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Abstract

We consider a parametric nonlinear Robin problem driven by the p-Laplacian. We show that if the pa-
rameter A > 5\.2 = the second eigenvalue of the Robin p-Laplacian, then the problem has at least three
nontrivial solutions, two of constant sign and the third nodal. In the semilinear case (p = 2), we show that
we can generate a second nodal solution. Our approach uses variational methods, truncation and pertur-
bation techniques, and Morse theory. In the process we produce two useful remarks about the first two
eigenvalues of the Robin p-Laplacian.
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1. Introduction

Let 2 € R" be a bounded domain with a C?-boundary 8£2. In this paper we study the fol-
lowing nonlinear parametric Robin problem:

—Apu(@) = A|u@|"?u@) — f(z.u() in L2,

P
O (Z)+/3(Z)}u(z)}p_2u(z):O on 2. (F)
on

In this problem, A, (1 < p < 00) denotes the p-Laplacian differential operator defined by
Apu=div(||Dul|P">Du) forallu € W"F(£2).

Also, 8% = | Du||?~%(Du, n)pn with n(z) being the outward unit normal at z € 92. In ad-

dition, A > 0 is a parameter and f(z, x) is a Carathéodory perturbation (that is, for all x € R,
Z = f(z,x) is measurable and for a.a. z € £2, x — f(z,x) is continuous), which exhibits
(p — 1)-superlinear growth near +o0.

Our aim in this paper is to prove a multiplicity theorem for problem (P;) for all A > 0 big.
More precisely, we show that, if iz is the second eigenvalue of —A, with Robin boundary
conditions (denoted by —Ag ) and A > j\\.z then problem (P,) admits at least three nontrivial
solutions, two of constant sign (the first positive and the second negative) and the third solution
is nodal (sign changing). Moreover, in the semilinear case (p = 2), we show the existence of
a second nodal solution, for a total of four nontrivial solutions all with sign information. Our
approach uses variational methods coupled with suitable truncation and perturbation techniques
and Morse theory.

This kind of problem was studied for semilinear (that is, p = 2) Dirichlet equations by Am-
brosetti and Lupo [2], Ambrosetti and Mancini [3] and Struwe [20], [21, p. 133]. Extensions to
Dirichlet p-Laplacian equations can be found in Papageorgiou and Papageorgiou [ 18]. However,
none of the aforementioned works produced nodal solutions and the hypotheses on the data of the
problem are more restrictive. Another class of Robin eigenvalue problems was investigated by
Duchateau [7], who proved multiplicity results producing two solutions with no sign information.

2. Mathematical background - auxiliary results
Let X be a Banach space and let X* be its topological dual. By (-, -) we denote the dual-

ity brackets for the pair (X*, X). Given ¢ € C LX), we say that ¢ satisfies the Palais—Smale
condition (PS-condition for short), if the following is true

“Every sequence {x,},>1 € X such that {go(x,,)}n>l C R is bounded and

¢'(x,) — 01in X*admits a strongly convergent subsequence.”
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This is a compactness type condition, which compensates for the fact that the underlying space
X being in general infinite dimensional, need not be locally compact. It leads to the following
minimax theorem, known in the literature as the “mountain pass theorem”. It characterizes certain
critical values of ¢ € C1(X).

Theorem 1. If ¢ € C!(X) satisfies the PS-condition, xq, x1 € X, ||x1 —xo| > p >0

max{q)(xo), (p(xl)} < inf[<p(x): lx — xoll = p] =1,

and ¢ = inf, cr maxog, <1 @(y (1)) where I' = {y € C([0, 1], X): y(0) =xo, y(1) = x1}, then
¢ =1, and c is a critical value of ¢.

In the analysis of problem (Py), in addition to the Sobolev space wlr(£2), we will also use
the Banach space C!(£2), which is an ordered Banach space with positive cone

Cy={ueC'(2): uz)>0for allz e 2}.
This cone has a nonempty interior given by
intCy={ueCy: u(z)>0forallze 2}
In the sequel by || - || we denote the norm of the Sobolev space WLP(£2), that is,

1
lull = [lell? + 1 Dul5]Y7 for all u € WP ().

To distinguish, by | - | we denote the norm in R” (m > 1). Also, given x € R, we set x* =
max{=%x, 0}. Then for u € W7 (£2), we define u™(-) = u(-)*. We know that

ut e whr (), lul=ut +u", u=ut—u".

If on 0§2 we employ the (N — 1)-dimensional surface (Hausdorff) measure o(-), we can
define the Lebesgue space L”(9£2). Recall that there is a unique continuous, linear map
vo : WhP(2) — LP(3£2) such that yo(u) = ulyg for all u € C'(£2). This map is known as

the “trace map”. Recall that im yy = W#’p(a.Q) L+ # = 1) and keryy = Wol’p(.Q). In the
sequel, for the sake of notational simplicity, we wiﬁ drop the use of the map yy to denote the
restriction of a Sobolev function on 0£2. All such restrictions are understood in the sense of
traces.

If h: 2 x R— R is a measurable function (for example, a Carathéodory function), then we
set

Ny@)(-) =h(-,u(-)) forallue WP ()

(the Nemytskii map corresponding to /).
Let A: WLP(£2) - WLP(£2)* be the nonlinear map defined by

(A(u),y)z/|Du|p_2(Du,Dy)RN dz forallu,ye WhP(£2).
2
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Proposition 2. The map A : WP (2) — WLP(2)* is bounded (that is, maps bounded sets to
bounded sets), continuous, monotone (hence maximal monotone, too) and of type (S), that is,

if g —> u in WYP(2) and limsup, . (A(un), uy —u) <O, then u, — u in WP (£2).

Suppose that fy(z, x) is a Carathéodory function with subcritical growth in x € R, that is,

| foz, x)| <a@(1+Ix|""") foraa zes, allxeR,

. Np
withag € L®°(£2); and 1 <r < p* = {N—p if p<N,
+00 otherwise.

We set Fp(z,x) = f(;c fo(z, s)ds and consider the C!-functional ¢ : W7 (£2) — R defined
by

1 1
gao(u):;||Du||§+;fﬂ(z)\u(z)\”do—/Fo(z,u(z))dz forallu e W7 (2).
982 2

As a consequence of the nonlinear regularity theory (see Lieberman [15]), we show that local
C!(£2)-minimizers and local W17 (§2)-minimizers of ¢ coincide. The first such result is due to
Brezis and Nirenberg [5] for the space HO1 (£2). It was extended to the space WP () with B=0,
see Motreanu and Papageorgiou [ 16] (see also Garcia Azorero, Manfredi and Peral Alonso [11]).

We impose the following conditions on the boundary weight S(-):

H(B): BeC® (2) withte(0,1), B(z) >0forallze 2, B #0.

Proposition 3. Assume that ug € WLP(2) is a local C'(2)-minimizer of @o, that is, there exists
po > 0 such that

9o(o) < @o(uo +h)  forall h € C'(2) with ||kl 15y < po.

Then ug € C¢ (S_Z)for same o € (0, 1) and ug is a local Wl’p(.Q)—minimizer of o, that is, there
exists p1 > 0 such that

wo(uo) < go(uo+h) forall h € WP (82) with ||h]| < pi.

Proof. Let 4 € C!(£2) and t > 0 small. Then by hypothesis we have

wo(uo) < woluo +h)
= 0<(p)(uo), h) forallheC'(2)
= @) =0 (Since C'(£2) is dense in WLP(.Q))

= <A(uo,h)>+/,B(z)lu0|”_2u0hda=/f0(z,u0)hdz for all h € WP ().
2

982
@2.1)
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From the nonlinear Green’s identity (see, for example, Gasinski and Papageorgiou [12, p. 210]),
we have

ad
(A(uo),h>: (—Apuo,h)+<ﬂ,h> forall h € WhP(£2) (2.2)
np  lye

(see Gasinski and Papageorglou [12,p. 21 1]) Here by (-, -)5 we denote the duality brackets for
the pair (W P’ 4 (0 .Q) w 1’/ P (8.(2))( + , = 1). From the representation theorem for the dual

space W0 Peys=w-1! P (£2) (see Gasmskl and Papageorgiou [12, p. 212]), we have A ,uq €
W_l’p/(.Q). Then using h e W(}’p(.Q) C WhP(£2)in (2.1), we have

(—Apuo,h)szo(z,uo)hdz for all 1 € W,"" (£2) (see (2.2))

=  —Apup(2) :fo(z,uo(z)) a.e.in 2.

Then from (2.1) and (2.2) we have

5
<ﬂ + B(2)|uolP2uo, h> —0 forallhe WhP(Q).
onp R

1
Recall that the image of the trace map is W »' 'P(3£2). So, from this last equality it follows that

ou
70 4 B@)uol”Pug =0 on ds.
on

From Winkert [24], we know that ug € L°°(£2). So, we can apply Theorem 2 of Lieberman [15]
and have that

up e CH¥(2) forsome a € (0, 1).
Next we show that ug is a local W17 (£2)-minimizer of ¢y. We argue by contradiction. So,
suppose that u( is not a local WP (£2)-minimizer of @o. Let € > 0 and consider the set B, =
{he WHP(2): ||h|l, < €). We have
—o0 < mf = inf[go(uo + h): h € B,]. (2.3)
By virtue of the contradiction hypothesis, we have
my < @o(uo). (2.4)
Let {hy}n>1 C E’G’ be a minimizing sequence for problem (2.3). Recalling that u — |lu|, +

| Dul||, is an equivalent norm on WP (§2) (see [12, p. 227]), we see that {h,},>1 C wWbhr(£2)is
bounded and so we may assume that

hy —> he inWhP(2) and h, — he in L' (£2).



2454 N.S. Papageorgiou, V.D. Radulescu / J. Differential Equations 256 (2014) 2449-2479
Clearly ¢ is sequentially weakly lower semicontinuous. So, we have

@o(uo + he) < liminf o (uo + hn)
n—odo
=  @o(uop+he)=m§ and he#0 (see(2.4)).
From the Lagrange multiplier rule, we can find A, < O such that
QO(/)(MO +he) = Aelhe |r_2he

= (A(uo+he),v>+/ﬁ(Z)Iuo-i-help_z(uo-l-he)vdG
02

:ffo(z,u0+h€)vdz+k6/|h6|r_2h€vdz forall v e WhP ().
22 22

From this equality, as in the first part of the proof, we infer that

— A, o +he) (@) = folz, o +h) @) + re|he (@) he(z) ae.in 2

0 € 2.5
(uo——I_h)+/3(Z)|uo+h€|p_2(uo+he)=0 on 082 (2-3)
onp
Recall that
. dug )
—Apup(z) = foz,uo(z)) ae.in £2, F. + B |uol’ *ug=0 ondfR. (2.6)
p
From (2.5) and (2.6) it follows that
—Ap(uo + he)(2) + Apuo(z) = fo(z, (wo + he)(2))
— fo(z,u0(2)) + Ae|he () \r_zhe(z) a.e.in 2 @

d(uo+h du — -
(o +he) _ duo + B@)[Iuo + hel? > (uo + he) — luol”*ug] =0 on L2
8np 8np

We consider two distinct cases:
Case 1. A, € [—1, 1] forall € € (0, 1].

Let ve(2) = (uo + he)(2) and set oc(z, y) = |y1”~2y + | Dug(z)[|”~2Dug(z). Then we can
rewrite (2.7) as follows

~divoe (z, Dve(2)) = fo(z, ve(2)) — folz, uo(2))
+ )u€|(v€ — uo)(z)|r_2(ve —up)(z) ae.in 2
31)6 auo

o, ~am, PO @] 0e () — Juo(2)] " uo(2)] =0
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Note that gnig e C%*(3£2) (recall that ug € C1*(£2)) and also on R™ (m > 1) the map y —
|y|P~2y is locally Lipschitz if p > 2 and Holder continuous if 1 < p < 2. From Winkert [24], we

know that we can find M > 0 such that ||v¢ |00 < M for all € € (0, 1]. Therefore, we can apply
Theorem 2 of Lieberman [15] and find y € (0, 1), M> > 0 such that
ve €CHV(2),  Nvelley gy <My foralle € (0, 1.

Case2. A, < —1foralln>1withe, | 0.

In this case, we set

6, (2, y) = —[1y1"2y — | Duo(2)|" > Duo(2)]

|Ae, |
Then we can rewrite (2.7) as follows

1

—div 6y, (2, Dve, (2)) = —[ fo(2, ve, (2)) = fo(z. u0(2))]

|Ae, |
] — | (ve, — u0) (@] (ve, — u0)(2) ac.in®2 V. (2.8
?;)i _ Juo + ﬁ(Z)Hven (Z)|p_2Ue,, (z2) — |u0(z) p_zuo(z)] =0 ondf2
np onp J

Recall that for all y € W7 (£2), we have

(A(uo),y>+/ﬁ(z)luolp_zuoyda=/fo(z,uo)ydz, (2.9)
as$2 2
(A(ve,,),y>+/ﬁ(z)lvenl”_zvenydﬁ
952
:ffo(z,ven)ydz+ken/|v€,1 —uo"2(ve, —ug)dz foralln>1.  (2.10)
2 2

Let i« > 1 and consider the function

lve, — uol" (ve, — uo).

We have

D(|ve, — uol" (ve, — uo))

Ve, — UQ

—1
= |v€n - u0|MD(Uen —up) + M(Uen — ug) |U€n - MOW D(Uen — uo)

| € 0|
= (u+ D]ve, — uol" D(ve, — uo)
= |ve, — ol*(ve, — o) € WHP(£2)  (recall that ve,, ug € C'(£2), see (2.7)).
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So, we can use |ve, — ug|”(ve,, o) as a test function in (2.9) and (2.10). We have

0 < (A(ve,) — A(uo), |ve, — uol" (ve, — uo))

+ / B(@)[Ive, 1P *ve, — luol?2uo]lve, — uol* (ve, — uo) do
I
= /[fo(z, Ve,) — fo(z, u0)]Ive, — uol* (ve, — uo)dz
2
+ Ae, / Ve, — uo| T dz. (2.11)
2
As before, from Winkert [24], we have ||ve, oo < M3 for some M3 > 0, all n > 1. Hence

‘/[fO(Z, Ve,) — fo(z, u0) | Ive, — uol* (ve, — uo) dz
2

< My /|Ue,, —uo|*tdz for some My >0, alln > 1

2
r—1 +1
< My 1215 lve, —uolly (2.12)
(here we have used Holder’s inequality with conjugate exponents Z iq , .

From (2.11) and (2.12) it follows that

r—1

u+r b pu+1
ey Ve, — uolltr < My 12157 llve, — uoll!it)

r—1
-1
= ke, llve, —uoll it < Mul217  foralln>1.

Recall that u > 1 is arbitrary. So, we let © — 400 and obtain

My
| e, |

=
e, lloo < [ i| foralln > 1. (2.13)

In (2.8) we denote the reaction (right hand side) by ¥, (z, x). Using (2.13) we have

Ms

— < Ms foralln > 1 and some Ms > 0.
|Ae, 7T

|9, (2 he, (D))] <

From this, as before, the nonlinear regularity theory (see [ 15]) implies the existence of yy € (0, 1),
Mg > 0 such that

he, €CY10(2) and  |lhe,llc1o(g) < Ms  foralln > 1.
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So, in lgoth Case | and Case 2, we reached similar uniform bounds for the sequence {A,, }_n>1 -
clhn (£2) for some u € (0, 1). Therefore, exploiting the compact embedding of C L) into
Cl(2), we may assume that

uo+ he, — up 1In CI(S_Z) (recall that ||h, || < €, foralln > 1).
But by hypothesis uq is a local C!(£2)-minimizer of ¢g. So, we can find ng > 1 such that

@o (o) < @o(uo + he,) forall n > ny.

On the other hand, from the choice of the 4,5 we have

@o(uo + he,) < po(ug) foralln >1 (see (2.4)),
a contradiction. This proves that u is also a local W7 (£2) minimizer of ¢y. O

Finally, we recall some basic definitions and facts from Morse theory (critical groups). So,
let X be a Banach space and let (Y7, Y2) be a topological pair with ¥Y> C Y7 C X. For every
integer k > 0, by Hy (Y7, Y2) we denote the kth relative singular homology group with integer
coefficients for the pair (Y1, Y2). Recall that H (Y1, Y2) = 0 for all integers k < O.

Let X be a Banach space and ¢ € C L(X), ¢ € R. We introduce the following sets

¢°={xeX: px)<cl, K,={xeX: ¢'(x)=0}, K ={x €Ky p(x)=c}.

Then the critical groups of ¢ at an isolated critical point x € X with ¢(x) = ¢, are defined by

Ci(p,x) = Hr(e° NU, ¢°NU\{x}) forallk>0.

Here U is a neighborhood of x such that K, N ¢° N U = {x}. The excision property of the
singular homology theory implies that the above definition of critical groups is independent of
the particular choice of the neighborhood U .

Suppose that ¢ € C(X) satisfies the PS-condition and infp(Ky) > oo. Let ¢ < info(Ky).
The critical groups of ¢ at infinity, are defined by

Ck(p, 00) = Hy (X, ¢¢) forall k > 0.

The second deformation theorem (see, for example, Gasinski and Papageorgiou [12, p. 628]),
implies that the above definition of critical groups, is independent of the particular choice of the
level ¢ <info(Ky).

Assume that K, is finite and introduce the following items:

M(t,x) =Y rank Cx(p,x)t* forallt eR, all x € K,,
k>0

P(t,o0) = Zranka(cp, oo)tk for all t € R.
k>0
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The Morse relation says that

> M(t,x)=P(t,00) + (1 +1)Q(), (2.14)

xeKy

where Q(t) = Zk>0 Bit* is a formal series in t € R with nonnegative integer coefficients.

Suppose that X = H is a Hilbert space, x € H, U a neighborhood of x and ¢ € C?(U).
Suppose that x € K. Then, the Morse index of x € K, is defined to be the supremum of the
dimensions of the subspaces of H on which ¢”(x) is negative definite. The nullity of x € K, is
the dimension of ker ¢”(x). We say that x € K, is nondegenerate, if ¢ (x) is invertible, that is,
the nullity of x is zero. If x € K, is nondegenerate with Morse index m, then Ci (¢, x) =6k Z
for all £ > 0, where

1 ifk=m,
Sk.m = { 0 ifk£m (the Kronecker symbol).

Suppose that H = Y @ V with dimY < +o0 and ¢ € C'(H). We say that ¢ admits a local
linking at the origin with respect to the decomposition (Y, V), if there exists p > 0 such that

om) <) forallueY, ||u||<p,
o) = @0) forallueV, |u| <p.

3. Some remarks on the spectrum of —A I’f

We consider the following nonlinear eigenvalue problem

—Apu(z)=k|u(z)|p_2u(z) in 2

_ 3.1
)+ B ) =0 on a2 G-b
onp

We say that A € R is an eigenvalue of —AIIS, if problem (3.1) admits a nontrivial solution. This
eigenvalue problem, was investigated by Le [14], who proved many important facts concerning
the first two eigenvalues of —A 55 . Here, we prove two additional results concerning the first two

eigenvalues of —AX.
We introduce the following quantity

. Dul} Pd
h =inf[ | u||p+flf‘2||f(Z)lul uewhr(@), u;«éo]. (3.2)
uilp

This is the first eigenvalue of —Allf (see [14]). We also have:

Proposition 4. If B € L (02)\{0} and B(z) > 0 o-a.e. on 052, then A > 0.
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Proof. Evidently A1 >0. Suppose that A1 =0 and let {untn>1 C WLP(£2) be such that

||Dun||§ + / B()|un|? do — 0T asn — oo, with lupll, =1foralln > 1. (3.3)
IR

Clearly {u,},>1 C WP (£2) is bounded and so we any assume that

up —>u in WHP(2) and u, —>u in LP(02). (3.4)
From the weak lower semicontinuity of the norm functional in a Banach space, we have
| Dul|}, < liminf || Duy, 5.
n—oo

Moreover, the continuity of the trace map and (3.4), imply that
f B@)|un|? do — f B(2)|ul? do.
52 052

Therefore in the limit as n — oo, we have

||DM||5+fﬂ(z)|u|pda<O = u
FYe)

0,

a contradiction to the fact that [|u]|, =1 (see (3.3), (3.4)). O

From Le [14], we know that A >0isa simple eigenvalue (that is, if u, y are eigenfunctions
corresponding to A1, then u = ¥y for some ¢ € R\{0}) and it isolated (that is, if og(p) denotes
the set of eigenvalues of —Ag, then there exists € > 0 such that (A1, A] 4+ €) Nog(p) = 9).

Let i; € WP (£2) be the LP-normalized (that is, ||| p = 1) eigenfunction corresponding to

A1 > 0. It is clear from (3.2) that &i; does not change sign and so we may assume that iz; > 0.
If hypothesis H(B) holds, then Theorem 2 of Lieberman [15] implies that iz; € C4\{0}. Finally
the nonlinear strong maximum principle of Vazquez [23] implies that it € intC..

The Ljusternik—Schnirelmann minimax scheme, implies that —Ag admits a whole strictly

increasing sequence of eigenvalues {ik}k>1 such that ik — +o00. These eigenvalues are known
as the LS-eigenvalues (or variational eigenvalues) of —A§ . If p =2 (linear eigenvalue problem),

then or(p) = {ik}k>1. If p # 2 (nonlinear eigenvalue problem), then we do not know if this is
the case. We can easily see that og(p) is closed. Since )Aq > 0 is isolated, we can define

i; = inf[k cor(p): A> )11].

The closedness of or(p) implies that i; is the second eigenvalue of _A,I§~ We have (see Le [14])
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that is, the second eigenvalue and the second LS-eigenvalue of —A 5 coincide. For A, we have the
minimax characterization provided by the Ljusternik—Schnirelmann theory. In the next proposi-
tion, we produce an alternative minimax characterization of 5»2, which is more suitable to our
purposes. Analogous characterizations for the Dirichlet and Neumann p-Laplacians, were pro-
duced by Cuesta, de Figueiredo and Gossez [6] and by Aizicovici, Papageorgiou and Staicu [1]
respectively.

Pl}'loposition 5. Assume that hypotheses H(B) hold. Then 5\,2 = inf]; o MaX_ 1<l (7 (1)),
where

r={pec(-1,11,M): p(=1)=—iy, p(1) =i},
M=w"P(2)ndBF , aBE ={ueLP(2): |ull,=1}
and

o(u) = ||Du||§ + / B@)|ulP do  forallu e WP(2).
982

Proof. By Ljusternik’s theorem (see, for example, Papageorgiou and Kyritsi [17, p. 74]), we
know that M is a C'-Banach manifold and

.M = {h e WhP(): / lu|P~2uhdz 20} forallu e M
2

(the tangent space to M at u).
Claim 1. ¢|j; satisfies the PS-condition.

Let {un}n>1 € M such that

|<p(un)| < M; forsome M; >0, alln>1, and (3.5)

‘(A(un), h)+ f Blun|Pushdo| <eyllh)| forall h € T,,M withe, — 0T, (3.6)

82

Given any y € WP (£2), we define

h=y— (/ |un|p_2unydz>un.
Q

Evidently & € T;,, M and so we can use it as a test function in (3.6). We have

‘(A<un>,y>— (/|un|P—2unydz)||Du||;';+fmunw—zunyda
22 082
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_ (/|un|P—2unydz) fmunv’do
2 082

= '<A<un>,y>+ f Blun|P2upy do — ( / |un|P—2unydz)<o<un>
082 2

<€ lh|| forallm >1

< eqcqllyll forsomecy >0, alln > 1 (see Goldberg [13, p. 48])

<c2|lyll forsomecy; >0, alln >1

= '<A(un)’y>+/:3|un|p_2unyd0
982
(see (3.5) and recall [[uy ||, =1 forall n > 1). 3.7)

From (3.5) and since fasz Blun|P do > 0 for all n > 1, we have that {Du,},>1 € LP(S2, RM)

is bounded. Recall that {u,},>1 € M, hence |lu,||, =1 for all n > 1. Therefore {u,},>1 C
WP (£2) is bounded and so we may assume that

Up —>u in WHP ().

Since y € WP (£2) is arbitrary, in (3.7) we may choose y = u,, — u. We pass to the limit and
exploit the continuity of the trace map. We obtain

im (AGu), yu —¥)=0 = uy,—u in WP ().
n— oo

This proves the claim.
Note that

o(fu)) = A1 and both = iy are local minimizers of Q.

From Filippakis, Kristaly and Papageorgiou [10] (see the proof of Proposition 3.2) or from de
Figueiredo [9, p. 42], we know that we can find p+ € (0, 1) such that

¢(£i1) < inf[pu): u e M,

u— ()| =pe].  px <2llinl. (3.8)

Let

A= inf max (7). (3.9)

i
pel —1<t<1
Every path connecting —i1 and i1 crosses d B, (£ii1) (see (3.8)) and ¢(£it) = A1, from (3.9)
we see that A > A 1.AIt is well-known that A is a critical value of ¢| M, hence an eigenvalue of
—A§ distinct from A;.

Suppose that A € (A1, A) is an eigenvalue of —Aﬁ with & € M a corresponding eigenfunction.

From Le [14], we know that # must be nodal (sign changing) and so, we have ™ #£0, @~ # 0.
We consider the following two paths in the manifold M

(t) it i d ) il Ul AN SRS [0,1].  (3.10)
Vi) = —F——=—— and pn()= A — or a , 1. )
lat —ta—=|, | —a=+ A —=vyat|,
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Note that y; connects T +“ with &, while y, connects i with —=%— = ,” . So, if concatenate the two
paths, we produce a path y in M connecting T +” with W
p
Recall that
A _ A p_2 A . 8 7 pP— —2A .
—Api(z) =1|ia(z)|" “ii(z) ae.in 2, ——I—,B(z)|u| =0 ondf2. (3.11)

anp

On (3.11) we act with #". Using the nonlinear Green’s identity (see, for example Gasinski and
Papageorgiou [12, p. 211]), we have

I U o . .
/lDulp 2(Du,Du+)RNdz—/Mﬁdo:k”bﬁ”?
= HDWHZJF/ﬂ(m)”dozxﬂmﬂg. (3.12)

Similarly, acting on (3.11) with —i~ € W7 (£2), we obtain

”Dif”‘;—i—fﬂ(ﬁ_)pd0=k|\ﬁ_”i. (3.13)

From (3.10), (3.12), (3.13) and since #* and i~ have disjoint interior supports, we have
o(ri@®) =¢(r2(t)) =1 foralls€[0,1]. (3.14)

Let L = {ueM: pu) < )A»}. Since i1y, —u; € f,, this set cannot be path connected or otherwise
we violate relation (3.9). Moreover, using the Ekeland variational principle and the fact that ¢ |y
satisfies the PS-condition (see the claim), we see that every path component of L contains a
critical point of ¢|ys. Since +it1, are the only critical points of ¢|s in L, we infer that L has two
path components

Since T +” € M N (intC,) and go(”A+ ) = A (see (3.12)), we see that T +” cannot be a
critical point of ®|p . Hence we can find a path s :[—€, €] — M such that
A+

i+,

s(0) = %(‘NM) (s()) #0 forallt € [—e,e€l.

: . G+ : o A
Moving along this path, we can start from ”;‘T” and reach a point y € M staying in the set L
p

. . . . i+ o .
with the exception of the starting point ||uuT|| Let U; be the path-component of L containing y.
P

Without any loss of generality, we may assume that iz; € U;. Then y and #; can be connected
by a path which stays in U;. Concatenating this path with s introduced above, we have a path
v+ 110, 1] — Uj such that

S+

. and y,.(r)eL forallsel0,1).
@t

y+(0) =ay, y+(1) =
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Similarly, if U, is the other path component of L containing —iu, then we produce a path
y— .10, 1] — U; such that

A

—Uu

la=lp,’

y_(0) = y-()=—ii; and y_(t)el forallte (0,1].

Finally, we concatenate y_, y, Y+ and have y, € I such that

(p(y* (t)) <A forallre[-1,1] = A <A (see (3.9)), a contradiction.
This means that (il, i) Nogr(p) = @ and so we conclude that A= iz. O
4. Nonlinear equations

We introduce the following conditions on the perturbation f(z, x):

Hy: f:8£2 xR — Risa Carathéodory function such that f(z,0) =0 for a.a. z € £2 and
(i) forevery p > 0 there exists a, € L°°(§2)4 such that | f(z, x)| < a,(z) fora.a. z € 2,

all [x| < p;
(1) limy_s 400 |)J: ﬁff;l = +00 uniformly for a.a. 7 € £2;
(i) limy_ |J{ ﬁff;l = 0 uniformly for a.a. z € £2.

Remark 6. We stress that no global growth restriction is imposed on f(z, -). So, the function
x — f(z,x) can have any growth faster than |x|”~2x near %-00.

First we produce two nontrivial constant sign solutions.

Proposition 7. Assume that hypotheses H(B) and Hy hold and )\ > 7. Then problem (P;) has
at least two nontrivial constant sign solutions

upeintCy and voe —intCy.

Proof. First we produce a nontrivial positive solution.
By virtue of hypothesis H(ii), given & > 0, we can find M7 = M7(§) > O such that

f(z,x) >éexP™! foraa.zeQalx>M.

Since 4] € intC, we can find ¢ > 0 big such that tii; > M7. Then we have

fztin (@) = £(ti ()" ae.in 2. 4.1)
Also, we have

d(tu1)

—A,(ti)(z) = )A»l(tﬁl)(z)p_] a.e.in £2,
onp

+ B(z)(tu1)? =0 onas2.
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Then for every h € Wl’p(.Q), h >0, we have

(—Apm?l),h):fil<rﬁ1>l’—1hdz
2

= (A(tﬁ1),h)—<a;;ﬁl),h> :fil(nzl)l’—lhdz
p 52

(by the nonlinear Green’s identity, see [12, p. 211])

= (A(zﬁl),h)+fﬁ(z)(zal)P—lhda=/il(za1)P—1hdz. 4.2)
082 2

Choosing & = A — )Aq > 0, from (4.1) and (4.2), we have

/[A(ml)l"l — f(z, ta)]hdz

2

</il(m1)l’—1hdz
2

:(A(tﬁl),h>+fﬂ(z)(tﬁl)”_lhdo forallh e WhP(£2), h > 0. (4.3)
a2

Setting iz = tit € int C, we introduce the following truncation—perturbation of the reaction in
problem (P;)

0 if x <0,
hizx) =1 04 DxP~ = f(z,x) if0 < x <ii(z), (4.4)
O+ Dit(2)P~! = f(z,i(z)) ifii(z) < x.

This is a Carathéodory function. We set Hf (z,x) = f(f h;{ (z,s) ds and consider the C!-functio-
nal lIJ;r : WLP(£2) — R defined by

1 1 1
%Jr(u):;IIDMII’;Jr;Ilull,’§+;fﬂ(z)\u(z)\pda—/Hf(z,u(z))dz
082 2

forallu e Wh7(£2).

From (4.4) it is clear that 11/; is coercive. Also, using the Sobolev embedding theorem and the
continuity of the trace map, we see that LD;F is sequentially weakly lower semicontinuous. So,
we can find ug € WP (£2) such that

W, (uo) = inf[ W, (u): u e WHP(2)]. (4.5)
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By virtue of hypothesis Hj(iii) given € > 0, we can find § = 6(¢) € (0, ming u] such that

F(z,x) < %|x|p fora.a. z € 2, all x € [0, §]. (4.6)
Choose 9 € (0, 1) small such that 9 (z) € (0, 8] for all z € §2. Then

PP - wroo )
v, (l9u1)=7||Du1||p+7 B(2)|ui] d0—7||u1||p+ F(z,ti))dz (see (4.4))
2

9P .
< —[(1+€) —2] (see (4.6) and recall that |||, = 1).
p

Choosing € € (0, A — )A\l) (recall A > )Aq), we have
wr@h) <0 = W () <0=w"(0) (see(4.5)), hence ug # 0.
From (4.5) we have
(%) (o) =0

= (A(Mo),v)+/luolp_2uovdz+/ﬂ(Z)Iuolp_zuo vdo

:fhj(z,uo) vdz forallve WhP(Q). 4.7)
2

In (4.7) first we choose v = —u, € WLP(£2). Then

| Dug ||+ ug ||, <O (see (4.4) and H(B))

= ug=0, ug#0.

Next in (4.7) we choose v = (ug — i) T € WP (£2). Then

(Auo), (o — )*) + f ub ™ (o — ) tdz + f B@ul " (wo — )" do

2 052
= /[(,\ + Dia? ! = fz )| (wo — ) Tdz  (see (4.4))
2
<(A@@), (vo — ﬁ)+)+/ﬁp—1(uo — i) dz + / B (g — )" do
2
(see (4.3))

= ()~ A o~ )+ [ =)o — iz
2
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—1 —p— -
+ [ p@luf —a Jwo — " do <0
92

= |{u0 > ﬁ}‘N =0, henceug<u.
So, we have proved that
uo € [0, i) = {u € WHP(22): 0< u(z) <ii(z) ae. in 2}, uo#0.
Therefore from (4.4) and (4.7), we have

(A(uo),h>—|—/ﬁ(z)|u0|p_2uohdcr=/[Aug_1 — f(z.up)Jhdz forallhe WP (£2).
a2 2

As before (see the proof of Proposition 3), via the nonlinear Green’s identity we have

ou _
—Apuo(z) = Aug(2)P ' — f(z,u0(z)) ae.in £2, an_o + B(2)uf '—0 onan
p

= ug 1S anontrivial positive solution of problem (Py).

The nonlinear regularity theory, implies that ug € C4+\{0}. Hypotheses Hj(1), (ii1) imply that we
can find ¢3 > 0 such that

f(z,x) <esxP™! foraa.ze 2, allx € [0, [lit]loo]-

Then
—Apuo(z) = — f(z,u0(2)) = —caup(z)?™! ae.in 2
=  Apug(z) < caug(z)P~! ae.in 2
= up€intCy (see Vazquez [23]).
Similarly, we produce a nontrivial negative solution vg € —int C.. Using this time ¥ = —7ii; for

f > 0 big, for which we have

(A(ﬁ),h)Jr/ﬂ(z)lﬁl”_zﬁhda</[A|5|p_217—f(z,5)]hdz
082 2
forallh e WhP(2), h > 0.

Truncating and perturbing the reaction of (Py) at {v(z), 0}, as above we produce vy € [v, 0] N
(—intC,), a solution of (P;), A > A1. O

In fact, we can produce extremal nontrivial constant sign solutions for problem (P;), A > A,
that is, there exist u, € int C+ the smallest nontrivial positive solution of (P,) and v, € —intCy
the biggest nontrivial negative solution of (P, ).
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For A > )Aq we define

S+ ={ue WP (2): u#0, ue[0,i), uis a solution of (P3)},
S ={ve W"P(2): v£0, ve[s,0], visasolution of (Py)}.

From Proposition 7 and its proof we have
d#S (M) CintCy and T #S_(A) CintCy.

Moreover, as in Filippakis, Kristaly and Papageorgiou [10], we have that the set of nontrivial
positive (resp. negative) solutions of (P;) is downward directed, that is, if u, & are nontrivial
positive solutions of (P;), then there exists y a nontrivial positive solution of (P;) such that
y <u, y <u (resp. upward directed, that is, if v, 0 are nontrivial negative solutions of (P;),
there exists w a nontrivial negative solution of (Py), such that v < w, v < w).

Proposition 8. Assume that hypotheses H(B) and Hi hold and A > ):1. Then problem (P;)

admits smallest nontrivial positive solution ui € int C and a biggest nontrivial negative solution
)\‘ .

v, €intCy.

Proof. We consider a chain C C S () (that is, a totally ordered subset of S;(A)). Then from
Dunford and Schwartz [8, p. 336], we know that we can find {u,},>1 € C such that infC =
inf,>1 u,. We have

9 B
o Bu T =0 onas.
onp

—Apun(2) = Mty (2)P7" — f(z,un(2)) ae.in £2,

Using the nonlinear Green’s identify, we obtain

(A(un),h)+/ﬂ(z)u5‘1hda: fku,f_lhdz—/f(z,un)hdz
2

082 2
forallh e WhP(2). (4.8)

We choose h = u,, € WP(§2). Then

||Dun||§ < Mg forsome Mg >0, alln>1

= {upli>1 C Wl’p(.Q) is bounded (recall 0 <u, <uforalln >1).
So, we may assume that
up —>u inWhP(Q2) and u,—u in LP(£2).

In (4.8) we choose h = u, —u € WP (£2) and pass to the limit as n — oco. Using the continuity
of the trace map (hence u, |y BN ulyo in LP(052)), we obtain
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lim (A(up), up —u)=0
n—oo
= u,—>u in WHP(£2) (see Proposition 2)
= (A(u), h) + / ﬁ(z)up_lhda = /Aup_lhdz — f f(z,u)hdo
082 Q Q
forall h € WP(£2).

Hence u is a positive solution of (P;) So, if we show that u # 0, then u € S4 (A). Arguing by

contradiction, suppose that u = 0 and let y,, = ””—”n > 1. Then ||y,|| =1foralln > 1 and so we

||
may assume that

Yu—>y inW'P(2) and y,—y inLP(R).

From (4.8) we have

_ _ N
(A, h)+ f By ' hdo = /Ayf 'hdz — #h dz. (4.9)
a2 "
By virtue of hypotheses H(i), (iii), we have that
N / 1 1
f(btn)1 .0 inL? (2) (_ + == 1), (4.10)
llun 1P~ p p

So, if in (4.9) we choose & = y,, — y and pass to the limit as n — oo, then
lim (A(yn), ¥ — y)=0
n—oo
= y,—> Yy in WP (2) (see Proposition 2), hence ||y||=1, y > 0. 4.11)
If in (4.9) we pass to the limit as n — oo and use (4.10) and (4.11), then
(A(y), h)+ f B()yP 'hdo = / AyPhdz forallhe WhP(£2)
982

2

0
= —A,y(@)=iy@"" ae.ing, $+ﬁ<z)yl)—l=o on 92
p

(see the proof of Proposition 3).

Since A > Ap, y =0 or y is a nodal, a contradiction to (4.11). Therefore u # 0 and so

ueCy(A) and u=infC.

Because C C S (1) is an arbitrary chain, invoking the Kuratowski—Zorn lemma, we can find
u’ € S;(») CintC, a minimal element. If u is a nontrivial positive solution, then we know that
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we can find & € S (A) such that i < u?, # < u. The minimality of u’ implies that & = u’ and
SO ui € int C is the smallest nontrivial positive solution of (Py).
Similarly, working with S_(A) € —intCy and using again the Kuratowski—Zorn lemma, we

produce vi € —int C; the biggest nontrivial negative solution of (P;). O

These extremal nontrivial constant sign solutions, will lead to a nodal (sign changing solu-
tion). To this end, fix A > A; and let

n=max{|ug | o, [vi] )

Hypotheses Hj(i), (iii) imply that we can find & > O such that

A+ ExP71 > f(z,x) foraa.ze 2, allxe[0,n], (4.12)
fz,x) = (A +8)|x|P2x foraa.ze 2, allx € [—n,0]. (4.13)

From (4.12) and (4.13), after integration, we obtain

A+E

F(z,x) > |x|? fora.a.ze 2, all |x| <n. (4.14)

We introduce the following Carathéodory functions

0 ifx <0,
Kz, x)=1 A+6)xP1 = f(z,x) if 0 <x <ul(z), (4.15)
A+ Eut ()P~ = f(z,ul(z) iful(z) <x,

A +HI@IP (@) = [ k(@) ifx < i),

ki (z,x) =1 A+ E)x|P"2x — f(z,x) if v1(z) <x <0, (4.16)
0 if0 < x,
+EIE@IP 20} (2) — fz, v () ifx <vi(2),
ka(z,x) = 1 G+ E)Ix[P7%x — f(z,x) if v} (z) <x <ul(z), (417
A+ Eut ()P~ — f(z,ut(2)) if ul(z) < x.

We set K)?_L(Z’ x) = f(;c kxi(z’ s)ds, K;(z,x) = f(f k; (z, s) ds and consider the C!-functionals
¢, @r 0 WHP(£2) — R defined by

. 1 3 1
(Pit(u)=—||DM||5+—||M||§+—/,3(Z)|M|pd0—/Kit(z,u)dz,
p p p
IR 2
~ 1 p, & p 1 1
gak(u):;HDullp—l-;llullp—l—; B ulPdo — | K;(z,u)dz forallu e WP (£2).
a0 2

Proposition 9. Assume that hypotheses H () and Hy hold and ) > )A\l. Then Kj, < [vi‘, ui],
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Proof. Letu K(/;A. Then

Pw)=0 = (A(u) h /Slulp 2uhdz—|—/ﬂ(z)|u|p 2uha’0_/kx(z u)hdz

982 2
forall h e WhP(2).

First we choose i = (u — u’)™ € W7(£2). Then

(A), (u—u} f&up N *)+dz+/ﬂ(z)up_l(u—ui)+da

= /[(x +6) (W) = foul)(w—ub)Tdz (see (4.17)). (4.18)
2
Recall that
u
_Apui(z) :kui(Z)P—l _ f(z, ui‘(z)) a.e.in §2, ™ ( ) =0 ondf2

np
= (A(ui), u—u /,B(z) i)+d0

= /[A(ui)p_] — fzou?)](u — u?) " dz. (4.19)

From (4.18) and (4.19) it follows that

(A0 = A2). (=) e [ = )" )

2

+ [ ™ = () =) o =0
052

= |{u>ul}|, =0, henceu<ul.

Similarly, using the test function (v} — u)* € W7(2), we show that v} < u. So, we have
proved that

ue vl ul]={ye W' (2): v}(2) <y() <ulz) ae. in 2}
= Klf/)\ g [v*’ ui]
In a similar fashion, using (4.15) (resp. (4.16)), we show that
Kor < [0,u}]={y e W'P(2): 0< y(2) < ul(2) ae. in 2}

(resp. K;- < [v 0]={ye WP (2): v} (2) < y(z) <Oae.in 2}).
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The extremality of u? € int C and v} € —int C4 (see Proposition 8), implies that

K¢A+={O,ufk\} and K(ﬁ;:{vi‘,()}. O

Proposition 10. Assume that hypotheses H(B) and Hy hold and ) > A1. Then ui‘ € intCy and
vi‘ € —int C are both local minimizers of @;.

Proof. It is clear from (4.15) that ¢, is coercive. Also, it is sequentially weakly lower semicon-
tinuous. So, we can find ftf; e WP (§2) such that

¢ (i) = inf[ @, (w): u e WP (2)]. (4.20)

*

As before (see the proof of Proposition 7), for ¥ € (0, 1) small we have
or@wi) <0 = ¢ (k) <0=¢;(0) (see(4.20)), hence it} # 0.

Since ii% € K(Z,;r\{O}, from Proposition 9 it follows &} = u? € int C,. Note that
drle, =@l lc,  (see (4.15), (4.17)

= u* eintC, is alocal C'(£2)-minimizer ¢,

k
= u’ eintCy is alocal WP (£2)-minimizer ¢, (see Proposition 3).

Similarly for v} € —int C,, using this time the functional ¢, and (4.16). O
To produce a nodal solution, we need to restrict further the range of the parameter A.

Proposition 11. Assume that hypotheses H(B) and Hy hold and ) > A>. Then problem (P;)
admits solution y, € [vf;, ui] nc! (£2).

Proof. Let u’ € intC, and v} € intC be the two extremal nontrivial constant sign solutions
of problem (P,) produced in Proposition 8. Without any loss of generality, we may assume that
@.(v}) < @a(ul) (the analysis is similar if the opposite inequality holds). From Proposition 10,
we know that uﬁ € int C is a local minimizer of ¢,. So, we can find p € (0, 1) small such that

On, (vi‘) < @y (uf;) < inf[gf)k(u): Hu — uf; H = ,0] = 172, ”vi — uf; H > p. (4.21)

Recall that ¢, is coercive (see (4.17)), hence it satisfies the PS-condition. This fact and (4.21)
permit the use of Theorem 1 (the mountain pass theorem). So, there exists y, € WP (£2) such
that

yr €Ky, S[v}.ul] (seeProposition9) and 15 <@(y) (see (421)). (4.22)

*

From (4.21) and (4.22) it follows that y; ¢ {v}, u’} and it solves problem (P;) see (4.17), hence
v € C1(£2) (nonlinear regularity theory).
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We need to show that y; # 0 and then by virtue of the extremality of the solutions u? and v?,
we will have that y; is nodal. From the mountain pass theorem, we have

D = inf max ¢ 1)),
@.(0) yerogtélm(y())

where I' = {y € C([0, 1], WP (£2)): y(0) = v}, y(1) =ul}. i
Recall that M = WLP(£2) N dBL (see Proposition 5). Let M, = M N C'(£2). We consider
the following two sets of paths

r={pec(-1,11,M): p(=1)=—iy, p(1)=a1} (see Proposition 5),
Ia

c={y eC([-1.11, M): p(=1) =—ity, (1) =1}

From Papageorgiou and Radulescu [19], we know that I isdensein I". Since ut eintCy, vl e
—intC4, we have

mp = min {m_inui, m_in(—vi‘)] > 0.
2 2

Hypothesis H (iii) implies that given € > 0, we can find § € (0, m() such that

|F(z.x)| < S|x|P foraa.ze 2, all x| <8 (4.23)
P

(recall F(z,x)= f(;c f(z,s)ds). From (4.17) and (4.23) we have

rA+E& L+E&

—€
——|x|? fora.a.ze £, all |x] <3.
p

K}\.(Z,x): |X|p—F(Z,X)>

From Proposition 5 and the density of [ in I, we see that given € € (0, A_ZM) (recall that
A > A2), we can find Yo € . such that

o(Po(1)) <Ay +e forallre[—1,1]. (4.24)

Recall that ¢ : WP (£2) — R is defined by
¢(u) = || Dull + / B |ulP do  forallu e WHP(£2)
002

(see Proposition 5). Evidently pp([—1, 1]) C C'(£2) and recall that ui‘ eintCy, vfk‘ € —intCy.
So, we can find 7 € (0, 1) small such that for all u € yo([—1, 1]) we have

|tu(z)| <8 forallz € 2 and tu € [v}, u}]. (4.25)

*
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Then for every u € pp([—1, 1]) we have

R 144 P T
QDA(W):?HDMHZ-F7||M||Z+?pfﬁ(Z)|M|pd0—fo(Z,w)dZ
92 2

P’ . 144
< ?[xz + €] — ?[x —e€] (see (4.17), (4.23), (4.24))

LN A—Ao
= —[X +2 —A] <0 [(recall thate < > .
P

So, if we set yp = T, then yy is a continuous path in W17 (§2) which connects —ti; and tii;
and such that

Palyy <O. (4.26)
Recall that gﬁ;f (ui‘) <0= @;— (0) and K@f = {0, ui} (see Propositions 9, 10 and the proof of the

latter). Applying the second deformation theorem (see, for example, Gasinski and Papageorgiou
[12, p. 628]), we produce a deformation 4 : [0, 1] x ((@;L)O\{O}) — (gb;L)O such that

h(1, (35)\(0}) = ul, (4.27)
¢ (h(t,w)) <@ (u) forallr €[0,1]. (4.28)

Let y, (t) = h(t, tit;)™ for all ¢ € [0, 1]. Then y, is a continuous path in WP (£2) such that
v+ (0) = titq (h is a deformation), y4 (1) = uf; (see (4.27) and recall ui €intCy) and

¢ 1y, <0 (see (4.28) and (4.26)).

Since imyy € Wy = {u € WHP(2): u(z) > 0 ae.in £2} and g?);r|w+ = @lw, (see (4.15),
(4.17)), we have

Prly, <O. (4.29)

In a similar fashion, using this time the functional @; , we produce another continuous path y_
in WP (§2) which connects —t#; and vf,: and such that

¢ly_ <0. (4.30)
Concatenating y_, Yo, Y+, we produce a path y, € I" such that

Prly, <0 (see (4.26), (4.29), (4.30))
= y#0 andsoy, e CI(Q) is nodal solution of (Py). O (4.31)

So, we can state the following multiplicity theorem for problem (P;) (A > 22).
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Theorem 12. Assume that hypotheses H(B) and Hy hold. Then for every A > Ao problem (P)
has at least three nontrivial solutions ué e intCy, v())‘ € —intCy, and y) € [v())‘, ué] N Cl(.Q)
nodal.

5. Semilinear problems

In this section, we deal with the semilinear problem (that is, p = 2). So, the problem under
consideration is the following:

—Au(z) =ru(z) — f(z,u(z)) in£2, g—z + B(z)u=0 onds2. (S2)

For this problem, under additional regularity conditions on f(z,-) and with a global growth
restriction this time, we show that for all A > ):2 problem (S, ) admits a second nodal solution,
for a total of four nontrivial solutions all with sign information.

The new hypotheses on the perturbation f(z, x) are the following:

Hy: f:8£ xR — R is a measurable function such that for a.a. z € 2, f(z,0) =0, f(z,-) €
C'(R) and
A |fiz,x)|<a)(1+ |x|"~2) fora.a. z € 2, all x € R, witha € L®(2) 4,2 <r < 2*;
(i) limy o0 L&)
(iii) fl(z,0) =limy_q @ = 0 uniformly for a.a. z € £2;
(iv) there exists 6 > 0 such that f(z,x)x > 0 for a.a. z € £2, all |x| <.

= 400 uniformly for a.a. 7 € £2;

Remark 13. It is clear that hypothesis H5(i) implies that given p > 0, we can find &, > 0 such
that for a.a. z € §2, the function x — (A +&)x — f(z, x) is nondecreasing on [—p, p].

We have the following multiplicity theorem for problem (S ).

Theorem 14. Assume that hypotheses H(B) and Hy hold. Then for every A > A2 problem (S))
has at least four nontrivial solutions

uéeintC.,_, v(’}e—intC+
and yy, y; € intcl(fz)[vé, ué] nodal.
Proof. From Theorem 12, we already have three nontrivial solutions
ugeintCy,  vje—intCy and y; €[}, us]NC'($2) nodal.
Without any loss of generality, we may assume that ué and vé are extremal (see Proposition 8),

that is, ué = ui‘ eintCy. Let p = max{l|ué||oo, ||v3||oo} and let £, > 0 be such that for a.a.
7€ 82 x— (A+&y)x — f(z,x) is nondecreasing on [—p, p]. Then

—Ay(2) +Eya () = A+ Ep)ya(2) — f(2,31.(2))
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<O+ E)ul(2) — f(z,uf(2))  (since yi < uf)
= —Auj(z) +Epup(z) ae.in 2
= A(”é — )@ <& (”3 — )@ ae.in

= ué —yp €intCy (see Vazquez [23]).
Similarly, we show that
A .
v — vy €intCy.

Therefore, we have

i €inter gy [v5. ug]- (5.1)

Next let o, : W17 (£2) — R be the functional defined by

_ 1 2 1 2 A 2 1
0x(w) =S IDull3 + 5 | p@uPdo — Zlul3 + | Fz,uydz forallue H'(2)
052 2

(recall F(z,x) = [, f(z,s)ds). Evidently 0, € C*(H'(£2)).
We consider the following orthogonal direct sum decomposition of H'(£2)

H' (Q2)=H®OEGy) ® H

withk >3, H=@\_| EG), H = @344 EGi). Set Y =E() & H.
Recall that A > iz. First we assume that A € og (2) (problem resonant at zero). Then A = ik
for some k > 3.

Claim 2. The energy functional o, admits a local linking at u = 0, with respect to the orthogonal
direct sum

H'()=HaY.
By virtue of hypothesis H;(iii), given € > 0, we can find 69 = §p(€) > 0 such that

F(z,x) < —x> fora.a.ze £, all |x| <. (5.2)

NSO

Since H is finite dimensional, all norms are equivalent and so we can find p; = p1(€) >0
such that

“lull <p1 = |u(z)| <8 forallze2” forallueH. (5.3)
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Therefore, for u € H with ||u| < p1, we have

1 1 Ak
oy (u) = 5||Du||§ +5 f B()u* do — Enun% +/F<z, u)dz
2052 2

}‘\-k—l — )Axk €
< fnun% + Enuné (see (5.2), (5.3))

< —cullul*  for some cs > 0 (choosing € € (0, A — Aix_1)).
So, we have proved that

o(u) <0 forallu € H with ||u|| < pi. (5.4)

Next let u € Y. Then we have u = u® + & with u® € E()A»k), ii € H. Hence

1 1 A
oy (u) = EnDun% +5 f B()u*do — Enun% +/F(z, u)dz
252 2

2%5||ft||2+ / F(z,u)dz + / F(z,u)dz for some c5 >0
{lu| <8} {Ju|>8}
(exploiting the orthogonality of the component spaces E ()A\k), H )

C ~ .
>§||u||2+ / F(z,u)dz (see H(iv)). (5.5)
(ui>5)

Since E ()A\k) is finite dimensional, we can find p, > 0 small such that

(13

W<, = [W@|<s forallz €27 forallu® e E(hy).

| &

So, if Cs ={z € §2: |u(z)| < &}, then for u € Y with [[u] < p2, we have u°|| < p2 hence
1u%(2)| < 2 for all z € 2. Therefore, for u € Y with |lu|| < pa, we have
) Y

()| = |u@)| — [u°@)] = |u(z)] - g > %|u(z)‘ a.e. on Cj. (5.6)

Moreover, it is clear from hypotheses H; (i), (iii) that gives € > 0, we can find cg = c¢(€) > 0
such that

F(z,x) > —%xz —celx|” foraaze, allx €R, with2 <r. (5.7)

Then

/F(z,u)dz}—%fuzdz—c6/|u|rdz (see (5.7))

Cs Cs Cs
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> —¢ / 4%2dz — cq7||it||”  for some ¢7 > 0 (see (5.6))

Cs

> —ellal® —crllal” (5.8)

We return to (5.5) and use (5.8). Then

CS A A
ox(u) = (E - E) la@l* — e7llal’.
Choosing € € (0, £), we have

o (u) = csllit||> — c7||i||”  for some cg > 0.
Since r > 2, choosing p> € (0, 1) small, for u € Y with |ju| < o2, we have ||| < p2 and so
o)(u) >0 forallueY with |u|| < p2. (5.9
Let p = min{p1, p2}. Then from (5.4), (5.9) we infer that o, admits a local linking at u =0

with respect to the orthogonal direct sum decomposition H'!(£2) = H @ Y. This proves the claim.
Then by virtue of the claim and Proposition 2.3 of Su [22], we have

Ci(05,0)=0; 4,7 foralli >0, withd; = dimH >2. (5.10)
Note that @'[US’“S] = Uﬂ[vg,ug] (see (4.17)) and recall that ué € intCy, v())‘ € —intC,. Hence
Ci(@rlc1(@).0) =Ci(Orlc1 (). 0) foralli >0

=  Ci(@.,0)=Ci(03,0)=8;4,Z, foralli>0 (see (5.10) and Bartsch [4]).
(5.11)

From Proposition 9, we have
¢i (. ul) = ci(Pr, v)) =80 Z foralli >0. (5.12)

From the proof of Proposition 10, we know that y, is a critical point of mountain pass type
the functional ¢, . Hence

Ci(@n, ) #0
= Ci(ox, y2) #0 (see (5.1) and recall ¢k|[v3,u3] = G?»|[v3,u3])
= Ci(os,y2) =8,1Z foralli >0 (see Bartsch [4])
= Ci(pr,yn) =812 foralli>0 (see (5.11)). (5.13)
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Finally, recall that ¢, is coercive (see (4.17)). So, we have
Ci(¢n,00) =6;0Z foralli >0. (5.14)

Suppose that K5, = {0, ujj, v}, y»}. Then from (5.11), (5.12), (5.13), (5.14) and the Morse
relation with r = —1 (see (2.14)), we have

(—D% 421D+ (-D'==1)" = (=1)%* =0, acontradiction.

So, there exists ¥, € Ky, \{0, ué, v())‘, v }. From Proposition 8 and (4.17) we see that y; €
C1(£2) is a second nodal solution of (S,) and i € intCl(Q)[vé, ué].

Next suppose A ¢ og (2). Then A € (At ik+1) for some k > 2. In this case u = 0 is a nonde-
generate critical point of o, with Morse index dy = dim Eszl E(X;) = 2. Therefore

Cj (O}w O) = 3,‘7de for all i = 0.

Then reasoning as above, we produce a second nodal solution y; € int_i (9)[113, ué] for prob-
lem (S3) (L > A2). O
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