.2)

as norm on X0.
Also (X0, ‖ · ‖X0) is a Hilbert space (for this see [22, Lemma 7]), with

scalar product

〈u, v〉X0 :=
∫
Rn×Rn

(
u(x) − u(y)

)(
v(x) − v(y)

)
|x − y|n+2s

dxdy. (2.3)

Finally, we recall that in [22, Lemma 8] and in [24, Lemma 9] the authors
proved that the embedding j : X0 ↪→ Lν(Rn) is continuous for any ν ∈ [1, 2∗],
while it is compact whenever ν ∈ [1, 2∗[. In the sequel for any ν ∈ [1, 2∗[, we
will denote by cν the positive constant such that

‖v‖Lν(Rn) ≤ cν‖v‖X0 , (2.4)

for any v ∈ X0.

2.2. Some useful tools

The main tool used along this paper in order to prove our multiplicity result
stated in Theorem 1 is given by a direct consequence of some general theorems
due to Ricceri [17,18] that we recall here below.

Theorem 2. Let (E, ‖·‖) be a separable and reflexive real Banach space, and let
Φ,Ψ : E → R be two continuously Gâteaux differentiable functionals. Assume
that there exists z0 ∈ E such that Φ(z0) = Ψ(z0) = 0 and inf

z∈E
Φ(z) ≥ 0 and

that there exist z1 ∈ E, � > 0 such that
(i) � < Φ(z1);

(ii) supΦ(z)<� Ψ(z) < �
Ψ(z1)
Φ(z1)

.

Further, put

ā :=
ζ�

�
Ψ(z1)
Φ(z1)

− sup
Φ(z)<�

Ψ(z)
,

with ζ > 1, assume that the functional

Jλ(z) := Φ(z) − λΨ(z), (∀ z ∈ E)

is sequentially weakly lower semicontinuous, satisfies the (PS) condition, and
(iii) lim‖z‖→+∞ Jλ(z) = +∞,
for every λ ∈ [0, ā].

Then there is an open interval Λ ⊂ [0, ā] and a number κ > 0 such that
for each λ ∈ Λ, the equation J ′

λ(z) = 0 admits at least three solutions in E
having norm less than κ.

Some details and related topics on the above result can be found in the
recent monograph [12].

For the sake of completeness, we also recall that the C1-functional Jλ :
E → R satisfies the Palais-Smale condition at level μ ∈ R when
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(PS)μ Every sequence {zj}j∈N ⊂ E such that

Jλ(zj) → μ, and ‖J ′
λ(zj)‖E∗ → 0,

as j → ∞, possesses a convergent subsequence in E.
Here E∗ denotes the topological dual of E. Finally, we say that Jλ satisfies

the Palais-Smale condition (in short (PS)) if (PS)μ holds for every μ ∈ R.
Now, fix an element x0 ∈ Ω and choose τ > 0 in such a way that

B̄(x0, τ) := {x ∈ R
n : |x − x0| ≤ τ} ⊆ Ω, (2.5)

where | · | denotes the usual Euclidean norm in R
n.

At this point, let σ ∈]0, 1[, t0 ∈ R and define ut0
σ ∈ X0 as follows

ut0
σ (x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ∈ R
n\B(x0, τ)

t0
(1 − σ)τ

(τ − |x − x0|) if x ∈ B(x0, τ)\B(x0, στ)

t0 if x ∈ B(x0, στ),

where B(x0, r) denotes the n-dimensional open ball with center x0 ∈ Ω and
radius r > 0.

This function will be useful in the sequel in the proof of our theorem as
well as the next preparatory Lemma. Let n > 2s and set

ν(n) := (2π)n

(
1 +

1
λ1

)
, (2.6)

where

λ1 := inf
u∈W 1,2

0 (Ω)\{0}

‖∇u‖2
L2(Ω)

‖u‖2
L2(Ω)

. (2.7)

The following result holds.

Lemma 3. Let σ, s ∈]0, 1[ and τ defined as before, Sn−2 be the Lebesgue measure
of the unit sphere in R

n−1 and

Γ(t) :=
∫ +∞

0

zt−1e−zdz, (∀ t > 0)

be the usual Gamma function. If t0 ∈ R, then ut0
σ ∈ X0 and one has

‖ut0
σ ‖X0 ≤ |t0|

(1 − σ)

√√√√π
n
2 τn−2(1 − σn)

Γ
(
1 +

n

2

) κ1κ2, (2.8)

where

κ1 :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2ν(1) if n = 1(
π +

4
1 + 2s

)
ν(2) if n = 2

Sn−2

(
π

2
+

2
1 + 2s

)
ν(n) if n ≥ 3

and κ2 :=
(

1
2(1 − s)

+
2
s

)
.
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Proof. Computing the standard seminorm of the function ut0
σ in H1(Rn), we

easily have

[ut0
σ ]2H1(Rn) =

∫
Rn

|∇ut0
σ (x)|2 dx =

∫
B(x0,τ)\B(x0,στ)

t20
(1 − σ)2τ2

dx

=
t20

(1 − σ)2τ2
[meas(B(x0, τ)) − meas(B(x0, στ))]

=
t20

(1 − σ)2
π

n
2 τn−2(1 − σn)

Γ
(
1 +

n

2

) , (2.9)

where “meas(B(x0, τ))” and “meas(B(x0, στ))” denote respectively the
Lebesgue measure of B(x0, τ) and B(x0, στ).

Since ut0
σ ∈ H1

0 (Ω), by [10, Proposition 2.2 ] it follows that ut0
σ ∈ Hs,2(Ω).

Moreover, the boundary ∂Ω is Lipschitz, B̄(x0, τ) ⊂ Ω, and ut0
σ = 0 in

Ω\B̄(x0, τ). By [10, Lemma 5.1] one has that ut0
σ ∈ Hs(Rn).

Hence, since s ∈]0, 1[, Proposition 3.4 of [10], yields

‖ut0
σ ‖2

X0
≤ 2

(∫
Rn

1 − cos x1

|x|n+2s
dx

)∫
Rn

|ξ|2s|Fut0
σ (ξ)|2 dξ

≤ 2
(∫

Rn

1 − cos x1

|x|n+2s
dx

)∫
Rn

(1 + |ξ|2)|Fut0
σ (ξ)|2 dξ, (2.10)

where

Fut0
σ (ξ) :=

1
(2π)n/2

∫
Rn

e−iξ·xut0
σ (x)dx,

stands for the classical Fourier transform of ut0
σ .

Now, by standard arguments on the Fourier transform and Poincaré in-
equality, one has∫

Rn

(1 + |ξ|2)|Fut0
σ (ξ)|2 dξ ≤ ν(n)[ut0

σ ]2H1(Rn). (2.11)

Indeed

ut0
σ ∈ L2(Rn) if and only if Fut0

σ ∈ L2(Rn)

and

‖ut0
σ ‖2

L2(Rn) = (2π)−n‖Fut0
σ ‖2

L2(Rn). (2.12)

Further

|∇ut0
σ | ∈ L2(Rn) if and only if |ξ|Fut0

σ ∈ L2(Rn)

and

‖∇ut0
σ ‖2

L2(Rn) = (2π)−n‖|ξ|Fut0
σ ‖2

L2(Rn). (2.13)

Relations (2.12) and (2.13) give∫
Rn

(1 + |ξ|2)|Fut0
σ (ξ)|2 dξ = (2π)n

(
‖ut0

σ ‖2
L2(Rn) + ‖∇ut0

σ ‖2
L2(Rn)

)
. (2.14)
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Hence, by (2.6) and (2.7) one has that inequality (2.11) is a direct consequence
of (2.14) taking into account that ut0

σ ∈ W 1,2
0 (Ω).

Then, by (2.10) and (2.11), il follows that

‖ut0
σ ‖2

X0
≤ 2ν(n)

(∫
Rn

1 − cos x1

|x|n+2s
dx

)
[ut0

σ ]2H1(Rn).

Thus, for n ≥ 3, we have

‖ut0
σ ‖2

X0
≤ 2ν(n)

(∫
Rn

1 − cos x1

|x|n+2s
dx

)
[ut0

σ ]2H1(Rn)

= 2ν(n)

(∫
Rn−1

1

(1 + |x|2)n+2s
2

dx

)

×
(∫

R

1 − cos t

|t|1+2s
dt

)
[ut0

σ ]2H1(Rn).

The conclusion follows by (2.9) taking into account that, by direct computa-
tions it follows that, one has∫

Rn−1

1

(1 + |x|2)n+2s
2

dx < Sn−2

(
π

4
+

1
1 + 2s

)
,

and ∫
R

1 − cos t

|t|1+2s
dt <

1
2(1 − s)

+
2
s
.

Indeed∫
Rn−1

1

(1 + |x|2)n+2s
2

dx = Sn−2

∫ +∞

0

ρn−2

(1 + ρ2)
n+2s

2

dρ

= Sn−2

[∫ 1

0

ρn−2

(1+ρ2)
n+2s

2

dρ+
∫ +∞

1

ρn−2

(1+ρ2)
n+2s

2

dρ

]

< Sn−2

[∫ 1

0

(1 + ρ2)
n−2
2

(1 + ρ2)
n+2s

2

dρ +
∫ +∞

1

ρn−2

(ρ2)
n+2s

2

dρ

]

< Sn−2

[∫ 1

0

dρ

1 + ρ2
+
∫ +∞

1

dρ

ρ2(1+s)

]

= Sn−2

(
π

4
+

1
1 + 2s

)
,

and ∫
R

1 − cos t

|t|1+2s
dt = 2

∫ +∞

0

1 − cos t

t1+2s
dt

= 2

[∫ 1

0

1 − cos t

t1+2s
dt +

∫ +∞

1

1 − cos t

t1+2s
dt

]
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≤
[

1
2

∫ 1

0

t2

t1+2s
dt + 2

∫ +∞

1

1
t(1+2s)

dt

]

=
1

2(1 − s)
+

2
s
.

On the other hand, we also have

∫
Rn

1 − cos x1

|x|n+2s
dx ≤

⎧⎪⎪⎨
⎪⎪⎩

1
2(1 − s)

+
2
s

if n = 1(
π

2
+

2
1 + 2s

)(
1

2(1 − s)
+

2
s

)
if n = 2.

Clearly ut0
σ : Rn → R is a continuous, ut0

σ ∈ L2(Ω) and by the above compu-
tations it follows that ut0

σ ∈ X. Finally ut0
σ = 0 in R

n\Ω. Thus ut0
σ ∈ X0 and

(2.8) holds. �

3. Proof of the main result

The validity of the following Lemmas will be crucial in order to prove the main
result.

Lemma 4. Let f : R → R be a continuous function verifying condition (1.4).
Then, for every λ ∈ R, the functional Jλ is weakly lower semicontinuous on
X0.

Proof. The application

u �→
∫

Ω

F (u(x))dx

is continuous in the weak topology of X0.
Indeed, if {uj}j∈N is a sequence in X0 such that uj ⇀ u weakly in X0,

then, by (2.4) and [3, Theorem IV.9], up to a subsequence, uj converges to
u strongly in Lν(Ω) and a.e. in Ω as j → +∞, and it is dominated by some
function hν ∈ Lν(Ω) , that is,

|uj(x)| ≤ hν(x) a.e. x ∈ Ω for any j ∈ N (3.1)

for any ν ∈ [1, 2∗[ .
Due to (1.4), there exists c > 0 such that

|f(t)| ≤ c(1 + |t|), (∀ t ∈ R). (3.2)

Then, by the continuity of F and (3.2) it follows that

F (uj(x)) → F (u(x)) a.e. x ∈ Ω

as j → ∞ and

|F (uj(x))| ≤ c

(
|uj(x)| +

1
2
uj(x)2

)
≤ c

(
h1(x) +

1
2
h2(x)2

)
∈ L1(Ω)

a.e. x ∈ Ω and for any j ∈ N .
Hence, by applying the Lebesgue Dominated Convergence Theorem in

L1(Ω), we have that
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∫
Ω

F (uj(x)) dx →
∫

Ω

F (u(x)) dx

as j → ∞, that is the map

u �→
∫

Ω

F (u(x))dx

is continuous from X0 with the weak topology to R. Thus, the functional Ψ is
continuous from X0 with the weak topology to R.

On the other hand, the map

u �→ ‖u‖2
X0

is lower semicontinuous in the weak topology of X0 , so that the functional Φ
is lower semicontinuous in the weak topology of X0 . �

Lemma 5. Let f : R → R be a continuous function verifying condition (1.4).
Then, for every λ ∈ R, the functional Jλ is coercive and satisfies the compact-
ness (PS) condition.

Proof. Let us fix λ ∈ R. By (1.4), there exists a positive δλ such that

|f(t)| ≤ |t|
2c2

2(1 + |λ|) ,

for every |t| ≥ δλ.
Hence, we get

|F (t)| ≤ t2

2c2
2(1 + |λ|) + max

|t|≤δλ

|f(t)||t|,

for every t ∈ R.
Thus

Jλ(u) ≥ Φ(u) − |λ|
∣∣∣∣
∫

Ω

F (u(x))dx

∣∣∣∣
≥ 1

2
‖u‖2

X0
− |λ|

∫
Ω

|F (u(x))|dx

≥ 1
2(1 + |λ|)‖u‖2

X0
− c1|λ| max

|t|≤δλ

|f(t)|‖u‖X0 ,

for every u ∈ X0.
Then the functional Jλ is bounded from below and Jλ(u) → +∞ when-

ever ‖u‖X0 → +∞. Hence Jλ is coercive.
Now, let us prove that Jλ satisfies the condition (PS)μ for μ ∈ R. For

our goal, let {uj}j∈N ⊂ X be a Palais-Smale sequence, that is,

Jλ(uj) → μ, and ‖J ′
λ(uj)‖X∗

0
→ 0,

as j → +∞.
Taking into account the coercivity of Jλ, the sequence {uj}j∈N is nec-

essarily bounded in X0. Since X0 is reflexive, we may extract a subsequence,
which for simplicity we call again {uj}j∈N, such that uj ⇀ u in X0. This means
that
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∫
Rn×Rn

(
uj(x) − uj(y)

)(
ϕ(x) − ϕ(y)

)
|x − y|n+2s

dxdy

→
∫
Rn×Rn

(
u(x) − u(y)

)(
ϕ(x) − ϕ(y)

)
|x − y|n+2s

dxdy, (3.3)

for any ϕ ∈ X0, as j → ∞.
We will prove that {uj}j∈N strongly converges to u ∈ X0. Exploiting the

derivative Jλ(uj)(uj − u), we obtain

〈Φ′(uj), uj − u〉 = 〈J ′
λ(uj), uj − u〉

+λ

∫
Ω

f(uj(x))(uj − u)(x)dx, (3.4)

where

〈Φ′(uj), uj − u〉 =
∫
Rn×Rn

(uj(x) − uj(y))2

|x − y|n+2s
dxdy

−
∫
Rn×Rn

(
uj(x) − uj(y)

)(
u(x) − u(y)

)
|x − y|n+2s

dxdy

Since ‖J ′
λ(un)‖X∗

0
→ 0 and the sequence {uj − u}j∈N is bounded in X, taking

into account that |〈J ′
λ(uj), uj − u〉| ≤ ‖J ′

λ(uj)‖X∗
0
‖uj − u‖X0 , one has

〈J ′
λ(uj), uj − u〉 → 0. (3.5)

Further, by the growth condition (3.2), one has∫
Ω

|f(uj(x))||uj(x) − u(x)|dx

≤ c

∫
Ω

|uj(x) − u(x)|dx + c

∫
Ω

|uj(x)||uj(x) − u(x)|dx

≤ c((meas(Ω))1/2 + ‖uj‖L2(Ω))‖uj − u‖L2(Ω).

Now, the embedding X0 ↪→ L2(Ω) is compact, hence uj → u strongly in
L2(Ω). So we obtain ∫

Ω

|f(uj(x))||uj(x) − u(x)|dx → 0, (3.6)

as j → ∞.
By (3.4) relations (3.5) and (3.6) yield

〈Φ′(uj), uj − u〉 → 0, (3.7)

as j → ∞.
Hence by (3.7) we can write∫

Rn×Rn

(uj(x) − uj(y))2

|x − y|n+2s
dxdy

−
∫
Rn×Rn

(
uj(x) − uj(y)

)(
u(x) − u(y)

)
|x − y|n+2s

dxdy → 0,

as j → ∞.
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Thus, by (3.8) and (3.3) it follows that

lim
j→∞

∫
Rn×Rn

(uj(x) − uj(y))2

|x − y|n+2s
dxdy

=
∫
Rn×Rn

(u(x) − u(y))2

|x − y|n+2s
dxdy.

In conclusion, thanks to [3, Proposition III.30], uj → u in X0. The proof is
complete. �

Lemma 6. Let f : R → R be a continuous function verifying condition (1.3)
and (1.4). Then, the following property holds

lim
�→0+

sup
u∈Φ−1(]−∞,�[)

∫
Ω

F (u(x)) dx

�
= 0.

Proof. Due to (1.3), for an arbitrary small ε > 0 there exists δε > 0 such that

|f(t)| <
ε

4c2
2

|t|,

for every |t| < δε.
On the other hand, combining (3.2) with the above inequality, one has

|F (t)| ≤ ε
t2

4c2
2

+ c(1 + δε)δ1−q|t|q, (3.8)

for a fixed q ∈]2, 2∗[ and for all t ∈ R.
Now, fix � > 0 and define the sets

S� := Φ−1(] − ∞, �[), and S2� := Φ−1(] − ∞, 2�[).

Of course S� ⊆ S2�. Moreover, by using (3.8), we have∫
Ω

F (u(x)) dx ≤ ε

2
� + c(1 + δε)δ1−q

ε cq
q2

q/2�q/2

≡ ε

2
� + ĉ(ε)�q/2,

where we set

ĉ(ε) := c(1 + δε)δ1−q
ε cq

q2
q/2.

Thus, there exists �(ε) > 0 such that, for every 0 < � < �(ε), we have

0 ≤
sup
u∈S�

∫
Ω

F (u(x)) dx

�
≤

sup
u∈S2�

∫
Ω

F (u(x)) dx

�

≤ ε

2
+ ĉ(ε)�

q−2
2 < ε,

which completes the proof. �
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3.1. Proof of Theorem 1

The idea of the proof consists in applying Theorem 2 to the functional Jλ .
To this purpose, we write the functional Jλ as follows:

Jλ(u) = Φ(u) − λΨ(u), (∀u ∈ X0)

where

Φ(u) :=
1
2

∫
Rn×Rn

(u(x) − u(y))2

|x − y|n+2s
dxdy,

while

Ψ(u) :=
∫

Ω

F (u(x)) dx,

for every u ∈ X0.
First of all, note that X0 is a separable Hilbert space (see [22, Lemma 7])

and the functionals Φ and Ψ are continuously Gâteaux differentiable. More-
over, the functional Φ is coercive in X0, inf

u∈X0
Φ(u) = 0 and, by choosing z0 ≡ 0,

of course

Φ(z0) = Ψ(z0) = 0.

Now, by hypothesis (1.5), there exists t0 ∈ R such that F (t0) > 0. Further, let
σ0 ∈]0, 1[ be such that

F (t0)σn
0 − (1 − σn

0 ) max
|t|≤|t0|

|F (t)| > 0.

Hence, set

ut0
σ0

(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if x ∈ R
n\B(x0, τ)

t0
(1 − σ0)τ

(τ − |x − x0|) if x ∈ B(x0, τ)\B(x0, σ0τ)

t0 if x ∈ B(x0, σ0τ),

where τ is as in (2.5).
One has

Ψ(ut0
σ0

) ≥
[
F (t0)σn

0 − (1 − σn
0 ) max

|t|≤|t0|
|F (t)|

]
ωnτn,

where ωn denotes the volume of the unit ball in R
n.

Indeed, since

‖ut0
σ0

‖∞ := max
x∈Ω̄

|ut0
σ0

(x)| ≤ |t0|,

it follows that∫
B(x0,τ)\B(x0,σ0τ)

F (ut0
σ0

(x)) dx ≥ −(1 − σn
0 ) max

|t|≤|t0|
|F (t)|τnωn. (3.9)

Author's personal copy



734 G. Molica Bisci and V. D. Rădulescu NoDEA

Consequently, relation (3.9) yields

Ψ(ut0
σ0

) :=
∫

Ω

F (ut0
σ0

(x)) dx

=
∫

B(x0,σ0τ)

F (ut0
σ0

(x)) dx +
∫

B(x0,τ)\B(x0,σ0τ)

F (ut0
σ0

(x)) dx

≥ F (t0)σn
0 τnωn +

∫
B(x0,τ)\B(x0,σ0τ)

F (ut0
σ0

(x)) dx

≥
[
F (t0)σn

0 − (1 − σn
0 ) max

|t|≤|t0|
|F (t)|

]
ωnτn.

Further, by Lemma 3 we have

Φ(ut0
σ0

) ≤ β, (3.10)

where

β :=
t20

2(1 − σ0)2
π

n
2 τn−2(1 − σn

0 )

Γ
(
1 +

n

2

) κ1κ2.

Due to Lemma 6, we may take �0 > 0 such that the function ut0
σ0

∈ X0 verifies
the following conditions:

ut0
σ0

∈ R\S̄�0 , (3.11)

and

sup
u∈S�0

Ψ(u)

�0
<

[
F (t0)σn

0 − (1 − σn
0 ) max

|t|≤|t0|
|F (t)|

]
ωnτn

β
. (3.12)

Relation (3.11) clearly means

�0 < Φ(ut0
σ0

).

Moreover, since (3.10) holds, it follows that[
F (t0)σn

0 − (1 − σn
0 ) max

|t|≤|t0|
|F (t)|

]
ωnτn

β
≤ Ψ(ut0

σ0
)

Φ(ut0
σ0)

. (3.13)

Hence, inequality (3.12) together to (3.13) give

sup
Φ(u)<�0

Ψ(u) < �0

Ψ(ut0
σ0

)
Φ(ut0

σ0)
. (3.14)

By choosing z1 ≡ ut0
σ , hypotheses (i) and (ii) of Theorem 2 are verified.

Set

ā :=
1 + �0

Ψ(ut0
σ0

)
Φ(ut0

σ0)
−

sup
Φ(u)<�0

Ψ(u)

�0

.

Note that, in such a case ζ := 1 + �0 and, by (3.14), ā is strictly positive.
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Bearing in mind Lemma 4 the functional Jλ is sequentially lower contin-
uous in the weak topology on X0. Further, Lemma 5 guarantees the coercivity
property.

Hence, all the assumptions of Theorem 2 are fulfilled. Thus there is an
open interval Λ ⊆ [0, ā] and a number κ > 0 such that for each λ ∈ Λ, the
equation J ′

λ(u) = 0 admits at least three solutions in X0 having norm less
than κ.

Since one of them may be the trivial one (note that by (1.1) one has
f(0) = 0), we still have at least two distinct, nontrivial weak solutions of the
problem (1.1).

3.2. Final comments

In spite of the fact that hypotheses of Theorem 1 are verified, the conclusions
do not hold in general for every parameter λ > 0, as we mentioned in the first
section. For instance, let f be a Lipschitz continuous function of constant L
and take

0 ≤ λ <
1

c2
2L

. (3.15)

Further, let us assume that there exists a weak solution u0 ∈ X0\{0} of the
problem (1.1), that is,⎧⎪⎪⎨

⎪⎪⎩

∫
Rn×Rn

(u0(x) − u0(y))(ϕ(x) − ϕ(y))
|x − y|n+2s

dxdy

= λ

∫
Ω

f(u0(x))ϕ(x)dx, ∀ ϕ ∈ X0.

(3.16)

In particular, testing (3.16) with ϕ := u0, we have

‖u0‖2
X0

= λ

∫
Ω

f(u0(x))u0(x) dx. (3.17)

On the other hand, bearing in mind that f is Lipschitz continuous and f(0) =
0, by using (3.15), it follows that

∫
Ω

f(u0(x))u0(x) dx ≤
∫

Ω

|f(u0(x))||u0(x)| dx

=
∫

Ω

|f(u0(x)) − f(0)||u0(x)| dx

≤ L‖u0‖2
L2(Ω) ≤ c2

2L‖u0‖2
X0

. (3.18)

By (3.17) and (3.18) we get

‖u0‖2
X0

≤ λc2
2L‖u0‖2

X0
< ‖u0‖2

X0
,

which is a contradiction.
More generally, according to hypotheses (1.3)–(1.5) and defining the pos-

itive number

cf := max
s 	=0

|f(s)|
|s| , (3.19)
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a non-existence result for our problem can be proved whenever the parameter
λ is small enough.

Namely, arguing substantially as before, and by [23, Proposition 9] we
have

Proposition 7. Let f : R → R be a continuous function which satisfies (1.3)–
(1.5) and denote by λ1,s be the first positive eigenvalue of the linear problem{

(−Δ)su = λu in Ω

u = 0 in R
n\Ω.

(3.20)

Then for every parameter

0 ≤ λ <
λ1,s

cf
,

where cf is the constant defined in (3.19), problem (1.1) admits only the trivial
solution.

Finally, a natural question arises about the interval Λ obtained in Theo-
rem 1: can we estimate it?

To give a positive answer to this question, preserving the above notations,
one has

1 + �0

α

β
−

sup
Φ(u)<�0

Ψ(u)

�0

<
2

α

β
−

sup
Φ(u)<�0

Ψ(u)

�0

,

for every �0 ∈]0, 1[ and where we set

α :=
(

F (t0)σn
0 − (1 − σn

0 ) max
|t|≤|t0|

|F (t)|
)

ωnτn.

Further, based on Lemma 6, one can take �0 ∈]0, 1[ and such that
1

α

β
−

sup
Φ(u)<�0

Ψ(u)

�0

<
2β

α
.

Thus
ā :=

1 + �0

Ψ(ut0
σ0

)
Φ(ut0

σ0)
−

sup
Φ(u)<�0

Ψ(u)

�0

≤ 1 + �0

α

β
−

sup
Φ(u)<�0

Ψ(u)

�0

< 4
β

α
.

In conclusion, thanks to the above computations and bearing in mind Propo-
sition 7, we have the following concrete localization

Λ ⊂
[
λ1,s

cf
, ā

]
⊂

⎡
⎢⎢⎣λ1,s

cf
,

2
(1 − σ0)2

(1 − σn
0 )κ1κ2(

F (t0)σn
0 − (1 − σn

0 ) max
|t|≤|t0|

|F (t)|
) t20

τ2

⎤
⎥⎥⎦ ,

as desired.
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Remark 8. We point out that, encoding the exact normalization constant

C(n, s) :=
(∫

Rn

1 − cos x1

|x|n+2s
dx

)−1

,

defining the fractional Laplacian operator

(−Δ)su(x) = −C(n, s)
2

∫
Rn

u(x + y) + u(x − y) − 2u(x)
|y|n+2s

dy, (∀x ∈ R
n)

our approach ensures the existence of an open interval

Λ ⊂

⎡
⎢⎢⎣λ1,s

cf
,

(1 − σn
0 )ν(n)

(1 − σ0)2
(

F (t0)σn
0 − (1 − σn

0 ) max
|t|≤|t0|

|F (t)|
) t20

τ2

⎤
⎥⎥⎦ ,

and a real positive number κ such that for every λ ∈ Λ problem (1.1) has at
least two distinct, nontrivial weak solutions in X0 whose X0-norms are less
than κ.
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