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Abstract

We consider a parametric nonlinear Robin problem driven by the p-Laplacian. We show that if the pa-
rameter λ > λ̂2 = the second eigenvalue of the Robin p-Laplacian, then the problem has at least three
nontrivial solutions, two of constant sign and the third nodal. In the semilinear case (p = 2), we show that
we can generate a second nodal solution. Our approach uses variational methods, truncation and pertur-
bation techniques, and Morse theory. In the process we produce two useful remarks about the first two
eigenvalues of the Robin p-Laplacian.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω . In this paper we study the fol-
lowing nonlinear parametric Robin problem:

⎧⎪⎨
⎪⎩

−�pu(z) = λ
∣∣u(z)

∣∣p−2
u(z) − f

(
z,u(z)

)
in Ω,

∂u

∂np

(z) + β(z)
∣∣u(z)

∣∣p−2
u(z) = 0 on ∂Ω.

(Pλ)

In this problem, �p (1 < p < ∞) denotes the p-Laplacian differential operator defined by

�pu = div
(‖Du‖p−2Du

)
for all u ∈ W 1,p(Ω).

Also, ∂u
∂np

= ‖Du‖p−2(Du,n)RN with n(z) being the outward unit normal at z ∈ ∂Ω . In ad-
dition, λ > 0 is a parameter and f (z, x) is a Carathéodory perturbation (that is, for all x ∈ R,
z �→ f (z, x) is measurable and for a.a. z ∈ Ω , x �→ f (z, x) is continuous), which exhibits
(p − 1)-superlinear growth near ±∞.

Our aim in this paper is to prove a multiplicity theorem for problem (Pλ) for all λ > 0 big.
More precisely, we show that, if λ̂2 is the second eigenvalue of −�p with Robin boundary
conditions (denoted by −�R

p ) and λ > λ̂2 then problem (Pλ) admits at least three nontrivial
solutions, two of constant sign (the first positive and the second negative) and the third solution
is nodal (sign changing). Moreover, in the semilinear case (p = 2), we show the existence of
a second nodal solution, for a total of four nontrivial solutions all with sign information. Our
approach uses variational methods coupled with suitable truncation and perturbation techniques
and Morse theory.

This kind of problem was studied for semilinear (that is, p = 2) Dirichlet equations by Am-
brosetti and Lupo [2], Ambrosetti and Mancini [3] and Struwe [20], [21, p. 133]. Extensions to
Dirichlet p-Laplacian equations can be found in Papageorgiou and Papageorgiou [18]. However,
none of the aforementioned works produced nodal solutions and the hypotheses on the data of the
problem are more restrictive. Another class of Robin eigenvalue problems was investigated by
Duchateau [7], who proved multiplicity results producing two solutions with no sign information.

2. Mathematical background – auxiliary results

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote the dual-
ity brackets for the pair (X∗,X). Given ϕ ∈ C1(X), we say that ϕ satisfies the Palais–Smale
condition (PS-condition for short), if the following is true

“Every sequence {xn}n�1 ⊆ X such that
{
ϕ(xn)

}
n�1 ⊆ R is bounded and

ϕ′(xn) → 0 in X∗admits a strongly convergent subsequence.”
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This is a compactness type condition, which compensates for the fact that the underlying space
X being in general infinite dimensional, need not be locally compact. It leads to the following
minimax theorem, known in the literature as the “mountain pass theorem”. It characterizes certain
critical values of ϕ ∈ C1(X).

Theorem 1. If ϕ ∈ C1(X) satisfies the PS-condition, x0, x1 ∈ X, ‖x1 − x0‖ > ρ > 0

max
{
ϕ(x0), ϕ(x1)

}
< inf

[
ϕ(x): ‖x − x0‖ = ρ

]= ηρ

and c = infγ∈Γ max0�t�1 ϕ(γ (t)) where Γ = {γ ∈ C([0,1],X): γ (0) = x0, γ (1) = x1}, then
c � ηρ and c is a critical value of ϕ.

In the analysis of problem (Pλ), in addition to the Sobolev space W 1,p(Ω), we will also use
the Banach space C1(Ω̄), which is an ordered Banach space with positive cone

C+ = {
u ∈ C1(Ω̄): u(z) � 0 for all z ∈ Ω̄

}
.

This cone has a nonempty interior given by

intC+ = {
u ∈ C+: u(z) > 0 for all z ∈ Ω̄

}
.

In the sequel by ‖ · ‖ we denote the norm of the Sobolev space W 1,p(Ω), that is,

‖u‖ = [‖u‖p
p + ‖Du‖p

p

]1/p
for all u ∈ W 1,p(Ω).

To distinguish, by | · | we denote the norm in Rm (m � 1). Also, given x ∈ R, we set x± =
max{±x,0}. Then for u ∈ W 1,p(Ω), we define u±(·) = u(·)±. We know that

u± ∈ W 1,p(Ω), |u| = u+ + u−, u = u+ − u−.

If on ∂Ω we employ the (N − 1)-dimensional surface (Hausdorff) measure σ(·), we can
define the Lebesgue space Lp(∂Ω). Recall that there is a unique continuous, linear map
γ0 : W 1,p(Ω) → Lp(∂Ω) such that γ0(u) = u|∂Ω for all u ∈ C1(Ω̄). This map is known as

the “trace map”. Recall that imγ0 = W
1
p′ ,p(∂Ω) ( 1

p
+ 1

p′ = 1) and kerγ0 = W
1,p

0 (Ω). In the
sequel, for the sake of notational simplicity, we will drop the use of the map γ0 to denote the
restriction of a Sobolev function on ∂Ω . All such restrictions are understood in the sense of
traces.

If h : Ω × R → R is a measurable function (for example, a Carathéodory function), then we
set

Nh(u)(·) = h
(·, u(·)) for all u ∈ W 1,p(Ω)

(the Nemytskii map corresponding to h).
Let A : W 1,p(Ω) → W 1,p(Ω)∗ be the nonlinear map defined by

〈
A(u), y

〉=
∫
Ω

|Du|p−2(Du,Dy)RN dz for all u,y ∈ W 1,p(Ω).



Author's personal copy
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Proposition 2. The map A : W 1,p(Ω) → W 1,p(Ω)∗ is bounded (that is, maps bounded sets to
bounded sets), continuous, monotone (hence maximal monotone, too) and of type (S)+, that is,

if un
w−→ u in W 1,p(Ω) and lim supn→∞〈A(un),un − u〉 � 0, then un → u in W 1,p(Ω).

Suppose that f0(z, x) is a Carathéodory function with subcritical growth in x ∈ R, that is,

∣∣f0(z, x)
∣∣� a(z)

(
1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R,

with a0 ∈ L∞(Ω)+ and 1 < r < p∗ =
{

Np
N−p

if p<N,

+∞ otherwise.
We set F0(z, x) = ∫ x

0 f0(z, s) ds and consider the C1-functional ϕ0 : W 1,p(Ω) → R defined
by

ϕ0(u) = 1

p
‖Du‖p

p + 1

p

∫
∂Ω

β(z)
∣∣u(z)

∣∣p dσ −
∫
Ω

F0
(
z,u(z)

)
dz for all u ∈ W 1,p(Ω).

As a consequence of the nonlinear regularity theory (see Lieberman [15]), we show that local
C1(Ω̄)-minimizers and local W 1,p(Ω)-minimizers of ϕ0 coincide. The first such result is due to
Brezis and Nirenberg [5] for the space H 1

0 (Ω). It was extended to the space W 1,p(Ω) with β ≡ 0,
see Motreanu and Papageorgiou [16] (see also Garcia Azorero, Manfredi and Peral Alonso [11]).

We impose the following conditions on the boundary weight β(·):

H(β): β ∈ C0,τ (Ω̄) with τ ∈ (0,1), β(z) � 0 for all z ∈ Ω̄, β 
= 0.

Proposition 3. Assume that u0 ∈ W 1,p(Ω) is a local C1(Ω̄)-minimizer of ϕ0, that is, there exists
ρ0 > 0 such that

ϕ0(u0) � ϕ0(u0 + h) for all h ∈ C1(Ω̄) with ‖h‖C1(Ω̄) � ρ0.

Then u0 ∈ C1,α(Ω̄) for same α ∈ (0,1) and u0 is a local W 1,p(Ω)-minimizer of ϕ0, that is, there
exists ρ1 > 0 such that

ϕ0(u0) � ϕ0(u0 + h) for all h ∈ W 1,p(Ω) with ‖h‖ � ρ1.

Proof. Let h ∈ C1(Ω̄) and t > 0 small. Then by hypothesis we have

ϕ0(u0) � ϕ0(u0 + h)

⇒ 0 �
〈
ϕ′

0(u0), h
〉

for all h ∈ C1(Ω̄)

⇒ ϕ′
0(u0) = 0

(
since C1(Ω̄) is dense in W 1,p(Ω)

)

⇒ 〈
A(u0, h)

〉+
∫

∂Ω

β(z)|u0|p−2u0hdσ =
∫
Ω

f0(z, u0)hdz for all h ∈ W 1,p(Ω).

(2.1)
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From the nonlinear Green’s identity (see, for example, Gasinski and Papageorgiou [12, p. 210]),
we have

〈
A(u0), h

〉= 〈−�pu0, h〉 +
〈
∂u0

∂np

,h

〉
∂Ω

for all h ∈ W 1,p(Ω) (2.2)

(see Gasinski and Papageorgiou [12, p. 211]). Here by 〈·, ·〉∂Ω we denote the duality brackets for

the pair (W
− 1

p′ ,p′
(∂Ω),W

1
p′ ,p(∂Ω))( 1

p
+ 1

p′ = 1). From the representation theorem for the dual

space W
1,p

0 (Ω)∗ = W−1,p′
(Ω) (see Gasinski and Papageorgiou [12, p. 212]), we have �pu0 ∈

W−1,p′
(Ω). Then using h ∈ W

1,p

0 (Ω) ⊆ W 1,p(Ω) in (2.1), we have

〈−�pu0, h〉 =
∫
Ω

f0(z, u0)hdz for all h ∈ W
1,p

0 (Ω)
(
see (2.2)

)

⇒ −�pu0(z) = f0
(
z,u0(z)

)
a.e. in Ω.

Then from (2.1) and (2.2) we have

〈
∂u0

∂np

+ β(z)|u0|p−2u0, h

〉
∂Ω

= 0 for all h ∈ W 1,p(Ω).

Recall that the image of the trace map is W
1
p′ ,p(∂Ω). So, from this last equality it follows that

∂u0

∂np

+ β(z)|u0|p−2u0 = 0 on ∂Ω.

From Winkert [24], we know that u0 ∈ L∞(Ω). So, we can apply Theorem 2 of Lieberman [15]
and have that

u0 ∈ C1,α(Ω̄) for some α ∈ (0,1).

Next we show that u0 is a local W 1,p(Ω)-minimizer of ϕ0. We argue by contradiction. So,
suppose that u0 is not a local W 1,p(Ω)-minimizer of ϕ0. Let ε > 0 and consider the set B̄r

ε =
{h ∈ W 1,p(Ω): ‖h‖r � ε}. We have

−∞ < mε
0 = inf

[
ϕ0(u0 + h): h ∈ B̄r

ε

]
. (2.3)

By virtue of the contradiction hypothesis, we have

mε
0 < ϕ0(u0). (2.4)

Let {hn}n�1 ⊆ B̄r
ε be a minimizing sequence for problem (2.3). Recalling that u → ‖u‖r +

‖Du‖p is an equivalent norm on W 1,p(Ω) (see [12, p. 227]), we see that {hn}n�1 ⊆ W 1,p(Ω) is
bounded and so we may assume that

hn
w−→ hε in W 1,p(Ω) and hn → hε in Lr(Ω).
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Clearly ϕ0 is sequentially weakly lower semicontinuous. So, we have

ϕ0(u0 + hε) � lim inf
n→∞ ϕ0(u0 + hn)

⇒ ϕ0(u0 + hε) = mε
0 and hε 
= 0

(
see (2.4)

)
.

From the Lagrange multiplier rule, we can find λε � 0 such that

ϕ′
0(u0 + hε) = λε |hε |r−2hε

⇒ 〈
A(u0 + hε), v

〉+
∫

∂Ω

β(z)|u0 + hε |p−2(u0 + hε)v dσ

=
∫
Ω

f0(z, u0 + hε)v dz + λε

∫
Ω

|hε |r−2hεv dz for all v ∈ W 1,p(Ω).

From this equality, as in the first part of the proof, we infer that

⎧⎪⎨
⎪⎩

−�p(u0 + hε)(z) = f0
(
z, (u0 + hε)(z)

)+ λε

∣∣hε(z)
∣∣r−2

hε(z) a.e. in Ω

∂(u0 + hε)

∂np

+ β(z)|u0 + hε |p−2(u0 + hε) = 0 on ∂Ω

⎫⎪⎬
⎪⎭ . (2.5)

Recall that

−�pu0(z) = f0
(
z,u0(z)

)
a.e. in Ω,

∂u0

∂np

+ β(z)|u0|p−2u0 = 0 on ∂Ω. (2.6)

From (2.5) and (2.6) it follows that

⎧⎪⎪⎨
⎪⎪⎩

−�p(u0 + hε)(z) + �pu0(z) = f0
(
z, (u0 + hε)(z)

)
− f0

(
z,u0(z)

)+ λε

∣∣hε(z)
∣∣r−2

hε(z) a.e. in Ω

∂(u0 + hε)

∂np

− ∂u0

∂np

+ β(z)
[|u0 + hε |p−2(u0 + hε) − |u0|p−2u0

]= 0 on ∂Ω

⎫⎪⎪⎬
⎪⎪⎭

. (2.7)

We consider two distinct cases:

Case 1. λε ∈ [−1,1] for all ε ∈ (0,1].

Let vε(z) = (u0 + hε)(z) and set σε(z, y) = ‖y‖p−2y + ‖Du0(z)‖p−2Du0(z). Then we can
rewrite (2.7) as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−divσε

(
z,Dvε(z)

)= f0
(
z, vε(z)

)− f0
(
z,u0(z)

)
+ λε

∣∣(vε − u0)(z)
∣∣r−2

(vε − u0)(z) a.e. in Ω

∂vε

∂np

− ∂u0

∂np

+ β(z)
[∣∣vε(z)

∣∣p−2
vε(z) − ∣∣u0(z)

∣∣p−2
u0(z)

]= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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Note that ∂u0
∂np

∈ C0,α(∂Ω) (recall that u0 ∈ C1,α(Ω̄)) and also on Rm(m � 1) the map y →
|y|p−2y is locally Lipschitz if p > 2 and Hölder continuous if 1 < p < 2. From Winkert [24], we
know that we can find M1 > 0 such that ‖vε‖∞ � M1 for all ε ∈ (0,1]. Therefore, we can apply
Theorem 2 of Lieberman [15] and find γ ∈ (0,1), M2 > 0 such that

vε ∈ C1,γ (Ω̄), ‖vε‖C1,γ (Ω̄) � M2 for all ε ∈ (0,1].

Case 2. λεn < −1 for all n � 1 with εn ↓ 0.

In this case, we set

σ̂εn(z, y) = 1

|λεn |
[|y|p−2y − ∣∣Du0(z)

∣∣p−2
Du0(z)

]

Then we can rewrite (2.7) as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−div σ̂εn

(
z,Dvεn(z)

)= 1

|λεn |
[
f0
(
z, vεn(z)

)− f0
(
z,u0(z)

)]
− ∣∣(vεn − u0)(z)

∣∣r−2
(vεn − u0)(z) a.e. in Ω

∂vεn

∂np

− ∂u0

∂np

+ β(z)
[∣∣vεn(z)

∣∣p−2
vεn(z) − ∣∣u0(z)

∣∣p−2
u0(z)

]= 0 on ∂Ω

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.8)

Recall that for all y ∈ W 1,p(Ω), we have

〈
A(u0), y

〉+
∫

∂Ω

β(z)|u0|p−2u0y dσ =
∫
Ω

f0(z, u0)y dz, (2.9)

〈
A(vεn), y

〉+
∫

∂Ω

β(z)|vεn |p−2vεny dσ

=
∫
Ω

f0(z, vεn)y dz + λεn

∫
Ω

|vεn − u0|r−2(vεn − u0) dz for all n � 1. (2.10)

Let μ > 1 and consider the function

|vεn − u0|μ(vεn − u0).

We have

D
(|vεn − u0|μ(vεn − u0)

)

= |vεn − u0|μD(vεn − u0) + μ(vεn − u0)
vεn − u0

|vεn − u0| |vεn − u0|μ−1D(vεn − u0)

= (μ + 1)|vεn − u0|μD(vεn − u0)

⇒ |vεn − u0|μ(vεn − u0) ∈ W 1,p(Ω)
(
recall that vεn, u0 ∈ C1(Ω̄), see (2.7)

)
.
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So, we can use |vεn − u0|μ(vεn, u0) as a test function in (2.9) and (2.10). We have

0 �
〈
A(vεn) − A(u0), |vεn − u0|μ(vεn − u0)

〉

+
∫

∂Ω

β(z)
[|vεn |p−2vεn − |u0|p−2u0

]|vεn − u0|μ(vεn − u0) dσ

=
∫
Ω

[
f0(z, vεn) − f0(z, u0)

]|vεn − u0|μ(vεn − u0) dz

+ λεn

∫
Ω

|vεn − u0|r+μ dz. (2.11)

As before, from Winkert [24], we have ‖vεn‖∞ � M3 for some M3 > 0, all n � 1. Hence

∣∣∣∣
∫
Ω

[
f0(z, vεn) − f0(z, u0)

]|vεn − u0|μ(vεn − u0) dz

∣∣∣∣

� M4

∫
Ω

|vεn − u0|μ+1 dz for some M4 > 0, all n � 1

� M4 |Ω|
r−1
μ+r

N ‖vεn − u0‖μ+1
μ+r (2.12)

(here we have used Hölder’s inequality with conjugate exponents μ+r
μ+1 ,

μ+r
r−1 ).

From (2.11) and (2.12) it follows that

−λεn‖vεn − u0‖μ+r
μ+r � M4 |Ω|

r−1
μ+r

N ‖vεn − u0‖μ+1
μ+r

⇒ |λεn |‖vεn − u0‖r−1
μ+r � M4|Ω|

r−1
μ+r

N for all n � 1.

Recall that μ > 1 is arbitrary. So, we let μ → +∞ and obtain

‖hεn‖∞ �
[

M4

|λεn |
] 1

r−1

for all n � 1. (2.13)

In (2.8) we denote the reaction (right hand side) by ϑεn(z, x). Using (2.13) we have

∣∣ϑεn

(
z,hεn(z)

)∣∣� M5

|λεn |
1

r−1

� M5 for all n � 1 and some M5 > 0.

From this, as before, the nonlinear regularity theory (see [15]) implies the existence of γ0 ∈ (0,1),
M6 > 0 such that

hεn ∈ C1,γ0(Ω̄) and ‖hεn‖C1,γ0 (Ω̄) � M6 for all n � 1.
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So, in both Case 1 and Case 2, we reached similar uniform bounds for the sequence {hεn}n�1 ⊆
C1,μ(Ω̄) for some μ ∈ (0,1). Therefore, exploiting the compact embedding of C1,μ(Ω̄) into
C1(Ω̄), we may assume that

u0 + hεn → u0 in C1(Ω̄)
(
recall that ‖hεn‖r � εn for all n � 1

)
.

But by hypothesis u0 is a local C1(Ω̄)-minimizer of ϕ0. So, we can find n0 � 1 such that

ϕ0(u0) � ϕ0(u0 + hεn) for all n � n0.

On the other hand, from the choice of the h′
ns we have

ϕ0(u0 + hεn) < ϕ0(u0) for all n � 1
(
see (2.4)

)
,

a contradiction. This proves that u0 is also a local W 1,p(Ω) minimizer of ϕ0. �
Finally, we recall some basic definitions and facts from Morse theory (critical groups). So,

let X be a Banach space and let (Y1, Y2) be a topological pair with Y2 ⊆ Y1 ⊆ X. For every
integer k � 0, by Hk(Y1, Y2) we denote the kth relative singular homology group with integer
coefficients for the pair (Y1, Y2). Recall that Hk(Y1, Y2) = 0 for all integers k < 0.

Let X be a Banach space and ϕ ∈ C1(X), c ∈ R. We introduce the following sets

ϕc = {
x ∈ X: ϕ(x) � c

}
, Kϕ = {

x ∈ X: ϕ′(x) = 0
}
, Kc

ϕ = {
x ∈ Kϕ : ϕ(x) = c

}
.

Then the critical groups of ϕ at an isolated critical point x ∈ X with ϕ(x) = c, are defined by

Ck(ϕ, x) = Hk

(
ϕc ∩ U, ϕc ∩ U\{x}) for all k � 0.

Here U is a neighborhood of x such that Kϕ ∩ ϕc ∩ U = {x}. The excision property of the
singular homology theory implies that the above definition of critical groups is independent of
the particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the PS-condition and infϕ(Kϕ) > ∞. Let c < infϕ(Kϕ).
The critical groups of ϕ at infinity, are defined by

Ck(ϕ,∞) = Hk

(
X,ϕc

)
for all k � 0.

The second deformation theorem (see, for example, Gasinski and Papageorgiou [12, p. 628]),
implies that the above definition of critical groups, is independent of the particular choice of the
level c < infϕ(Kϕ).

Assume that Kϕ is finite and introduce the following items:

M(t, x) =
∑
k�0

rank Ck(ϕ, x)tk for all t ∈ R, all x ∈ Kϕ,

P (t,∞) =
∑
k�0

rankCk(ϕ,∞)tk for all t ∈ R.
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The Morse relation says that

∑
x∈Kϕ

M(t, x) = P(t,∞) + (1 + t)Q(t), (2.14)

where Q(t) =∑
k�0 βkt

k is a formal series in t ∈ R with nonnegative integer coefficients.

Suppose that X = H is a Hilbert space, x ∈ H, U a neighborhood of x and ϕ ∈ C2(U).
Suppose that x ∈ Kϕ . Then, the Morse index of x ∈ Kϕ is defined to be the supremum of the
dimensions of the subspaces of H on which ϕ′′(x) is negative definite. The nullity of x ∈ Kϕ , is
the dimension of kerϕ′′(x). We say that x ∈ Kϕ is nondegenerate, if ϕ′′(x) is invertible, that is,
the nullity of x is zero. If x ∈ Kϕ is nondegenerate with Morse index m, then Ck(ϕ, x) = δk,m Z
for all k � 0, where

δk,m =
{

1 if k = m,

0 if k 
= m
(the Kronecker symbol).

Suppose that H = Y ⊕ V with dimY < +∞ and ϕ ∈ C1(H). We say that ϕ admits a local
linking at the origin with respect to the decomposition (Y,V ), if there exists ρ > 0 such that

ϕ(u) � ϕ(0) for all u ∈ Y, ‖u‖ � ρ,

ϕ(u) � ϕ(0) for all u ∈ V, ‖u‖ � ρ.

3. Some remarks on the spectrum of −�R
p

We consider the following nonlinear eigenvalue problem

⎧⎪⎨
⎪⎩

−�pu(z) = λ
∣∣u(z)

∣∣p−2
u(z) in Ω

∂u

∂np

(z) + β(z)
∣∣u(z)

∣∣p−2
u(z) = 0 on ∂Ω

⎫⎪⎬
⎪⎭ . (3.1)

We say that λ ∈ R is an eigenvalue of −�R
p , if problem (3.1) admits a nontrivial solution. This

eigenvalue problem, was investigated by Le [14], who proved many important facts concerning
the first two eigenvalues of −�R

p . Here, we prove two additional results concerning the first two

eigenvalues of −�R
p .

We introduce the following quantity

λ̂1 = inf

[‖Du‖p
p + ∫

∂Ω
β(z)|u|p dσ

‖u‖p
p

: u ∈ W 1,p(Ω), u 
= 0

]
. (3.2)

This is the first eigenvalue of −�R
p (see [14]). We also have:

Proposition 4. If β ∈ L∞(∂Ω)\{0} and β(z) � 0 σ -a.e. on ∂Ω , then λ̂1 > 0.
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Proof. Evidently λ̂1 � 0. Suppose that λ̂1 = 0 and let {un}n�1 ⊆ W 1,p(Ω) be such that

‖Dun‖p
p +

∫
∂Ω

β(z)|un|p dσ → 0+ as n → ∞, with ‖un‖p = 1 for all n � 1. (3.3)

Clearly {un}n�1 ⊆ W 1,p(Ω) is bounded and so we any assume that

un
w−→ u in W 1,p(Ω) and un → u in Lp(Ω). (3.4)

From the weak lower semicontinuity of the norm functional in a Banach space, we have

‖Du‖p
p � lim inf

n→∞ ‖Dun‖p
p.

Moreover, the continuity of the trace map and (3.4), imply that

∫
∂Ω

β(z)|un|p dσ →
∫

∂Ω

β(z)|u|p dσ.

Therefore in the limit as n → ∞, we have

‖Du‖p
p +

∫
∂Ω

β(z)|u|p dσ � 0 ⇒ u ≡ 0,

a contradiction to the fact that ‖u‖p = 1 (see (3.3), (3.4)). �
From Le [14], we know that λ̂1 > 0 is a simple eigenvalue (that is, if u,y are eigenfunctions

corresponding to λ̂1, then u = ϑy for some ϑ ∈ R\{0}) and it isolated (that is, if σR(p) denotes
the set of eigenvalues of −�R

p , then there exists ε > 0 such that (λ̂1, λ̂1 + ε) ∩ σR(p) = ∅).

Let û1 ∈ W 1,p(Ω) be the Lp-normalized (that is, ‖û1‖p = 1) eigenfunction corresponding to
λ̂1 > 0. It is clear from (3.2) that û1 does not change sign and so we may assume that û1 � 0.
If hypothesis H(β) holds, then Theorem 2 of Lieberman [15] implies that û1 ∈ C+\{0}. Finally
the nonlinear strong maximum principle of Vazquez [23] implies that û1 ∈ intC+.

The Ljusternik–Schnirelmann minimax scheme, implies that −�R
p admits a whole strictly

increasing sequence of eigenvalues {λ̂k}k�1 such that λ̂k → +∞. These eigenvalues are known
as the LS-eigenvalues (or variational eigenvalues) of −�R

p . If p = 2 (linear eigenvalue problem),

then σR(p) = {λ̂k}k�1. If p 
= 2 (nonlinear eigenvalue problem), then we do not know if this is
the case. We can easily see that σR(p) is closed. Since λ̂1 > 0 is isolated, we can define

λ̂∗
2 = inf

[
λ ∈ σR(p): λ > λ̂1

]
.

The closedness of σR(p) implies that λ̂∗
2 is the second eigenvalue of −�R

p . We have (see Le [14])

λ̂∗
2 = λ̂2,
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2460 N.S. Papageorgiou, V.D. Rădulescu / J. Differential Equations 256 (2014) 2449–2479

that is, the second eigenvalue and the second LS-eigenvalue of −�R
p coincide. For λ̂2 we have the

minimax characterization provided by the Ljusternik–Schnirelmann theory. In the next proposi-
tion, we produce an alternative minimax characterization of λ̂2, which is more suitable to our
purposes. Analogous characterizations for the Dirichlet and Neumann p-Laplacians, were pro-
duced by Cuesta, de Figueiredo and Gossez [6] and by Aizicovici, Papageorgiou and Staicu [1]
respectively.

Proposition 5. Assume that hypotheses H(β) hold. Then λ̂2 = inf
γ̂∈Γ̂

max−1�t�1 ϕ(γ̂ (t)),
where

Γ̂ = {
γ̂ ∈ C

([−1,1],M)
: γ̂ (−1) = −û1, γ̂ (1) = û1

}
,

M = W 1,p(Ω) ∩ ∂BLp

1 , ∂BLp

1 = {
u ∈ Lp(Ω): ‖u‖p = 1

}

and

ϕ(u) = ‖Du‖p
p +

∫
∂Ω

β(z)|u|p dσ for all u ∈ W 1,p(Ω).

Proof. By Ljusternik’s theorem (see, for example, Papageorgiou and Kyritsi [17, p. 74]), we
know that M is a C1-Banach manifold and

TuM =
{
h ∈ W 1,p(Ω):

∫
Ω

|u|p−2uhdz = 0

}
for all u ∈ M

(the tangent space to M at u).

Claim 1. ϕ|M satisfies the PS-condition.

Let {un}n�1 ⊆ M such that

∣∣ϕ(un)
∣∣� M1 for some M1 > 0, all n � 1, and (3.5)

∣∣∣∣〈A(un),h
〉+

∫
∂Ω

β|un|p−2unhdσ

∣∣∣∣� εn‖h‖ for all h ∈ TunM with εn → 0+. (3.6)

Given any y ∈ W 1,p(Ω), we define

h = y −
(∫

Ω

|un|p−2uny dz

)
un.

Evidently h ∈ TunM and so we can use it as a test function in (3.6). We have

∣∣∣∣〈A(un), y
〉−

(∫
Ω

|un|p−2uny dz

)
‖Du‖p

p +
∫

∂Ω

β|un|p−2uny dσ
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N.S. Papageorgiou, V.D. Rădulescu / J. Differential Equations 256 (2014) 2449–2479 2461

−
(∫

Ω

|un|p−2uny dz

) ∫
∂Ω

β|un|p dσ

∣∣∣∣� εn‖h‖ for all n � 1

⇒
∣∣∣∣〈A(un), y

〉+
∫

∂Ω

β|un|p−2uny dσ −
(∫

Ω

|un|p−2uny dz

)
ϕ(un)

∣∣∣∣
� εnc1‖y‖ for some c1 > 0, all n � 1

(
see Goldberg [13, p. 48]

)

⇒
∣∣∣∣〈A(un), y

〉+
∫

∂Ω

β|un|p−2uny dσ

∣∣∣∣� c2‖y‖ for some c2 > 0, all n � 1

(
see (3.5) and recall ‖un‖p = 1 for all n � 1

)
. (3.7)

From (3.5) and since
∫
∂Ω

β|un|p dσ � 0 for all n � 1, we have that {Dun}n�1 ⊆ Lp(Ω, RN)

is bounded. Recall that {un}n�1 ⊆ M , hence ‖un‖p = 1 for all n � 1. Therefore {un}n�1 ⊆
W 1,p(Ω) is bounded and so we may assume that

un
w−→ u in W 1,p(Ω).

Since y ∈ W 1,p(Ω) is arbitrary, in (3.7) we may choose y = un − u. We pass to the limit and
exploit the continuity of the trace map. We obtain

lim
n→∞

〈
A(yn), yn − y

〉= 0 ⇒ un → u in W 1,p(Ω).

This proves the claim.
Note that

ϕ(±û1) = λ̂1 and both ± û1 are local minimizers of ϕ.

From Filippakis, Kristaly and Papageorgiou [10] (see the proof of Proposition 3.2) or from de
Figueiredo [9, p. 42], we know that we can find ρ± ∈ (0,1) such that

ϕ(±û1) < inf
[
ϕ(u): u ∈ M,

∥∥u − (±û1)
∥∥= ρ±

]
, ρ± < 2‖û1‖. (3.8)

Let

λ̂ = inf
γ̂∈Γ̂

max
−1�t�1

ϕ
(
γ̂ (t)

)
. (3.9)

Every path connecting −û1 and û1 crosses ∂Bρ±(±û1) (see (3.8)) and ϕ(±û1) = λ̂1, from (3.9)
we see that λ̂ > λ̂1. It is well-known that λ̂ is a critical value of ϕ|M , hence an eigenvalue of
−�R

p distinct from λ̂1.

Suppose that λ ∈ (λ̂1, λ̂) is an eigenvalue of −�R
p with û ∈ M a corresponding eigenfunction.

From Le [14], we know that û must be nodal (sign changing) and so, we have û+ 
= 0, û− 
= 0.
We consider the following two paths in the manifold M

γ1(t) = û+ − t û−

‖û+ − t û−‖p

and γ2(t) = −û− + (1 − t)û+

‖ − û− + (1 − t)û+‖p

for all t ∈ [0,1]. (3.10)
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2462 N.S. Papageorgiou, V.D. Rădulescu / J. Differential Equations 256 (2014) 2449–2479

Note that γ1 connects û+
‖û+‖p

with û, while γ2 connects û with −û−
‖û−‖p

. So, if concatenate the two

paths, we produce a path γ in M connecting û+
‖û+‖p

with −û−
‖û−‖p

.

Recall that

−�pû(z) = λ
∣∣û(z)

∣∣p−2
û(z) a.e. in Ω,

∂û

∂np

+ β(z)|û|p−2û = 0 on ∂Ω. (3.11)

On (3.11) we act with û+. Using the nonlinear Green’s identity (see, for example Gasinski and
Papageorgiou [12, p. 211]), we have

∫
Ω

|Dû|p−2(Dû,Dû+)
RN dz −

∫
∂Ω

∂û

∂np

û+ dσ = λ
∥∥û+∥∥p

p

⇒ ∥∥Dû+∥∥p

p
+
∫

∂Ω

β
(
û+)p dσ = λ

∥∥û+∥∥p

p
. (3.12)

Similarly, acting on (3.11) with −û− ∈ W 1,p(Ω), we obtain

∥∥Dû−∥∥p

p
+
∫

∂Ω

β
(
û−)p dσ = λ

∥∥û−∥∥p

p
. (3.13)

From (3.10), (3.12), (3.13) and since û+ and û− have disjoint interior supports, we have

ϕ
(
γ1(t)

)= ϕ
(
γ2(t)

)= λ for all t ∈ [0,1]. (3.14)

Let L̂ = {u ∈ M: ϕ(u) < λ̂}. Since û1, −û1 ∈ L̂, this set cannot be path connected or otherwise
we violate relation (3.9). Moreover, using the Ekeland variational principle and the fact that ϕ|M
satisfies the PS-condition (see the claim), we see that every path component of L̂ contains a
critical point of ϕ|M . Since ±û1, are the only critical points of ϕ|M in L̂, we infer that L̂ has two
path components.

Since û+
‖û+‖p

∈ M ∩ (intC+) and ϕ( û+
‖û+‖p

) = λ (see (3.12)), we see that û+
‖û+‖p

cannot be a

critical point of ϕ|M . Hence we can find a path s : [−ε, ε] → M such that

s(0) = û+

‖û+‖p

and
d

dt
(ϕ|M)

(
s(t)

) 
= 0 for all t ∈ [−ε, ε].

Moving along this path, we can start from û+
‖û+‖p

and reach a point y ∈ M staying in the set L̂

with the exception of the starting point û+
‖û+‖p

. Let U1 be the path-component of L̂ containing y.

Without any loss of generality, we may assume that û1 ∈ U1. Then y and û1 can be connected
by a path which stays in U1. Concatenating this path with s introduced above, we have a path
γ+ : [0,1] → U1 such that

γ+(0) = û1, γ+(1) = û+

‖û+‖p

and γ+(t) ∈ L̂ for all t ∈ [0,1).
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Similarly, if U2 is the other path component of L̂ containing −û1, then we produce a path
γ− : [0,1] → U2 such that

γ−(0) = −û−

‖û−‖p

, γ−(1) = −û1 and γ−(t) ∈ L̂ for all t ∈ (0,1].

Finally, we concatenate γ−, γ, γ+ and have γ̂∗ ∈ Γ̂ such that

ϕ
(
γ∗(t)

)
� λ for all t ∈ [−1,1] ⇒ λ̂ � λ

(
see (3.9)

)
, a contradiction.

This means that (λ̂1, λ̂) ∩ σR(ρ) = ∅ and so we conclude that λ̂ = λ̂2. �
4. Nonlinear equations

We introduce the following conditions on the perturbation f (z, x):

H1: f : Ω × R → R is a Carathéodory function such that f (z,0) = 0 for a.a. z ∈ Ω and
(i) for every ρ > 0 there exists aρ ∈ L∞(Ω)+ such that |f (z, x)| � aρ(z) for a.a. z ∈ Ω ,

all |x| � ρ;
(ii) limx→±∞ f (z,x)

|x|p−2x
= +∞ uniformly for a.a. z ∈ Ω ;

(iii) limx→0
f (z,x)

|x|p−2x
= 0 uniformly for a.a. z ∈ Ω .

Remark 6. We stress that no global growth restriction is imposed on f (z, ·). So, the function
x �→ f (z, x) can have any growth faster than |x|p−2x near ±∞.

First we produce two nontrivial constant sign solutions.

Proposition 7. Assume that hypotheses H(β) and H1 hold and λ > λ̂1. Then problem (Pλ) has
at least two nontrivial constant sign solutions

u0 ∈ intC+ and v0 ∈ − intC+.

Proof. First we produce a nontrivial positive solution.
By virtue of hypothesis H1(ii), given ξ > 0, we can find M7 = M7(ξ) > 0 such that

f (z, x) � ξxp−1 for a.a. z ∈ Ω all x � M.

Since û1 ∈ intC+, we can find t > 0 big such that t û1 � M7. Then we have

f
(
z, tû1(z)

)
� ξ

(
t û1(z)

)p−1 a.e. in Ω. (4.1)

Also, we have

−�p(tû1)(z) = λ̂1(t û1)(z)
p−1 a.e. in Ω,

∂(tû1)

∂np

+ β(z)(tû1)
p = 0 on ∂Ω.
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2464 N.S. Papageorgiou, V.D. Rădulescu / J. Differential Equations 256 (2014) 2449–2479

Then for every h ∈ W 1,p(Ω), h � 0, we have

〈−�p(tû1), h
〉=

∫
Ω

λ̂1(t û1)
p−1hdz

⇒ 〈
A(tû1), h

〉−
〈
∂(tû1)

∂np

,h

〉
∂Ω

=
∫
Ω

λ̂1(t û1)
p−1hdz

(
by the nonlinear Green’s identity, see [12, p. 211]

)

⇒ 〈
A(tû1), h

〉+
∫

∂Ω

β(z)(tû1)
p−1hdσ =

∫
Ω

λ̂1(t û1)
p−1hdz. (4.2)

Choosing ξ = λ − λ̂1 > 0, from (4.1) and (4.2), we have

∫
Ω

[
λ(tû1)

p−1 − f (z, tû1)
]
hdz

�
∫
Ω

λ̂1(t û1)
p−1hdz

= 〈
A(tû1), h

〉+
∫

∂Ω

β(z)(tû1)
p−1hdσ for all h ∈ W 1,p(Ω), h � 0. (4.3)

Setting ū = t û1 ∈ intC+, we introduce the following truncation–perturbation of the reaction in
problem (Pλ)

h+
λ (z, x) =

⎧⎨
⎩

0 if x < 0,

(λ + 1)xp−1 − f (z, x) if 0 � x � ū(z),

(λ + 1)ū(z)p−1 − f (z, ū(z)) if ū(z) < x.

(4.4)

This is a Carathéodory function. We set H+
λ (z, x) = ∫ x

0 h+
λ (z, s) ds and consider the C1-functio-

nal Ψ +
λ : W 1,p(Ω) → R defined by

Ψ +
λ (u) = 1

p
‖Du‖p

p + 1

p
‖u‖p

p + 1

p

∫
∂Ω

β(z)
∣∣u(z)

∣∣p dσ −
∫
Ω

H+
λ

(
z,u(z)

)
dz

for all u ∈ W 1,p(Ω).

From (4.4) it is clear that Ψ +
λ is coercive. Also, using the Sobolev embedding theorem and the

continuity of the trace map, we see that Ψ +
λ is sequentially weakly lower semicontinuous. So,

we can find u0 ∈ W 1,p(Ω) such that

Ψ +
λ (u0) = inf

[
Ψ +

λ (u): u ∈ W 1,p(Ω)
]
. (4.5)
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By virtue of hypothesis H1(iii) given ε > 0, we can find δ = δ(ε) ∈ (0,minΩ̄ ū] such that

F(z, x) � ε

p
|x|p for a.a. z ∈ Ω, all x ∈ [0, δ]. (4.6)

Choose ϑ ∈ (0,1) small such that ϑû1(z) ∈ (0, δ] for all z ∈ Ω̄ . Then

Ψ +
λ (ϑû1) = ϑp

p
‖Dû1‖p

p + ϑp

p

∫
∂Ω

β(z)|û1|pdσ − λϑp

p
‖û1‖p

p +
∫
Ω

F(z, tû1) dz
(
see (4.4)

)

� ϑp

p

[
(λ̂1 + ε) − λ

] (
see (4.6) and recall that ‖û1‖p = 1

)
.

Choosing ε ∈ (0, λ − λ̂1) (recall λ > λ̂1), we have

Ψ +
λ (ϑû1) < 0 ⇒ Ψ +

λ (u0) < 0 = Ψ +
λ (0)

(
see (4.5)

)
, hence u0 
= 0.

From (4.5) we have

(
Ψ +

λ

)′
(u0) = 0

⇒ 〈
A(u0), v

〉+
∫
Ω

|u0|p−2u0v dz +
∫

∂Ω

β(z)|u0|p−2u0 v dσ

=
∫
Ω

h+
λ (z,u0) v dz for all v ∈ W 1,p(Ω). (4.7)

In (4.7) first we choose v = −u−
0 ∈ W 1,p(Ω). Then

∥∥Du−
0

∥∥p

p
+ ∥∥u−

0

∥∥p

p
� 0

(
see (4.4) and H(β)

)
⇒ u0 � 0, u0 
= 0.

Next in (4.7) we choose v = (u0 − ū)+ ∈ W 1,p(Ω). Then

〈
A(u0), (u0 − ū)+

〉+
∫
Ω

u
p−1
0 (u0 − ū)+dz +

∫
∂Ω

β(z)u
p−1
0 (u0 − ū)+ dσ

=
∫
Ω

[
(λ + 1)ūp−1 − f (z, ū)

]
(u0 − ū)+dz

(
see (4.4)

)

�
〈
A(ū), (v0 − ū)+

〉+
∫
Ω

ūp−1(u0 − ū)+ dz +
∫

∂Ω

β(z)ūp−1(u0 − ū)+ dσ

(
see (4.3)

)

⇒ 〈
A(u0) − A(ū), (u0 − ū)+

〉+
∫
Ω

(
u

p−1
0 − ūp−1)(u0 − ū)+dz
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+
∫

∂Ω

β(z)
[
u

p−1
0 − ūp−1](u0 − ū)+ dσ � 0

⇒ ∣∣{u0 > ū}∣∣
N

= 0, hence u0 � ū.

So, we have proved that

u0 ∈ [0, ū] = {
u ∈ W 1,p(Ω): 0 � u(z) � ū(z) a.e. in Ω

}
, u0 
= 0.

Therefore from (4.4) and (4.7), we have

〈
A(u0), h

〉+
∫

∂Ω

β(z)|u0|p−2u0hdσ =
∫
Ω

[
λu

p−1
0 − f (z,u0)

]
hdz for all h ∈ W 1,p(Ω).

As before (see the proof of Proposition 3), via the nonlinear Green’s identity we have

−�pu0(z) = λu0(z)
p−1 − f

(
z,u0(z)

)
a.e. in Ω,

∂u0

∂np

+ β(z)u
p−1
0 = 0 on ∂Ω

⇒ u0 is a nontrivial positive solution of problem (Pλ).

The nonlinear regularity theory, implies that u0 ∈ C+\{0}. Hypotheses H1(i), (iii) imply that we
can find c3 > 0 such that

f (z, x) � c3x
p−1 for a.a. z ∈ Ω, all x ∈ [

0,‖ū‖∞
]
.

Then

−�pu0(z) � −f
(
z,u0(z)

)
� −c3u0(z)

p−1 a.e. in Ω

⇒ �pu0(z) � c3u0(z)
p−1 a.e. in Ω

⇒ u0 ∈ intC+
(
see Vazquez [23]

)
.

Similarly, we produce a nontrivial negative solution v0 ∈ −intC+. Using this time v̄ = −t̂ û1 for
t̂ > 0 big, for which we have

〈
A(v̄), h

〉+
∫

∂Ω

β(z)|v̄|p−2v̄h dσ �
∫
Ω

[
λ|v̄|p−2v̄ − f (z, v̄)

]
hdz

for all h ∈ W 1,p(Ω), h � 0.

Truncating and perturbing the reaction of (Pλ) at {v̄(z),0}, as above we produce v0 ∈ [v̄,0] ∩
(−intC+), a solution of (Pλ), λ > λ̂1. �

In fact, we can produce extremal nontrivial constant sign solutions for problem (Pλ), λ > λ̂1,
that is, there exist u∗ ∈ intC+ the smallest nontrivial positive solution of (Pλ) and v∗ ∈ − intC+
the biggest nontrivial negative solution of (Pλ).
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For λ > λ̂1 we define

S+(λ) = {
u ∈ W 1,p(Ω): u 
= 0, u ∈ [0, ū], u is a solution of (Pλ)

}
,

S−(λ) = {
v ∈ W 1,p(Ω): v 
= 0, v ∈ [v̄,0], v is a solution of (Pλ)

}
.

From Proposition 7 and its proof we have

∅ 
= S+(λ) ⊆ intC+ and ∅ 
= S−(λ) ⊆ intC+.

Moreover, as in Filippakis, Kristaly and Papageorgiou [10], we have that the set of nontrivial
positive (resp. negative) solutions of (Pλ) is downward directed, that is, if u, û are nontrivial
positive solutions of (Pλ), then there exists y a nontrivial positive solution of (Pλ) such that
y � u, y � û (resp. upward directed, that is, if v, v̂ are nontrivial negative solutions of (Pλ),
there exists w a nontrivial negative solution of (Pλ), such that v � w, v̂ � w).

Proposition 8. Assume that hypotheses H(β) and H1 hold and λ > λ̂1. Then problem (Pλ)

admits smallest nontrivial positive solution uλ∗ ∈ intC+ and a biggest nontrivial negative solution
vλ∗ ∈ intC+.

Proof. We consider a chain C ⊆ S+(λ) (that is, a totally ordered subset of S+(λ)). Then from
Dunford and Schwartz [8, p. 336], we know that we can find {un}n�1 ⊆ C such that infC =
infn�1 un. We have

−�pun(z) = λun(z)
p−1 − f

(
z,un(z)

)
a.e. in Ω,

∂un

∂np

+ β(z)u
p−1
n = 0 on ∂Ω.

Using the nonlinear Green’s identify, we obtain

〈
A(un),h

〉+
∫

∂Ω

β(z)u
p−1
n hdσ =

∫
Ω

λu
p−1
n hdz −

∫
Ω

f (z,un)hdz

for all h ∈ W 1,p(Ω). (4.8)

We choose h = un ∈ W 1,p(Ω). Then

‖Dun‖p
p � M8 for some M8 > 0, all n � 1

⇒ {un}n�1 ⊆ W 1,p(Ω) is bounded (recall 0 � un � ū for all n � 1).

So, we may assume that

un
w−→ u in W 1,p(Ω) and un → u in Lp(Ω).

In (4.8) we choose h = un − u ∈ W 1,p(Ω) and pass to the limit as n → ∞. Using the continuity
of the trace map (hence un|∂Ω

w−→ u|∂Ω in Lp(∂Ω)), we obtain
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lim
n→∞

〈
A(un),un − u

〉= 0

⇒ un → u in W 1,p(Ω) (see Proposition 2)

⇒ 〈
A(u),h

〉+
∫

∂Ω

β(z)up−1hdσ =
∫
Ω

λup−1hdz −
∫
Ω

f (z,u)hdσ

for all h ∈ W 1,p(Ω).

Hence u is a positive solution of (Pλ) So, if we show that u 
= 0, then u ∈ S+(λ). Arguing by
contradiction, suppose that u = 0 and let yn = un‖un‖n � 1. Then ‖yn‖ = 1 for all n � 1 and so we
may assume that

yn
w−→ y in W 1,p(Ω) and yn → y in Lp(Ω).

From (4.8) we have

〈
A(yn),h

〉+
∫

∂Ω

β(z)y
p−1
n hdσ =

∫
Ω

λy
p−1
n hdz −

∫
Ω

Nf (un)

‖un‖p−1
hdz. (4.9)

By virtue of hypotheses H1(i), (iii), we have that

Nf (un)

‖un‖p−1
w−→ 0 in Lp′

(Ω)

(
1

p
+ 1

p′ = 1

)
. (4.10)

So, if in (4.9) we choose h = yn − y and pass to the limit as n → ∞, then

lim
n→∞

〈
A(yn), yn − y

〉= 0

⇒ yn → y in W 1,p(Ω) (see Proposition 2), hence ‖y‖ = 1, y � 0. (4.11)

If in (4.9) we pass to the limit as n → ∞ and use (4.10) and (4.11), then

〈
A(y),h

〉+
∫

∂Ω

β(z)yp−1hdσ =
∫
Ω

λyp−1hdz for all h ∈ W 1,p(Ω)

⇒ −�py(z) = λy(z)p−1 a.e. in Ω,
∂y

∂np

+ β(z)yp−1 = 0 on ∂Ω

(see the proof of Proposition 3).

Since λ > λ̂1, y = 0 or y is a nodal, a contradiction to (4.11). Therefore u 
= 0 and so

u ∈ C+(λ) and u = infC.

Because C ⊆ S+(λ) is an arbitrary chain, invoking the Kuratowski–Zorn lemma, we can find
uλ∗ ∈ S+(λ) ⊆ intC+ a minimal element. If u is a nontrivial positive solution, then we know that
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we can find ũ ∈ S+(λ) such that ũ � uλ∗, ũ � u. The minimality of uλ∗ implies that ũ = uλ∗ and
so uλ∗ ∈ intC+ is the smallest nontrivial positive solution of (Pλ).

Similarly, working with S−(λ) ⊆ − intC+ and using again the Kuratowski–Zorn lemma, we
produce vλ∗ ∈ − intC+ the biggest nontrivial negative solution of (Pλ). �

These extremal nontrivial constant sign solutions, will lead to a nodal (sign changing solu-
tion). To this end, fix λ > λ̂1 and let

η = max
{∥∥uλ∗

∥∥∞,
∥∥vλ∗

∥∥∞
}
.

Hypotheses H1(i), (iii) imply that we can find ξ > 0 such that

(λ + ξ)xp−1 � f (z, x) for a.a. z ∈ Ω, all x ∈ [0, η], (4.12)

f (z, x) � (λ + ξ)|x|p−2x for a.a. z ∈ Ω, all x ∈ [−η,0]. (4.13)

From (4.12) and (4.13), after integration, we obtain

F(z, x) � λ + ξ

p
|x|p for a.a. z ∈ Ω, all |x| � η. (4.14)

We introduce the following Carathéodory functions

k+
λ (z, x) =

⎧⎨
⎩

0 if x < 0,

(λ + ξ)xp−1 − f (z, x) if 0 � x � uλ∗(z),
(λ + ξ)uλ∗(z)p−1 − f (z,uλ∗(z)) if uλ∗(z) < x,

(4.15)

k−
λ (z, x) =

⎧⎨
⎩

(λ + ξ)|vλ∗(z)|p−2vλ∗(z) − f (z, vλ∗(z)) if x < vλ∗(z),

(λ + ξ)|x|p−2x − f (z, x) if vλ∗(z) � x � 0,

0 if 0 < x,

(4.16)

kλ(z, x) =
⎧⎨
⎩

(λ + ξ)|vλ∗(z)|p−2vλ∗(z) − f (z, vλ∗(z)) if x < vλ∗(z),

(λ + ξ)|x|p−2x − f (z, x) if vλ∗(z) � x � uλ∗(z),
(λ + ξ)uλ∗(z)p−1 − f (z,uλ∗(z)) if uλ∗(z) < x.

(4.17)

We set K±
λ (z, x) = ∫ x

0 k±
λ (z, s) ds, Kλ(z, x) = ∫ x

0 kλ(z, s) ds and consider the C1-functionals
ϕ̂±

λ , ϕ̂λ : W 1,p(Ω) → R defined by

ϕ̂±
λ (u) = 1

p
‖Du‖p

p + ξ

p
‖u‖p

p + 1

p

∫
∂Ω

β(z)|u|p dσ −
∫
Ω

K±
λ (z,u) dz,

ϕ̂λ(u) = 1

p
‖Du‖p

p + ξ

p
‖u‖p

p + 1

p

∫
∂Ω

β(z)|u|p dσ −
∫
Ω

Kλ(z,u)dz for all u ∈ W 1,p(Ω).

Proposition 9. Assume that hypotheses H(β) and H1 hold and λ > λ̂1. Then Kϕ̂λ
⊆ [vλ∗ , uλ∗],

Kϕ̂+
λ

= {0, u∗
λ}, Kϕ̂−

λ
= {v∗

λ,0}.
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Proof. Let u ∈ Kϕ̂λ
. Then

ϕ̂′
λ(u) = 0 ⇒ 〈

A(u),h
〉+

∫
Ω

ξ |u|p−2uhdz +
∫

∂Ω

β(z)|u|p−2uhdσ =
∫
Ω

kλ(z,u)hdz

for all h ∈ W 1,p(Ω).

First we choose h = (u − uλ∗)+ ∈ W 1,p(Ω). Then

〈
A(u),

(
u − uλ∗

)+〉+
∫
Ω

ξup−1(u − uλ∗
)+

dz +
∫

∂Ω

β(z)up−1(u − uλ∗
)+

dσ

=
∫
Ω

[
(λ + ξ)

(
uλ∗
)p−1 − f

(
z,uλ∗

)](
u − uλ∗

)+
dz

(
see (4.17)

)
. (4.18)

Recall that

−�puλ∗(z) = λuλ∗(z)p−1 − f
(
z,uλ∗(z)

)
a.e. in Ω,

∂uλ∗
∂np

+ β(z)
(
uλ∗
)p−1 = 0 on ∂Ω

⇒ 〈
A
(
uλ∗
)
,
(
u − uλ∗

)+〉+
∫

∂Ω

β(z)
(
uλ∗
)p−1(

u − uλ∗
)+

dσ

=
∫
Ω

[
λ
(
uλ∗
)p−1 − f

(
z,uλ∗

)](
u − uλ∗

)+
dz. (4.19)

From (4.18) and (4.19) it follows that

〈
A(u) − A

(
uλ∗
)
,
(
u − uλ∗

)+〉+ ξ

∫
Ω

(
up−1 − (

uλ∗
)p−1)(

u − uλ∗
)+

dz

+
∫

∂Ω

β(z)
(
up−1 − (

uλ∗
)p−1)(

u − uλ∗
)+

dσ = 0

⇒ ∣∣{u > uλ∗
}∣∣

N
= 0, hence u � uλ∗.

Similarly, using the test function (vλ∗ − u)+ ∈ W 1,p(Ω), we show that vλ∗ � u. So, we have
proved that

u ∈ [
vλ∗ , uλ∗

]= {
y ∈ W 1,p(Ω): vλ∗(z) � y(z) � uλ∗(z) a.e. in Ω

}
⇒ K

Ψ̂λ
⊆ [

vλ∗ , uλ∗
]
.

In a similar fashion, using (4.15) (resp. (4.16)), we show that

Kϕ̂+
λ

⊆ [
0, uλ∗

]= {
y ∈ W 1,p(Ω): 0 � y(z) � uλ∗(z) a.e. in Ω

}
(
resp. Kϕ̂−

λ
⊆ [

vλ∗ ,0
]= {

y ∈ W 1,p(Ω): vλ∗(z) � y(z) � 0 a.e. in Ω
})

.
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The extremality of uλ∗ ∈ intC+ and vλ∗ ∈ − intC+ (see Proposition 8), implies that

Kϕ̂+
λ

= {
0, uλ∗

}
and Kϕ̂−

λ
= {

vλ∗ ,0
}
. �

Proposition 10. Assume that hypotheses H(β) and H1 hold and λ > λ̂1. Then uλ∗ ∈ intC+ and
vλ∗ ∈ − intC+ are both local minimizers of ϕ̂λ.

Proof. It is clear from (4.15) that ϕ̂λ is coercive. Also, it is sequentially weakly lower semicon-
tinuous. So, we can find ũλ∗ ∈ W 1,p(Ω) such that

ϕ̂+
λ

(
ũλ∗
)= inf

[
ϕ̂+

λ (u): u ∈ W 1,p(Ω)
]
. (4.20)

As before (see the proof of Proposition 7), for ϑ ∈ (0,1) small we have

ϕ̂+
λ (ϑû1) < 0 ⇒ ϕ̂+

λ

(
ũλ∗
)
< 0 = ϕ̂+

λ (0)
(
see (4.20)

)
, hence ũλ∗ 
= 0.

Since ũλ∗ ∈ Kϕ̂+
λ
\{0}, from Proposition 9 it follows ũλ∗ = uλ∗ ∈ intC+. Note that

ϕ̂λ|C+ = ϕ̂+
λ |C+

(
see (4.15), (4.17)

)
⇒ uλ∗ ∈ intC+ is a local C1(Ω̄)-minimizer ϕ̂λ

⇒ uλ∗ ∈ intC+ is a local W 1,p(Ω)-minimizer ϕ̂λ (see Proposition 3).

Similarly for vλ∗ ∈ − intC+, using this time the functional ϕ̂−
λ and (4.16). �

To produce a nodal solution, we need to restrict further the range of the parameter λ.

Proposition 11. Assume that hypotheses H(β) and H1 hold and λ > λ̂2. Then problem (Pλ)

admits solution yλ ∈ [vλ∗ , uλ∗] ∩ C1(Ω̄).

Proof. Let uλ∗ ∈ intC+ and vλ∗ ∈ intC+ be the two extremal nontrivial constant sign solutions
of problem (Pλ) produced in Proposition 8. Without any loss of generality, we may assume that
ϕ̂λ(v

λ∗) � ϕ̂λ(u
λ∗) (the analysis is similar if the opposite inequality holds). From Proposition 10,

we know that uλ∗ ∈ intC+ is a local minimizer of ϕ̂λ. So, we can find ρ ∈ (0,1) small such that

ϕ̂λ

(
vλ∗
)
� ϕ̂λ

(
uλ∗
)
< inf

[
ϕ̂λ(u):

∥∥u − uλ∗
∥∥= ρ

]= ηλ
ρ,

∥∥vλ∗ − uλ∗
∥∥> ρ. (4.21)

Recall that ϕ̂λ is coercive (see (4.17)), hence it satisfies the PS-condition. This fact and (4.21)
permit the use of Theorem 1 (the mountain pass theorem). So, there exists yλ ∈ W 1,p(Ω) such
that

yλ ∈ Kϕ̂λ
⊆ [

vλ∗ , uλ∗
]

(see Proposition 9) and ηλ
ρ � ϕ̂λ(yλ)

(
see (4.21)

)
. (4.22)

From (4.21) and (4.22) it follows that yλ /∈ {vλ∗ , uλ∗} and it solves problem (Pλ) see (4.17), hence
yλ ∈ C1(Ω̄) (nonlinear regularity theory).
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We need to show that yλ 
= 0 and then by virtue of the extremality of the solutions uλ∗ and vλ∗ ,
we will have that yλ is nodal. From the mountain pass theorem, we have

ϕ̂λ(y0) = inf
γ∈Γ

max
0�t�1

ϕ̂λ

(
γ (t)

)
,

where Γ = {γ ∈ C([0,1],W 1,p(Ω)): γ (0) = vλ∗ , γ (1) = uλ∗}.
Recall that M = W 1,p(Ω) ∩ ∂BLp

(see Proposition 5). Let Mc = M ∩ C1(Ω̄). We consider
the following two sets of paths

Γ̂ = {
γ̂ ∈ C

([−1,1],M)
: γ̂ (−1) = −û1, γ̂ (1) = û1

}
(see Proposition 5),

Γ̂c = {
γ ∈ C

([−1,1],Mc

)
: γ̂ (−1) = −û1, γ̂ (1) = û1

}
.

From Papageorgiou and Rădulescu [19], we know that Γ̂c is dense in Γ̂ . Since uλ∗ ∈ intC+, vλ∗ ∈
− intC+, we have

m0 = min
{

min
Ω̄

uλ∗, min
Ω̄

(−vλ∗
)}

> 0.

Hypothesis H (iii) implies that given ε > 0, we can find δ ∈ (0,m0) such that

∣∣F(z, x)
∣∣� ε

p
|x|p for a.a. z ∈ Ω, all |x| � δ (4.23)

(recall F(z, x) = ∫ x

0 f (z, s) ds). From (4.17) and (4.23) we have

Kλ(z, x) = λ + ξ

p
|x|p − F(z, x) � λ + ξ − ε

p
|x|p for a.a. z ∈ Ω, all |x| � δ.

From Proposition 5 and the density of Γ̂c in Γ̂ , we see that given ε ∈ (0, λ−λ̂2
2 ) (recall that

λ > λ̂2), we can find γ̂0 ∈ Γ̂c such that

ϕ
(
γ̂0(t)

)
� λ̂2 + ε for all t ∈ [−1,1]. (4.24)

Recall that ϕ : W 1,p(Ω) → R is defined by

ϕ(u) = ‖Du‖p
p +

∫
∂Ω

β(z)|u|p dσ for all u ∈ W 1,p(Ω)

(see Proposition 5). Evidently γ̂0([−1,1]) ⊆ C1(Ω̄) and recall that uλ∗ ∈ intC+, vλ∗ ∈ − intC+.
So, we can find τ ∈ (0,1) small such that for all u ∈ γ̂0([−1,1]) we have

∣∣τu(z)
∣∣� δ for all z ∈ Ω̄ and τu ∈ [

vλ∗ , uλ∗
]
. (4.25)
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Then for every u ∈ γ̂0([−1,1]) we have

ϕ̂λ(τu) = τp

p
‖Du‖p

p + ξτp

p
‖u‖p

p + τp

p

∫
∂Ω

β(z)|u|p dσ −
∫
Ω

Kλ(z, τu)dz

� τp

p
[λ̂2 + ε] − τp

p
[λ − ε] (

see (4.17), (4.23), (4.24)
)

= τp

p
[λ̂2 + 2ε − λ] < 0

(
recall that ε <

λ − λ̂2

2

)
.

So, if we set γ0 = τ γ̂0, then γ0 is a continuous path in W 1,p(Ω) which connects −τ û1 and τ û1
and such that

ϕ̂λ|γ0 < 0. (4.26)

Recall that ϕ̂+
λ (uλ∗) < 0 = ϕ̂+

λ (0) and Kϕ̂+
λ

= {0, uλ∗} (see Propositions 9, 10 and the proof of the
latter). Applying the second deformation theorem (see, for example, Gasinski and Papageorgiou
[12, p. 628]), we produce a deformation h : [0,1] × ((ϕ̂+

λ )0\{0}) → (ϕ̂+
λ )0 such that

h
(
1,
(
ϕ̂+

λ

)0\{0})= uλ∗, (4.27)

ϕ̂+
λ

(
h(t, u)

)
� ϕ̂+

λ (u) for all t ∈ [0,1]. (4.28)

Let γ+(t) = h(t, τ û1)
+ for all t ∈ [0,1]. Then γ+ is a continuous path in W 1,p(Ω) such that

γ+(0) = τ û1 (h is a deformation), γ+(1) = uλ∗ (see (4.27) and recall uλ∗ ∈ intC+) and

ϕ̂+
λ |γ+ < 0

(
see (4.28) and (4.26)

)
.

Since imγ+ ⊆ W+ = {u ∈ W 1,p(Ω): u(z) � 0 a.e. in Ω} and ϕ̂+
λ |W+ = ϕ̂λ|W+ (see (4.15),

(4.17)), we have

ϕ̂λ|γ+ < 0. (4.29)

In a similar fashion, using this time the functional ϕ̂−
λ , we produce another continuous path γ−

in W 1,p(Ω) which connects −τ û1 and vλ∗ and such that

ϕ̂|γ− < 0. (4.30)

Concatenating γ−, γ0, γ+, we produce a path γ∗ ∈ Γ such that

ϕ̂λ|γ∗ < 0
(
see (4.26), (4.29), (4.30)

)
⇒ yλ 
= 0 and so yλ ∈ C1(Ω̄) is nodal solution of (Pλ). � (4.31)

So, we can state the following multiplicity theorem for problem (Pλ) (λ > λ̂2).
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Theorem 12. Assume that hypotheses H(β) and H1 hold. Then for every λ > λ̂2 problem (Pλ)

has at least three nontrivial solutions uλ
0 ∈ intC+, vλ

0 ∈ − intC+, and yλ ∈ [vλ
0 , uλ

0] ∩ C1(Ω̄)

nodal.

5. Semilinear problems

In this section, we deal with the semilinear problem (that is, p = 2). So, the problem under
consideration is the following:

−�u(z) = λu(z) − f
(
z,u(z)

)
in Ω,

∂u

∂n
+ β(z)u = 0 on ∂Ω. (Sλ)

For this problem, under additional regularity conditions on f (z, ·) and with a global growth
restriction this time, we show that for all λ > λ̂2 problem (Sλ) admits a second nodal solution,
for a total of four nontrivial solutions all with sign information.

The new hypotheses on the perturbation f (z, x) are the following:

H2: f : Ω × R → R is a measurable function such that for a.a. z ∈ Ω , f (z,0) = 0, f (z, ·) ∈
C1(R) and

(i) |f ′
x(z, x)| � a(z)(1 + |x|r−2) for a.a. z ∈ Ω , all x ∈ R, with a ∈ L∞(Ω)+, 2 < r < 2∗;

(ii) limx→±∞ f (z,x)
x

= +∞ uniformly for a.a. z ∈ Ω ;

(iii) f ′
x(z,0) = limx→0

f (z,x)
x

= 0 uniformly for a.a. z ∈ Ω ;
(iv) there exists δ > 0 such that f (z, x)x � 0 for a.a. z ∈ Ω , all |x| � δ.

Remark 13. It is clear that hypothesis H2(i) implies that given ρ > 0, we can find ξρ > 0 such
that for a.a. z ∈ Ω , the function x �→ (λ + ξ)x − f (z, x) is nondecreasing on [−ρ,ρ].

We have the following multiplicity theorem for problem (Sλ).

Theorem 14. Assume that hypotheses H(β) and H2 hold. Then for every λ > λ̂2 problem (Sλ)

has at least four nontrivial solutions

uλ
0 ∈ intC+, vλ

0 ∈ − intC+

and yλ, ŷλ ∈ intC1(Ω̄)[vλ
0 , uλ

0] nodal.

Proof. From Theorem 12, we already have three nontrivial solutions

uλ
0 ∈ intC+, vλ

0 ∈ − intC+ and yλ ∈ [
vλ

0 , uλ
0

]∩ C1(Ω̄) nodal.

Without any loss of generality, we may assume that uλ
0 and vλ

0 are extremal (see Proposition 8),
that is, uλ

0 = uλ∗ ∈ intC+. Let ρ = max{‖uλ
0‖∞,‖vλ

0‖∞} and let ξρ > 0 be such that for a.a.
z ∈ Ω x → (λ + ξρ)x − f (z, x) is nondecreasing on [−ρ,ρ]. Then

−�yλ(z) + ξρyλ(z) = (λ + ξρ)yλ(z) − f
(
z, yλ(z)

)
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N.S. Papageorgiou, V.D. Rădulescu / J. Differential Equations 256 (2014) 2449–2479 2475

� (λ + ξρ)uλ
0(z) − f

(
z,uλ

0(z)
) (

since yλ � uλ
0

)
= −�uλ

0(z) + ξρuλ
0(z) a.e. in Ω

⇒ �
(
uλ

0 − yλ

)
(z) � ξρ

(
uλ

0 − yλ

)
(z) a.e. in Ω

⇒ uλ
0 − yλ ∈ intC+

(
see Vazquez [23]

)
.

Similarly, we show that

yλ − vλ
0 ∈ intC+.

Therefore, we have

yλ ∈ intC1(Ω̄)

[
vλ

0 , uλ
0

]
. (5.1)

Next let σλ : W 1,p(Ω) → R be the functional defined by

σλ(u) = 1

2
‖Du‖2

2 + 1

2

∫
∂Ω

β(z)u2 dσ − λ

2
‖u‖2

2 +
∫
Ω

F(z,u)dz for all u ∈ H 1(Ω)

(recall F(z, x) = ∫ x

0 f (z, s) ds). Evidently σλ ∈ C2(H 1(Ω)).
We consider the following orthogonal direct sum decomposition of H 1(Ω)

H 1(Ω) = H̄ ⊕ E(λ̂k) ⊕ Ĥ

with k � 3, H̄ =⊕k−1
i=1 E(λ̂i), Ĥ =⊕

i�k+1 E(λ̂i). Set Y = E(λ̂k) ⊕ Ĥ .

Recall that λ > λ̂2. First we assume that λ ∈ σR (2) (problem resonant at zero). Then λ = λ̂k

for some k � 3.

Claim 2. The energy functional σλ admits a local linking at u = 0, with respect to the orthogonal
direct sum

H 1(Ω) = H̄ ⊕ Y.

By virtue of hypothesis H2(iii), given ε > 0, we can find δ0 = δ0(ε) > 0 such that

F(z, x) � ε

2
x2 for a.a. z ∈ Ω, all |x| � δ0. (5.2)

Since H̄ is finite dimensional, all norms are equivalent and so we can find ρ1 = ρ1(ε) > 0
such that

“‖u‖ � ρ1 ⇒ ∣∣u(z)
∣∣� δ0 for all z ∈ Ω̄” for all u ∈ H̄ . (5.3)
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Therefore, for u ∈ H̄ with ‖u‖ � ρ1, we have

σλ(u) = 1

2
‖Du‖2

2 + 1

2

∫
∂Ω

β(z)u2 dσ − λ̂k

2
‖u‖2

2 +
∫
Ω

F(z,u)dz

� λ̂k−1 − λ̂k

2
‖u‖2

2 + ε

2
‖u‖2

2

(
see (5.2), (5.3)

)

� −c4‖u‖2 for some c4 > 0
(
choosing ε ∈ (0, λ̂k − λ̂k−1)

)
.

So, we have proved that

σλ(u) � 0 for all u ∈ H̄ with ‖u‖ � ρ1. (5.4)

Next let u ∈ Y . Then we have u = u0 + û with u0 ∈ E(λ̂k), û ∈ Ĥ . Hence

σλ(u) = 1

2
‖Du‖2

2 + 1

2

∫
∂Ω

β(z)u2 dσ − λ̂k

2
‖u‖2

2 +
∫
Ω

F(z,u)dz

� c5

2
‖û‖2 +

∫
{|u|�δ}

F(z,u)dz +
∫

{|u|>δ}
F(z,u)dz for some c5 > 0

(
exploiting the orthogonality of the component spaces E(λ̂k), Ĥ

)

� c5

2
‖û‖2 +

∫
{|u|>δ}

F(z,u)dz
(
see H2(iv)

)
. (5.5)

Since E(λ̂k) is finite dimensional, we can find ρ2 > 0 small such that

“
∥∥u0

∥∥� ρ2 ⇒ ∣∣u0(z)
∣∣� δ

2
for all z ∈ Ω̄” for all u0 ∈ E(λ̂k).

So, if Cδ = {z ∈ Ω: |u(z)| � δ}, then for u ∈ Y with ‖u‖ � ρ2, we have ‖u0‖ � ρ2 hence
|u0(z)| � δ

2 for all z ∈ Ω̄ . Therefore, for u ∈ Y with ‖u‖ � ρ2, we have

∣∣û(z)
∣∣� ∣∣u(z)

∣∣− ∣∣u0(z)
∣∣� ∣∣u(z)

∣∣− δ

2
� 1

2

∣∣u(z)
∣∣ a.e. on Cδ. (5.6)

Moreover, it is clear from hypotheses H2(i), (iii) that gives ε > 0, we can find c6 = c6(ε) > 0
such that

F(z, x) � −ε

2
x2 − c6|x|r for a.a z ∈ Ω, all x ∈ R, with 2 < r. (5.7)

Then
∫
Cδ

F (z,u) dz � −ε

2

∫
Cδ

u2 dz − c6

∫
Cδ

|u|r dz
(
see (5.7)

)
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� −ε

∫
Cδ

û2 dz − c7‖û‖r for some c7 > 0
(
see (5.6)

)

� −ε‖û‖2 − c7‖û‖r . (5.8)

We return to (5.5) and use (5.8). Then

σλ(u) �
(

c5

2
− ε

)
‖û‖2 − c7‖û‖r .

Choosing ε ∈ (0,
c5
2 ), we have

σλ(u) � c8‖û‖2 − c7‖û‖r for some c8 > 0.

Since r > 2, choosing ρ2 ∈ (0,1) small, for u ∈ Y with ‖u‖ � ρ2, we have ‖û‖ � ρ2 and so

σλ(u) � 0 for all u ∈ Y with ‖u‖ � ρ2. (5.9)

Let ρ = min{ρ1, ρ2}. Then from (5.4), (5.9) we infer that σλ admits a local linking at u = 0
with respect to the orthogonal direct sum decomposition H 1(Ω) = H̄ ⊕Y . This proves the claim.

Then by virtue of the claim and Proposition 2.3 of Su [22], we have

Ci(σλ,0) = δi,dk
Z for all i � 0, with dk = dim H̄ � 2. (5.10)

Note that ϕ̂λ|[vλ
0 ,uλ

0 ] = σλ|[vλ
0 ,uλ

0 ] (see (4.17)) and recall that uλ
0 ∈ intC+, vλ

0 ∈ − intC+. Hence

Ci(ϕ̂λ|C1(Ω̄),0) = Ci(σλ|C1(Ω̄),0) for all i � 0

⇒ Ci(ϕ̂λ,0) = Ci(σλ,0) = δi,dk
Z, for all i � 0

(
see (5.10) and Bartsch [4]

)
.

(5.11)

From Proposition 9, we have

ci

(
ϕ̂λ, u

λ
0

)= ci

(
ϕ̂λ, v

λ
0

)= δi,0 Z for all i � 0. (5.12)

From the proof of Proposition 10, we know that yλ is a critical point of mountain pass type
the functional ϕ̂λ. Hence

C1(ϕ̂λ, yλ) 
= 0

⇒ C1(σλ, yλ) 
= 0
(
see (5.1) and recall ϕ̂λ|[vλ

0 ,uλ
0 ] = σλ|[vλ

0 ,uλ
0 ]
)

⇒ Ci(σλ, yλ) = δi,1Z for all i � 0
(
see Bartsch [4]

)
⇒ Ci(ϕλ, yλ) = δi,1Z for all i � 0

(
see (5.11)

)
. (5.13)
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Finally, recall that ϕ̂λ is coercive (see (4.17)). So, we have

Ci(ϕ̂λ,∞) = δi,0Z for all i � 0. (5.14)

Suppose that Kϕ̂λ
= {0, uλ

0, vλ
0 , yλ}. Then from (5.11), (5.12), (5.13), (5.14) and the Morse

relation with t = −1 (see (2.14)), we have

(−1)dk + 2(−1)0 + (−1)1 = (−1)0 ⇒ (−1)dk = 0, a contradiction.

So, there exists ŷλ ∈ Kϕ̂λ
\{0, uλ

0, vλ
0 , yλ}. From Proposition 8 and (4.17) we see that ŷλ ∈

C1(Ω̄) is a second nodal solution of (Sλ) and ŷλ ∈ intC1(Ω̄)[vλ
0 , uλ

0].
Next suppose λ /∈ σR (2). Then λ ∈ (λ̂k, λ̂k+1) for some k � 2. In this case u = 0 is a nonde-

generate critical point of σλ with Morse index dk = dim
⊕k

i=1 E(λ̂i) � 2. Therefore

ci(σλ,0) = δi,dk
Z for all i � 0.

Then reasoning as above, we produce a second nodal solution ŷλ ∈ intc1(Ω)[vλ
0 , uλ

0] for prob-

lem (Sλ) (λ > λ̂2). �
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