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Abstract

In this paper, we investigate the multiplicity of solutions for a p-Kirchhoff
system driven by a nonlocal integro-differential operator with zero Dirichlet
boundary data. As a special case, we consider the following fractional
p-Kirchhoff system

' -1
( 2 [“i]ff] (= A)pui0) = N7 2w+ 37 Byl |y " 2wy in Q,
i=1

i=j

uj=0 in RV\Q,

uj(x) — ui(y)|P lip .
where [uj]‘g,p:(ffRzNdedy) =12k k22,021, Qs

|X _ y‘N +ps
an open bounded subset of RN with Lipschitz boundary 8, N > ps with
s€(0,1), (—A)fy is the fractional p-Laplacian, \; >0 and 8 = 3j for i =j,
j=1,2,---,k.When1 < g <6p<2m<p;and ;>0 forall1 <i<j<k, two
distinct solutions are obtained by using the Nehari manifold method. When
1<fOp<2m<q<p;and fGeR forall I<i<j<korl<fp<qg<2m<p;
and §;; >0 for all 1 <i<j<k, the existence of infinitely many solutions is
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obtained by applying the symmetric mountain pass theorem. To our best
knowledge, our results for the above system are new in the study of Kirchhoff
problems.

Keywords: fractional p-Kirchhoff system, multiple solutions, Nehari
manifold, mountain pass theorem
Mathematics Subject Classification numbers: 35R11, 35A15, 47G20

1. Introduction and main results

In this paper we study nonlinear fractional p-Kirchhoff type systems of mixed couplings.
More precisely, we consider the following k equations:

& 6—1
[Z[ui]iv) Liuje) = Nlugl* 2 up + 37 Bylug|™ ;"2 u; - in Q, (1.1)

i=1 i=j

uj=0 in RM\Q,

Up .
where i1, = ( [ fron I, = (P K G — y)dxdy) =12,k k22,021, Qis an

open bounded subset of RY with Lipshcitz boundary 9 2, N > ps with s € (0, 1), \; >0 and
Bij = Bjifori=j, j=1,2,---,k, and L is a nonlocal integro-differential operator defined as

Lip(x) = 2lim lo@) — @(N[P~2(p(x) — (YK (x — y)dy for xeR",
eN\0 JRMB.(x)

along any ¢ € CSO(RN ), where B.(x) denotes the ball in RY of radius ¢ centered at x, and the
singular kernel K : R¥\ {0} — R* is a measurable function with the following property

{'VK € L(RY), where y(x) = min{|x|", 1}; (12)

there exists K> 0 such that K (x) > Ko |x[~™*7 for any x € RV \{0}.

Especially, when K(x) = |x|"™¥*+P9 for x € R¥\ {0}, Lk reduces to the following fractional
p-Laplace operator

)

VRPN lp(x) = ("2 (p(x) = ()
(=A)ppx) = 2!1{1}) e Pa—ET dy

see [12, 31] and the references therein for further details on the fractional p-Laplacian. In this
case, if s > I, p = 2 and 6 = 1, then problem (1.1) becomes

—Auj = N[ 2w+ > Bylui|" lwi|"2u; i Q,
el (1.3)
uj =0 in RV\Q,

where j = 1,2,...,k, k> 2, see [12, proposition 4.4]. For k = 2, system (1.2), also known as
the Gross—Pitaevskii system, has applications in many physical models such as in nonlinear
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optics (for example, the beam in Kerr-like photorefractive media) and in Bose—Einstein con-
densates for multi-species condensates, see [9, 13] and the references therein. In the latter
case, ); and (3;; are physically the intraspecies and interspecies scattering lengths respectively.
The sign of 3;; determines whether the interactions of states are repulsive or attractive, i.e. the
interaction is attractive if 3;; > 0, and repulsive if 3;; < 0; the two states are in strong competi-
tion when §;; is negative and very large. These phenomena have been documented in experi-
ments as well as in numerical simulations. For more details about their applications and some
recent results, we refer to [9, 11, 17, 32] and the references therein.

In [14], Fiscella and Valdinoci proposed a stationary Kirchhoff variational model, in
bounded regular domains of RY, which takes into account the nonlocal aspect of the ten-
sion arising from nonlocal measurements of the fractional length of the string. In fact, prob-
lem (1.1) is a fractional version of a model, the so-called Kirchhoff problems, introduced by
Kirchhoff. To be more precise, Kirchhoff established a model given by the following:

2 2
P% - M(”VM”iZ([o,L]))% = f(x,u), (1.4)
where M (&) = py/h + (E/(2L))¢ with €20, p, po, h, E, L are constants, which extends
the classical D’ Alambert wave equation by considering the effects of the changes in the
length of the strings during the vibrations. When M is this type, problem (1.4) is said to
be non-degenerate if M(0) > 0, while it is called degenerate if M(0) = 0. From a physical
point of view, the fact that M(0) = 0 means that the base tension of the string is zero, a
very realistic model. Obviously, a novel feature of our results is to cover the degenerate
case in the fractional p-Laplacian setting. Here we would like to mention some recent
results, for example, see [22, 24, 29] for the non-degenerate case and [10, 21, 23, 30] for
the degenerate case.

Recently, great attention has been focused on the study of problems involving fractional
Laplacian operators, more generally, nonlocal operators. This type of operator arises in a quite
natural way in many different applications, such as finance, physics, fluid dynamics, popula-
tion dynamics, image processing, minimal surfaces and game theory. In particular, nonlocal
integro-differential operators for problem (1.1) arise naturally in the study of stochastic pro-
cesses with jumps, and more precisely in Lévy processes. In this case, the fractional Laplacian
operator can be viewed as the infinitesimal generator of radially symmetric stable processes
in Lévy processes, see [1, 5, 16, 25] and the references therein for more details. Indeed,
the literature on non-local fractional Laplacian operators and their application to differential
equations is quite large—we refer the interested reader to [2, 4, 6], [18-20, 26-28] and the
references therein. For the basic properties of fractional Sobolev spaces, we refer the reader
to [12] for a short introduction.

In [7], Chen and Deng investigated the existence of two nontrivial solutions to the frac-
tional p-Laplacian system involving concave—convex nonlinearities via the Nehari method.
However, they just considered the sublinear case 1 < g < p. Also, we refer the readers to
[8, 15] for more applications by using the Nehari method. By applying the symmetric moun-
tain pass lemma, Chen in [9] obtained the existence of infinitely many nonnegative solutions
for a class of the quasilinear Schrodinger system in RY in the Laplacian setting. In that paper,
the authors considered the superlinear case p < g. Inspired by the above papers, we will study
the multiplicity of solutions for problem (1.1) from both the sublinear and superlinear cases, in
turn, in the Kirchhoff setting. The main difficulties when dealing with this problem come from
the degeneracy of the Kirchhoff function and the nonlocal nature of the fractional Laplacian.
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To our best knowledge, there is no result on fractional p-Laplacian systems in the Kirchhoff
context.

To give our main result precisely, we introduce first some notation. In the following, we
denote @ = RV \ O, where

O=C(Q) x C() C RN,

and C(€2) = RVM\ Q. Let W; = W be the fractional Sobolev space with the norm

1/p
||u||w,:( If 2N|u(x>—u(y)\"1<(xfy>dxdy) .

By the fractional Sobolev inequality, we have for I <y < p} that

|, := Null ey < Cllull,, VueW; (1.5)
with some C, > 0. For the product space W = W} x --- x W, we introduce the norm

lallw = (aally+ - + Nallf )2, Y= Gar, - u) € W.

Then (W, ||-|lw) is a reflexive Banach space, see [29, lemma 2.4].
From now on we write ||u||z«q):= |u\q (1< g<o0).LetI(u) : W— R be the corresponding
functional of system (1.1), which is defined by

1, 0 1& 1 &
Iwy=—I/ully — = > Nlul?—— Bijluu!, YueW.
oW quz:ljjq m;;’ j
Then I € C'(W,R) and for any v= (v}, Vo, ---, ) € W,
k
(1) = Nl 32 [ [0 — )l @) — w00) ~ MK — ydedy
Jj=1
k k
— Z L )\j|uj‘q72Mjde)C — Z Z ﬁ,jj; ‘Mi|m ‘Mj|m72Mjdex.
j=1 j=1i=j

Now, we give the definition of (weak) solutions for problem (1.1).

Definition 1.1. We say that u= (uy, uy, ---, ux) € W\ {0} is a weak solution of problem (1.1), if
k
[l > fL |uj(x) — ui( P (ui(x) — w()(;(x) = vi(y)K (x — y)dxdy
j=1

k k
= L/S; Ajlugl =2 ujvyd + EZ@)fQ i "2 wjvydix,
=1

j=li=j

forany ve W, with v = (v, v, -+, V).
Obviously, a weak solution of system (1.1) is equivalent to a critical point of the functional /.
For the sublinear case, we get the following main result:
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Theorem1.1. Letl KO <N/(N —ps). If1 <q<Op<2m<p,\>O0forallj=1,---,k>2,
and B = B;; >0 for all 1 <i <j< n, then there exists Ay = Mi(0, p, q, m, B, C) > 0 such that

)(prq)/(Hp)

problem (1.1) has two distinct solutions in W, provided that (Z’]‘.:l )\ip/((?pfq) <A In

addition, if | < g < p, then those two solutions have at most k — 2 zero components.
Remark 1.1. If k = 2, then the two distinct solutions obtained by theorem 1.1 are not semi-
trivial solutions.

For the superlinear case, we give the following assumptions:

(H)Nj>O0forall j=1,---,k;

(Hy) 6p <2m< q <p,and §; = [ forall 1 <i <j<k;

(H3) 0p <q<2m<p,and B; = ;>0 forall 1 <i<j<k.
Theorem 1.2. Let1 <0< N/(N — ps). If (H))~(H,) or (H}), (H3) hold, then problem (1.1)
has infinitely many solutions in W.

This paper is organized as follows. In section 2, by using the Nehari method, we establish
the existence of two distinct solutions for problem (1.1). In section 3, the existence of infi-
nitely many solutions for problem (1.1) is obtained by applying the symmetric mountain pass
theorem.

2. Sublinear case
We consider the Nehari manifold
N = {uec W\ {0} : {I'(w),u) = 0}.
Then u € AV if and only if
. k k
|Ill||u’/’—2/\jf |uj|"dx—2226,;,»f || dx =0, 2.1
=1 Q j=1i<j Q

see [3] for some enlightening discussions on this aspect. Next we will prove the existence of
solutions of system (1.1) by studying the existence of minimizers of functional / on A/. The
Nehari manifold is related to the behavior of fibering maps of the form Hy, : ¢ — I(tu) for t > 0
defined by

Huy = 1w =l 5 [ gt 2 55 5y [ st
t)=I(tu) = —/|u|” - — f uj - — ,-'f wiu;|" dx.

W() = 1(tu) op = ¥ Jo 1% m = i ), 11t 2.2)
Lemma 2.1. Letue€ W\ {0}, then tu € N if and only if Hy(t) = 0.

Proof. The result easily follows from the fact that H,(t) = {(I'(tu), u). O

By lemma 2.1, we know that the elements in N correspond to stationary points of the
maps H,. Hence it is natural to split AV into three parts corresponding to local minimal, local
maxima and points of inflexion of fibering maps. A simple calculation yields

k k
H(0) = 7l = S0 [ gttar 2215506y . 23)
j=1

j=li<j
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and
k
Hiw) = @ — D 2l = (g = Dre2 3 [
o1 e

k
—202m — D23 N By f || dx. (2.4)

j=licj Y9

By lemma 2.1, u € V if and only if H:,(l) = 0. Thus for u € N/ we obtain by (2.3) and (2.4)

k k
Hi() = @p = Dlullf (= D 32 N [ gty —2m = 1) 3232 8y [ fmandx

j=li<j

k k
= — . .14 — . g™
p q)jz_le,fQuA dr -+ 200 —2m) 32 3 By [ Jwan " d

j=1i<j

k
= O — )l —2@m — q) 237 6y [ luay"ax

j=li<j

k
= (Op — 2m)u} + @m — q) Zl Y j; |y dix. 2.5)
e

Hence we split V" into the following three parts:

Nt ={ueN:H!1)>0};
NO={ueN:H!(1) =0};
N ={ueN:H!1)<0}.

The following lemma shows that local minimizers on Nehari manifold N are usually critical
points of /.

Lemma 2.2. Assume g is a local minimizer of I on N" and wg & N'°. Then w is a critical
point of .

Proof. This lemma is proved by following the same discussion as in [3, theorem 2.3]. []
Set

k
Ju() =t~ — a2 N Ajj; |uj| dx.
j=1

Then we obtain

Lemma 2.3. Assume u € W\ {0}. Then the function J, satisfies the following properties:

1/(6p—
(2mq)z§lxjuj|z] Op—q) N

(1) Ju(?) has a unique critical point at t = tpax() = ;
@m—0p) I ully

(2) Ju(t) is strictly increasing on (0, tmax(0)) and strictly decreasing on (tmax(@), +00);
(3) lim,_, o+ Ju(t) = —o0.
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Proof. Itis easy to see that

k
To®) = Op = 2m)® =2 Yullf — (g — 2m)rs 2"~ 1 37 \jfu .
J=1

Set J,(t) = 0, then there exists a unique fmax € (0,+00) such that J,(tmax) = 0 and
J (tmax) < 0, with

1/(0p—q)
@m = q) X5 Nluf!

Q2m — Op)|lu|”

Imax =

Moreover, we have J!(t) > 0 for t € (0, tyax) and J!(t) < 0 for t € (fyax, +00). Assertion (3)
follows from the fact that ¢ < 6p. |

Lemma2.4. Lett> 0. Thentu e N Y(or N7)if and only if Ji(t) > 0 (or < 0).

Proof. For > 0, it is easy to see that ru € A if and only if

k
LWO=23%8; f || dox. (2.6)

j=li<j Q@

Moreover, if tu € N/, then

T S 27)
which implies that ra € A" (or A7) if and only if Jy(r) > 0 (or Jy(¢) < 0). 0
Set
2m— b 6p— g o [, gy im0
A(): p( p (]) ZZZﬁU C* 2m_9p
2m—q \2m—gq Pty
and
Op—aq
ko O ) o
One =N, A, o, M) € @RH*:0< Z )\I?P*q < Aol
=1

Lemma 2.5. Assume ue W\ {0). Then for all (N, -+, \i) € Ay there exist t+,t > 0 such
that t+ < tmax < t~, ttu € N+ and

Ittw) = inf I(tu), I( u) = supI(tu).

0<1<tmax t>0

Proof. Fix ueW with Z’;leiq ﬂ,ij |uuj|"dx>0. By lemma 2.3, one has
lim,_ o+ Jy(t) = —oo, lim,_, |  Ju(#) = 0, and there exists a unique fyax > 0 such that Ju(z)
achieves its maximum at t;,,, increasing for ¢ € [0, fax) and decreasing for 7 € (¢yax, +00).
Obviously, tu € N’ * (or N'7) if and only if J,(t) > 0 or (<0). Moreover, by the Holder in-
equality, we have
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)(ﬁp—Zm)/(ﬁp—q)

q=2m [~k
Ta(tm) = 2P =4 (zm_")epq (S5 gl ax

2m — Op\ 2m — 6p (”ullgg)(q%m)/(@p*q)

)(9p72m)/(9p7q)

q—2m k
s o (2 o (55 v

“2m—Op\ 2m —6p (”u”;){/,)(q%m)/(ﬁpfq)
. eep p—q ) L (Op—2m)/(Op—q)
g—2m | CICZ A0 o (2l I o
S Op—q [ 2m—gq \op—a
“2m—6p\2m—6p (||ll||9V5)(‘1*2m)/(0pfq>
) Hef g (Op—2m)/(6p—q) Q(Zpizm)
q—2m Cz(Zj:lAjp 7)o ”u”Wn pd
S Op—q [ 2m—gq \or—a
“2m—Op\ 2m —6p (||ll||€{/’)(q’2’")/<9pfq)
g=2m -
_bp—q (2m—q |r-a llallw
2m — 6p\ 2m — Op P gy @m—0p)/(Op—q)°
[CﬂZﬁ_]W ! ]

For (A, Ag, -+, Ak) € ©y,, we have by the Holder inequality

k k
0<222@:]‘f || dx SZZZ@/J |y dx

j=1i<j Q j=1i<j Q
a 2 2
<233 BCi llully!
J=1i<j
< Ju(tmax)'

Hence there exist #1, 1~ > 0 such that 1+ <t < 17,

k
I = a7 =250 Y By

j=li<j

andJ,(t*) > 0,J,(t7) < 0.Obviously, H,(t*) = Hl(t") = 0.Moreover, by Hy(t) = t*"~1J.(t),
we have

H!'tH >0, H!(t")<O0.

Thus Hy(¢) has a local minimum at " and a local maximum at ¢~ such that tTfu € N+ and
t~u € N . Since I(tu) = Hy(t), we obtain

Itw)=I(tu) = I(tta), Vee [t 1]
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and
I(tTa) <I(tu), V€ [0, tmax]-
Hence
I(tTw) = inf I(tu), I(r u) = supl(tu).
0t <tmax >0
The proof is thus complete. [

Lemma 2.6. For any (\, My, -+, M) € O, we have N* = &

Proof. Arguing by contradiction, we assume there exist positive constants Ay, ---, Ay with

bp—q

k% \ 6
0< > Alp-e <Ay,

j=1

such that A% = @. Then for u € A'°, we have by (2.5) that H(1) =0 and

— (Pw,u) = O — Il —22m - ) S 5 6y IRCZRE

Jj= 11<J

= (Op — 2m)||ulff} +@m — q)ZA f 7 dx.

j=1

Hence, by the Holder inequality and fractional Sobolev inequality (1.5), we obtain

2m
lullf <5, =, -c > Al
j=1
, p—q q
2m — s I . o
S CH AP ulh
m—up j=1 j=1
, bp—q
< 2m— k 7’7 o
&1 DIPY Il
2m 9p i
It follows from g < 6p that
1
P Op—q |op—q
Op
2m—gq K e
ully <| —LCY)> \Pa : (2.8)
by <[ 5= [,2_31 ‘
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Moreover, by the Holder inequality and (1.5), we have

202m —
Julfy = 22 “)ZZ@,fwu,l dx
j= 1l<j
22m "
(9 Q)cz S5 Bl
P — j=li<j

Thus,

1

2m—6p
llallw > %4 . 2.9)
2(2m — Q)C* Zj:12i<j ﬂlj

Combining (2.8) with (2.9), we get

Op— op—
P—4q Ip—q p—4q

bp op . =0 2m—6p
(Zw q] S 2m— 91’(91’ q) ”[ ! ] C-9= A,

" 2m—g\2m—gq 2Cf’”2’;:12i<jﬁ,j

which is a contradiction. O

Lemma 2.7. The functional I is coercive and bounded from below on N

Proof. For any u€ N, by (2.1), the Holder inequality and fractional Sobolev inequality

(1.5), we have
1
I() (%——)“ || ( )ZA f |u|? dx

0 Op—q
11 w1 k N o
>l — — — a2 —| — P—q ull¢ ,
/(ep 2mJII llw (q ] [2_: [l
this together with g < 6p implies that / is coercive and bounded from below on N [

By lemmas 2.6 and 2.7, for any (\;, ---, Ay) € ©y,, we obtain A/'— A7+ A/~ and [ is coer-
cive and bounded from below on A * and A/ ~. Define

c=inf I(w), ¢ = inf I(w), ¢~ = inf I(u),
ueN uc " ueN~
and set
Op—q

Op \ op
On =9\ A € RYF ZAGP 9 <Ay,

where A = é/\o < Ay. Obviously, © 4, C ©,,. Then we have the following lemma.

Lemma 2.8. If(\, -, A\x) € O, then

DHe<et<0;
(2) there exists Co = Co(p,q,0,N, A, -+, Ak, Bij) > 0 such that ¢ > Cy.
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Proof. Forue N T, we have H(1) > 0. Hence, by (2.5), we get
O — lallf >22m - ) " . .
j=li<j
This implies that

11 h 1
]( N P o
v (9p q)“ Iy (q 2m )

k
Z ﬁu |’“‘J| dx

<0,

thanks to g < Op < 2m. Hence ¢ < ¢t < 0.
(2) Foru e '™, we have H//(1) < 0, by (2.5) we obtain

Op — pllullf <22m - q)ZZ@,fw,l dx.

j=1i<j

By the Holder inequality and (1.5), we get

Zzﬁuf|Mu]|’”dx<C2mZZBullull

j=li<j j=li<j

Hence,

2m—6,
lulhy > | ———" r—aq |" 7
Sy fy 2em—q)

Therefore, we deduce

k% Yo
1w > lully || 5 — 5o o2 = S ferf a7 ’
Op q 2m ; J

Op—q

] 1 | O —q (Op—q)/(2m—0bp) 1 2m—0p
= [[allf oo oamNom—o pyp—
P m m—q 2C; Zj:12,’<j ﬁij

Op—q
1 k oefp 0p
N )\p q }
(502
> Cp>0,
due to (2.10) and (A, --+, Ax) € O,,.

3196
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Lemma 2.9. If(\, -, A\y) € Op, then I has a minimizer wy € N+ and satisfies

O Iw) =c=c"<0;
(i) w is a solution of problem (1.1).

Proof. By lemma 2.7, we know I is bounded from below on A/. Thus, there exists a mini-
mizing sequence {u,}, bounded in W, so that up to a subsequence, there exists u; € W such that

u, —u in W, asn— oo. (2.11)

By [29, lemma 2.3], as n — o0,
u,—>w in L’(2) and a.e.in Q, (2.12)
forallve[1, p:). For any 1 <j < k, we have by the Holder inequality and u,, — wu; in L9(£2) that

fQ 1wl — |yl |dx = g fﬂ (] + 7 () — a9 1wy, — ()| dx

<ql(wy); + () 7| (wy); — (),
< Cl(uy); — ()|, >0,

as n — oo, where 7 € (0, 1) and C > 0 denotes various constants. Hence,

1imj;||(un>,-\q—|(uo,~|q|dx=0 Vi€ (1,2, .k},
which yields

k k
i W)il9dx \ 10y .
,Zzl jj;|(u )il _); JfQ|(ll1),| as 11— 0o

Moreover, by the Holder inequality. we have for any 1 <i,j <k
fQ | )i ™ [ w7 — [ (i) ™ de
< st‘z ()i P+ )P w) P=  an) P = D) — (ai] + () — (ay);])dx

2m—1 1
SO+ [ B+ [+ [ 7y 2m () — Qi+ |(w,); — ()3 )om

1
<C( )i — i3 + [(y); — ()37 yam — 0,

as n — oo, thanks to 1 < 2m < p and (2.12). This implies that

k k
lim $°5°8; L (i) dx = 357 8; f2 | (up);Cuy); ™ de

N0 j=li<j j=1i<j

By lemma 2.5, there exists #; > 0 such that yu; € A *. Next we show that w,, — vy in W. If
not, then |[w | < lim inf, _ oo||u,|I%. Thus, for u, € NV *, we obtain
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lim H, (1) = hm[r"” o 57— f~ ‘Z f a2 305 5, S Iy ax ]

j=li<j

o I cfrar -2 Y I RICOICERE
j=1

j=li<j
= H, (1) =0.

That is, H,, (1) > 0 for large enough n. Since u, € N, it is easy to see that H,, (r) <0 for
te(0,1) and Hi,"(l) = 0 for all n. Then we deduce that #; > 1. On the other hand Hy(¢) is
decreasing on (0, ;) and so

I(tn) <I(w) < lim I(w,) = 1nf I(u)

n— 00

which is a contradiction. Hence u,, — u; in W. This implies

I(u,) = I(u) = inf I(u) = c¢" asn— oo.
ueN*

Namely, u; is a minimizer of / on N’ ™. By lemma 2.2, w; is a solution of problem (1.1).  []
Lemma 2.10. For (N, -+, \) € O, the functional I has a minimizer wy in N~ satisfying
HIw)=c=c7;
(2) uy is a solution of problem (1.1).

Proof. Since /is bounded from below on A/ ™, there exists a minimizing sequence {u,} C N~
such that

lim I(u,) =c".

n—-oo
By the same argument given in the proof of lemma 2.9, there exists u, € W such that, up to a
subsequence, u, — u, in Wand I(up) = ¢~ and for all (A, ---, \x) € O, we have that uy is a
solution of problem (1.1). O

Proof of theorem 1.1. By lemmas 2.9,2.10 and 2.2, we obtain that for all (\;, -+, A\y) € Op,,
problem (1.1) has two solutions uy € N* and u, € N™. Note that A/ N A~ = &, so that those
two solutions are distinct. In view of lemma 2.8, we have I(u;) < 0 and /(ua,) > 0.

Next we show that u; and u, have at most k — 2 zero components. Arguing by contradic-
tion, we assume ((uy)1, 0, ---, 0) is a solution of problem (1.1), then

il il = & [ [@ofa

Thus,

_ L Op ﬁ q
T = ol J lwanfrax

Opq

which is a contradiction. Hence u, has at most k — 2 zero components.
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Finally, we show that u; has at most k — 2 zero components. Otherwise, without loss of gen-
erality, we assume that (u;); = 0, (w); = 0,j = 2,3, ---, k. Then ||(u1)1||€{% =\ fQ [(up)|9dx > 0.
Let v = (vi, v, --+, Vi), where vi = (w);, v2 = e(uy)y, vy =0 for all j = 3,---,k and € € (0, 1).
Obviously, v € W\ {0}. Then by lemma 2.5 there exists 0 < t+ < t;,4x < ¢~ such that ttv € N
and

I(t7v) = inf I(tv).

0< 1< max

Moreover,

1

@m—@) S5 N [ Iyl dx )
Tmax = 0p
2m — op)lIvily

1
N (S Jo il dx )=
@m — Op)IvIIy

1
[ em—olanly _( om— g )e,,‘,,

| @m—opa + iy @m — Op)(1 + e*)f

(2.13)

Now we choose € > 0 small enough such that

1

— 0

| R Y
2m — Op

thanks to (2m — ¢)/(2m — 6p) > 1. Then

1

2m—gq op—q
tmax Z Z
(2m — Op)(1 + )’

Note that
1) = v — L zk: A.f ujlodx — - zk: D ﬁ--f || dx
Op v q -1 T m =i YJo

1 1 A
<—+e? il — =1+ Ze?|llcanlf
Op q A

1 1 Op I+ 51))9 -1 op 1 X 9
=7 — —|ilu + ——||(u —— 22 () ||
(9p q)”( Vil o Il Can)illyy; Py Il Ca)nlyy,
1+er) -1 1A
%||(111)1||9v{%*;—28‘7||(u1)1||‘3{,:) ) (2.14)

=I(m) + 3
|

¢ o V0
€<(W) , t enweget
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Y _ 0—1 0—1
wflﬁng &Ep_lﬁqu 2 €p_lﬁ€q<0’ (2.15)

Op q X P q X P q X

thanks to ¢ < p. Taking

116 Lip 1(p—q)
0 < e < min 2miq -1 , Aop ,
2m — 6p Ng20!

we deduce from (2.13)—(2.15) that

IV KIWV) <I(u) = c*

which is a contradiction. Thus u; has at most kK — 2 zero components. [

3. Superlinear case

In this section, we consider the superlinear case of problem (1.1). We will use the following
symmetric mountain pass theorem to get our second result.

Theorem 3.1. (See [10, theorem 2.2]) Let X be a real infinite dimensional Banach space
and K € C\(X) a functional satisfying the (PS) condition as well as the following three proper-
ties:

(i) K(0) = 0 and there exist two constant p, o > 0 such that K|E)Bp >
(i1) K is even;
(iii) for all finite dimensional subspaces X C X there exists R = R(X) > 0 such that
K@) <0 for all ue X\ By(X),

where B(X)={u €X :||u|| < R}. Then K possesses an unbounded sequence of critical
values characterized by a minimax argument.

Lemma 3.1. Assume that (H,)—(H>) or (Hy), (H3) hold. Then I satisfies the (PS) condition.

Proof. Since I'(u,) — 0in W* as n — oo and I’(u,,) is bounded, there exists C > 0 such that
[{I'(wy), )| < Clluy|lw and |I(u,)| < C. Thus,

C+ Cllully > 1) — %(I’mn), u,)
(L1 o _(L_1 - . 14
_(9p M)”“n“w (CI u)jzl)ﬂ(un)ﬂq
1 1)< .
N5, ; Z Z 5tj|(un)i(un)j|m, 3.1

2m j=1i=j

where C denotes various positive constants and g > 0. For (H;) and (H,), we take y = 2m.
Then from 2m < g and (3.1), we obtain

1 1
C+ Cllu,llw 2 (— - —)Ilunllﬁé’,
6p 2m
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It follows from 1 < p < 2m that {u,,} is bounded in W. Similarly, for (H;) and (H3), we choose
1 = g in (3.1) and obtain the boundedness of {u,} in W.

Since W is a reflexive Banach space, up to a subsequence, still denoted by {u,}, such that
u, — u weakly in W. Let ¢ € Wy be fixed and denote by B(¢, -) the linear functional on W
defined by

B = [ [ 1ot = eI7 26 — ()0 ~ v(y)K(x — y)drdy

for all v € Wy. Clearly, by the Holder inequality, B(¢p, -) is also continuous, being

1B )| < NIl vl forall v e W

Hence, the weak convergence of {u,} in W, gives that

lim B((w);, (u,); — (w);) = 0 forall 1 <j<k. (3.2)
n—o0 :
Clearly, (I'(w,),u, — u) — 0. Thus, we obtain

<I/(un)’ u, — ll>

k k
= [l "> By, (wy); —wp) — S0 fQ ()92 (), ((wy); — (w);)dx
j=1

j=1

k
=3B 2 @), — wds

j=1li=j
—0, (3.3)
as n — oo. Similar to the proof of lemma 2.7, we get
k k
Z )\]f |(lln)j|qu—> Z )\]f |llj|qu as n — oo,
=1 ¢ j=1 ¢
and
k k
lim ZZﬂtJ’f | (w)i(u,); " dx = ZZ@J Jua[" dx.
N0 iy VA j=li=j Y9
Combining these facts with (3.3), we have as n — oo
k
Iy >~ B((w,);, (w,); — w) — 0. (3.4)
j=1
By (3.2) and (3.4), we have as n — oo
, k k
iy "7 | 32 Bwa);, () — w) — 7 Blwj, (w,); — w)) [—0. (3.5)

j=1 j=1
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Let us now recall the well-known Simon inequalities:

c “2¢ -2 . —
o |p<{cp<|£p &~ nl2n) €~ ) for p>2 e

CL(E|P=2€ — [n|P=2p)- (€ — (&P + |nP)@=P72 for 1 <p<2,

for all £,n € RY, where 6,, and C, are positive constants depending only on p.
We first assume that inf, ||u,|lw, > 0. Then by (3.5), it follows that as n — co

k
> [B((wy);, (wy); — ) — B(wj, (u,); — ;)] — 0. 3.7)
=1

It follows from (3.6) that as n — oo

[B((u,);, (w,); — u)) — B(u;, (u,); —u))] — 0, (3.8)

for all 1 <j < k. It follows from (3.8) that as n — oo

M=

J ] 10 = @)~ wi) +wP K= ydxdy

=1

~
Il

k
<G, > [B((uy);, (wy); — wy) — Bw;, (u,); — u))]
-1
(;, 3.9)

|

asp > 2and

k
D) — W);(y) — 1i(x) + ()P K (x — y)dxd
b S 1w = @0 = ) + wmP K= sy

_ k p
<G, Y {[B((wy)), (wy); — w)) — B(u;, (w,); — wp]}2
j=1

2-p

2
i) — (u,,); () — w PK(x — v)dxd
x{ J [ (@0 = @il + i —w )K= ) y}
k P
<C Z {[B((wy);, (w,); — w)) — B(uj, (u,); — up]}2
621 (3.10)

)

|

as 1 < p < 2. Combining (3.9) with (3.10), we get that u,, — u strongly in W as n — oo.

It remains to consider the case inf,||u,|lw = 0. For this case, either 0 is an accumulation
point of the sequence {u,} and so there exists a subsequence of {u,} strongly converging to
u = 0, or 0 is an isolated point of the sequence {u,} and so there exists a subsequence, still
denoted by {u,}, such that inf, |[u,|[w > 0. In the first case we are done, while in the latter case
we can proceed as above. O
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Proof of theorem 1.2. 1t is easy to verify that the functional 7 is even in W and 1(0) =
By lemma 3.1, the functional / satisfies the (PS) condition. It follows from (1.5) that

1
I(n) = @Hull - z Aj |"‘J|q_ — Z Zﬁl]“‘”}‘

j=li<j

1 d 1 d ,
> 0—||u|| —~ —C"( > Ajuu,-||%vo]||uj||%vo— —Ci’"[ > 2 164 ) |uilly |l
P m i=1i<j

j=1

1 d . .
>%Ilull?}’é’ — [Z/\J]Ilull‘év —C? [ZZWU]HUH‘ZV

Jj=1 j=li<j

Let

k
h(t) = ét"l’ — [ S ]tq - _sz( >8] ]ﬂ’” for all > 0.

j=li<j
Clearly, there exists p>0 such that h(p) = max,,h(t) >0. Thus, we take ue W with
[la]lw = p. Then

I(w) = h(p) :=a>0 forallue W with ||ju|ly = p. (3.11)

Moreover, for any finite dimensional subspace E C W and the equivalency of all norms in E,
there exists Cg > 0 such that [u|, > Cg|luly. Thus, there exists C > 0 such that

1
I(w) < — [l —Cllallf, + i)
bp

Since Op < g,2m < p:, we obtain that there exists Ry > p such that for any R > Ry, I(u) <0 as
[[u]lw = R. Then by theorem 3.1 problem (1.1) admits infinitely many solutions u,, € W with
I(u,) — oo as n — oco. Hence we complete the proof of theorem 1.2. O

Finally, we give the following example as a direct application of the main results.

Example 3.1. Let 0<s<1<p<oo,N>ps and € be an open bounded set of RY with
Lipschitz boundary 0 £2. We consider problem

(el + VIR (= Ay = N[l 2w+ Blv|" [u|""*v  in Q,
(luellfy, + VIR~ (=) = Xafv[=2v + Blul™ [v|" 2 (3.12)
u=v=0 inRN\Q,

where 0> 1, >\1,)\2>Oandﬁ>0

If 1 <g<6p<2m<p;and 1< <N/(N — ps), then from theorem 1.1 it follows that
there exists A; > 0 such that problem (3.12) has two distinct solutions in Wy x Wy whenever
(Afp p-a) /\gp p= q))(ep 2/ < Ay In addition, if 1 < ¢ < p, then those two solutions are
not semi-trivial solutions.

Ifl<p<gqg,2m< p:f and 1 <0 < N/(N — ps), then from theorem 1.2 it follows that prob-
lem (3.12) has infinitely many solutions in Wy x W,.
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