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Abstract. This paper deals with the mathematical analysis of solutions for
a new class of Choquard equations. The main features of the problem stud-
ied in this paper are the following: (i) the equation is driven by a differential
operator with variable exponent; (ii) the Choquard term contains a nonstan-
dard potential with double variable growth; and (iii) the lack of compactness
of the reaction, which is generated by a critical nonlinearity. The main result

establishes the existence of infinitely many solutions in the case of high per-
turbations of the source term. The proof combines variational and analytic
methods, including the Hardy-Littlewood-Sobolev inequality for variable expo-
nents and the concentration-compactness principle for problems with variable
growth.

1. Introduction and abstract setting

Consider the following Choquard problem with variable exponents and critical
reaction:

{
−Δp(x)u+ α|u|p(x)−2u =

(∫
RN

F (y,u(y))

|x−y|λ(x,y) dy
)
f(x, u(x)) + β(x)|u|p∗(x)−2u in R

N ,

u ∈ W 1,p(x)(RN ),

(1)

where λ : RN×R
N �→ R, f : RN×R �→ R and β : RN �→ R are continuous functions,

and p : RN �→ R is a Lipschitz radially symmetric function satisfying 1 < p− �
p(x) � p+ < N . Let p∗(x) = Np(x)/(N−p(x)) denote the critical Sobolev exponent
and assume that α > 0. Here, p+ and p− are defined by p+ := supx∈RN p(x)

and p− := infx∈RN p(x). We assume that F (y, t) :=
∫ t

0
f(y, s)ds and Δp(x)u :=

div
(
|∇u|p(x)−2∇u

)
denotes the p(x)-Laplace operator with variable exponent.
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We recall that the Choquard equation was first introduced in the pioneering
work of Fröhlich [3] and Pekar [12] for the modeling of quantum polaron:

(2) −Δu+ u =

(
1

|x| ∗ |u|
2

)
u in R

3.

As pointed out by Fröhlich and Pekar, this model corresponds to the study of free
electrons in ionic lattices interacting with phonons associated to deformations of the
lattices or with the polarisation created on the medium (interaction of an electron
with its own hole). In the approximation to Hartree-Fock theory of one component
plasma, Choquard used equation (2) to describe an electron trapped in its own
hole.

The Choquard equation is also known as the Schrödinger-Newton equation in
models coupling the Schrödinger equation of quantum physics together with non-
relativistic Newtonian gravity. The equation can also be derived from the Einstein-
Klein-Gordon and Einstein-Dirac systems. Such a model was proposed for boson
stars and for the collapse of galaxy fluctuations of scalar field dark matter. We refer
for details to Elgart and Schlein [2], Giulini and Großardt [7], Jones [8], Lions [10],
and Schunck and Mielke [16]. Penrose [13, 14] proposed equation (2) as a model
of self-gravitating matter in which quantum state reduction was understood as a
gravitational phenomenon. As pointed out by Lieb [9], Choquard used equation
(2) to describe steady states of the one component plasma approximation in the
Hartree-Fock theory. We refer to Mingione and Rădulescu [11] for an overview
of recent results concerning elliptic variational problems with nonstandard growth
conditions and related to different kinds of nonuniformly elliptic operators.

The main features of the present paper are the following:
(i) the source term of problem (1) is driven by a differential operator with vari-

able exponent and a power-type nonhomogeneous term (the corresponding term in
problem (2) is linear);

(ii) a key role in the left-hand side of problem (1) is played by the parameter α
(due to the fact that we establish the main result in the case of high values of this
parameter);

(iii) the presence of the variable exponent λ(x, y) in the Choquard nonlinearity
and the contribution of a critical nonlinearity in the reaction;

(iv) since the problem contains both critical and nonlocal terms, the analysis
developed in this paper uses more refined techniques than in the standard case.

We start with some basic notions on variable exponent spaces (see [15] for more
details).

Set C+(RN ) :=
{
γ ∈ C(RN ) : 1 < γ− � γ+ < +∞

}
, where γ+ := supx∈RN γ(x)

and γ− := infx∈RN γ(x).
Let M(RN ) be the space of all measurable functions u : RN �→ R. For ξ ∈

C+(RN ), let Lξ(x)(RN ) =
{
u : u ∈ M(RN ) and

∫
RN |u(x)|ξ(x)dx < +∞

}
denote

the Lebesgue space with variable exponent ξ(·). This space is equipped with the
“Luxemburg norm” defined by

‖u‖Lξ(x)(RN ) = inf

{
η > 0 :

∫
RN

∣∣∣∣u(x)η

∣∣∣∣ξ(x) dx � 1

}
.

Let W 1,ξ(x)(RN ) :=
{
u ∈ Lξ(x)(RN ) : |∇u| ∈ Lξ(x)(RN )

}
denote the Sobolev

space with variable exponent ξ(·). On W 1,ξ(x)(RN ) we can consider one of the
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following equivalent norms

‖u‖W 1,ξ(x)(RN ) := ‖u‖Lξ(x)(RN ) + ‖∇u‖Lξ(x)(RN )

or

‖u‖ := inf

{
η > 0 :

∫
RN

(∣∣∣∣∇u(x)

η

∣∣∣∣ξ(x) + ∣∣∣∣u(x)η

∣∣∣∣ξ(x)
)
dx � 1

}
,

that is, there exist two positive constants κ1, κ2 such that

κ1‖u‖W 1,ξ(x)(RN ) � ‖u‖ � κ2‖u‖W 1,ξ(x)(RN ) for all u ∈ W 1,ξ(x)(RN ).(3)

Let Cc(R
N ) be the subspace of functions in C(RN ) with compact support and de-

note by C0(R
N ) the closure of Cc(R

N ) with respect to the norm |ϕ|∞ =
sup

{
|ϕ(x)| : x ∈ R

N
}
. A finite measure on R

N is a continuous linear functional

on C0(R
N ). For any finite measure μ we define ‖μ‖ := sup{|(μ, ϕ)| : ϕ ∈ C0(R

N ),
|ϕ|∞ = 1}, where (μ, ϕ) =

∫
RN ϕdμ.

Let M(RN ) be the space of finite non-negative Borel measures on R
N . A se-

quence μn → μ weakly-∗ in M(RN ) if (μn, ϕ) → (μ, ϕ) for all ϕ ∈ C0(R
N ) as

n → ∞.
In the sequel, if h1, h2 ∈ C(RN ), we say that h1 	 h2 if inf {h2(x)− h1(x) :

x ∈ R
N

}
> 0.

Throughout the paper, C will denote a positive constant and the same C may
represent different constants.

2. High perturbations of the source term

Throughout this paper we assume that the following conditions are fulfilled:

(C1) f ∈ C(RN × R,R) and |f(x, t)| � g1(x)|t|r(x)−1 + g2(x)|t|s(x)−1, ∀ (x, t) ∈
R

N × R, where

0 � g1 ∈ L∞(RN ) ∩ L
p∗(x)q+

p∗(x)−r(x)q+ (RN ) ∩ L
p∗(x)q−

p∗(x)−r(x)q− (RN ),

0 � g2 ∈ L∞(RN ) ∩ L
p∗(x)q+

p∗(x)−s(x)q+ (RN ) ∩ L
p∗(x)q−

p∗(x)−s(x)q− (RN )

and r, s ∈ D :=
{
φ∈C+(RN ) : p(x)�φ(x)q−�φ(x)q+�p∗(x), ∀x∈R

N
}

verify

p 	 rq− � rq+ 	 p∗, p 	 sq− � sq+ 	 p∗ and r+, s+ > p−/2,

where q ∈ C+(RN ), 1
q(x) +

λ(x,y)
N + 1

q(y) = 2, for all x, y ∈ R
N , 0 < λ− :=

infx, y∈RN λ(x, y) ≤ λ+ := supx, y∈RN λ(x, y) < N .

(C2) f(x,−t) = −f(x, t) for all (x, t) ∈ R
N × R.

(C3) f(x, t) = f(|x|, t) for all (x, t) ∈ R
N × R.

(C4) β ∈ C(RN )∩L∞(RN ), where β is radially symmetric, that is, β(|x|) = β(x)
for all x ∈ R

N , β(x) � ( 
≡) 0 and β(0) = β(∞) = 0.
(C5) There exists p 	 θ such that 0 � θ(x)F (x, t) � 2f(x, t)t for all (x, t) ∈

R
N × R, where F (x, t) =

∫ t

0
f(x, s)ds.

Let W
1,p(x)
rad (RN ) denote the subspace of W 1,p(x)(RN ) containing all functions

with radial symmetry.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3822 Y. ZHANG ET AL.

Definition 1. We say that u ∈ W
1,p(x)
rad (RN ) is a weak solution of problem (1) if∫

RN

(
|∇u|p(x)−2∇u∇v + α|u|p(x)−2uv − β(x)|u|p∗(x)−2uv

)
dx

=

∫
RN

∫
RN

F (y, u(y))f(x, u(x))v(x)

|x− y|λ(x,y) dxdy for all v ∈ W
1,p(x)
rad (RN ).

Our main result establishes the existence of infinitely many radial solutions in
the case of high perturbations of the absorption term. More precisely, we prove the
following multiplicity property.

Theorem 1. Assume that hypotheses (C1)–(C5) are satisfied. Then there exists
α0 > 0 such that for all α � α0, problem (1) has infinitely many radial solutions.

2.1. Auxiliary properties. The energy functional associated to problem (1) is
given by

Iα(u) = Υ(u)− Φ(u)−
∫
RN

β(x)

p∗(x)
|u|p∗(x)dx,

where

Υ(u) =

∫
RN

1

p(x)

(
|∇u|p(x) + α|u|p(x)

)
dx

and

Φ(u) =
1

2

∫
RN

∫
RN

F (x, u(x))F (y, u(y))

|x− y|λ(x,y) dxdy.

It follows from Alves and Tavares [1, Lemma 3.2] that Φ ∈ C1(W
1,p(x)
rad (RN ),R)

and

〈Φ′(u), v〉 =
∫
RN

∫
RN

F (y, u(y))f(x, u(x))v(x)

|x− y|λ(x,y) dxdy for all v ∈ W
1,p(x)
rad (RN ).

A straightforward argument shows that Iα ∈ C1(W
1,p(x)
rad (RN ),R). Thus, the criti-

cal points of the functional Iα coincide with the weak solutions of problem (1).

Lemma 1. There exists α0 > 0 such that for α � α0, any (PS) sequence {un} ⊂
W

1,p(x)
rad (RN ) of Iα (that is, Iα(un) → c and I ′α(un) → 0 as n → ∞) is bounded in

W
1,p(x)
rad (RN ).

Proof. Let �(x) := p(x)+min {infx∈RN (θ(x)− p(x)), infx∈RN (p∗(x)− p(x))} . Note
that p is a Lipschitz continuous and radially symmetric function on R

N . Combining
this fact and condition (C5), we obtain that � is a Lipschitz symmetric function
satisfying p 	 � � p∗.

By the Young inequality, we can deduce that for any ε ∈ (0, 1), there exists
Cε > 0 such that∣∣∣∣ un

�(x)2
|∇un|p(x)−2∇un∇�

∣∣∣∣ � ε|∇un|p(x) + Cε|un|p(x).(4)

Set

�0 = inf
x∈RN

{
1

p(x)
− 1

�(x)

}
> 0.

Taking ε = �0
2 , from relation (4) we obtain∣∣∣∣ un

�(x)2
|∇un|p(x)−2∇un∇�

∣∣∣∣ � �0
2
|∇un|p(x) + C�0/2|un|p(x).(5)
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Let α � 2C�0/2/�0 =: α0 > 0, using relation (5) and condition (C5) we have

Iα(un)−
〈
I ′α(un),

un

�(x)

〉
=

∫
RN

((
1

p(x)
− 1

�(x)

) (
|∇un|p(x) + α|un|p(x)

)
+

un

�(x)2
|∇un|p(x)−2∇un∇�

)
dx

+

∫
RN

∫
RN

F (y, un(y))

|x− y|λ(x,y)

(
f(x, un(x))un(x)

�(x)
− F (x, un(x))

2

)
dxdy

+

∫
RN

(
1

�(x)
− 1

p∗(x)

)
β(x)|un|p

∗(x)dx

�
∫
RN

(
�0|∇un|p(x) + �0α|un|p(x) −

�0
2
|∇un|p(x) − C�0/2|un|p(x)

)
dx

+

∫
RN

∫
RN

F (y, un(y))

|x− y|λ(x,y)

(
f(x, un(x))un(x)

θ(x)
− F (x, un(x))

2

)
dxdy

�
∫
RN

(
�0
2
|∇un|p(x) +

�0α

2
|un|p(x)

)
dx.

It follows that {un} is bounded in W
1,p(x)
rad (RN ). The proof is now complete. �

Lemma 2. Any (PS) sequence has a convergent subsequence when α � α0, where
α0 is given in Lemma 1.

Proof. Let {un} ⊂ W
1,p(x)
rad (RN ) be a (PS) sequence. By Lemma 1, we get that

{un} is bounded for α � α0. Since W
1,p(x)
rad (RN ) is reflexive, up to a subsequence,

we may assume that there exists u ∈ W
1,p(x)
rad (RN ) such that un → u weakly in

W
1,p(x)
rad (RN ), un → u weakly in W 1,p(x)(RN ) and un(x) → u(x) a.e. x ∈ R

N .
We first prove that

〈Φ′(un)− Φ′(u), un − u〉 → 0, as n → ∞.

Indeed, since un → u weakly in W
1,p(x)
rad (RN ), as n → ∞, we obtain

〈Φ′(u), un − u〉 → 0, as n → ∞,

where Φ′(u) ∈
(
W

1,p(x)
rad (RN )

)∗
.

It remains to prove that

〈Φ′(un), un − u〉 → 0 as n → ∞.

By the Hardy-Littlewood-Sobolev inequality for variable exponents (see Alves
and Tavares [1, Proposition 2.4]), we have

|〈Φ′(un), un − u〉| � C‖F (·, un)‖Lq+ (RN )‖f(·, un)(un − u)‖Lq+ (RN )(6)

+ C‖F (·, un)‖Lq− (RN )‖f(·, un)(un − u)‖Lq− (RN ).
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By condition (C1) and the boundedness of {un} in W
1,p(x)
rad (RN ), we obtain

‖F (·, un)‖Lq+ (RN )(7)

� C

(∫
RN

(
|un|q

+r(x) + |un|q
+s(x)

)
dx

) 1

q+

� C

(∫
RN

|un|q
+r(x)dx

) 1

q+

+ C

(∫
RN

|un|q
+s(x)dx

) 1

q+

� Cmax
{
‖un‖r

+

Lq+r(x)(RN )
, ‖un‖r

−

Lq+r(x)(RN )

}
+ Cmax

{
‖un‖s

+

Lq+s(x)(RN )
, ‖un‖s

−

Lq+s(x)(RN )

}
� C

and

‖F (·, un)‖Lq− (RN ) � Cmax
{
‖un‖r

+

Lq−r(x)(RN )
, ‖un‖r

−

Lq−r(x)(RN )

}
(8)

+ Cmax
{
‖un‖s

+

Lq−s(x)(RN )
, ‖un‖s

−

Lq−s(x)(RN )

}
� C.

Moreover, the compact embeddings

W
1,p(x)
rad (RN ) ↪→ Lq+r(x)(RN ), W

1,p(x)
rad (RN ) ↪→ Lq+s(x)(RN ),

W
1,p(x)
rad (RN ) ↪→ Lq−r(x)(RN ), W

1,p(x)
rad (RN ) ↪→ Lq−s(x)(RN )

combined with condition (C1) and the boundedness of {un} in W
1,p(x)
rad (RN ) imply

that

‖f(·, un)(un − u)‖q
+

Lq+ (RN )
(9)

�C‖|un|q
+(r(·)−1)‖

L
r(x)

r(x)−1 (RN )
‖|un − u|q+‖Lr(x)(RN )

+ C‖|un|q
+(s(·)−1)‖

L
s(x)

s(x)−1 (RN )
‖|un − u|q+‖Ls(x)(RN )

�Cmax

{
‖un − u‖q

+

Lq+r(x)(RN )
, ‖un − u‖

q+r−
r+

Lq+r(x)(RN )

}
+ Cmax

{
‖un − u‖

q+r+

r−

Lq+r(x)(RN )
, ‖un − u‖q

+

Lq+r(x)(RN )

}
+ Cmax

{
‖un − u‖q

+

Lq+s(x)(RN )
, ‖un − u‖

q+s−
s+

Lq+s(x)(RN )

}
+ Cmax

{
‖un − u‖

q+s+

s−

Lq+s(x)(RN )
, ‖un − u‖q

+

Lq+s(x)(RN )

}
=on(1), as n → ∞
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and

‖f(·, un)(un − u)‖q
−

Lq− (RN )
(10)

�Cmax

{
‖un − u‖q

−

Lq−r(x)(RN )
, ‖un − u‖

q−r−
r+

Lq−r(x)(RN )

}
+ Cmax

{
‖un − u‖

q−r+

r−

Lq−r(x)(RN )
, ‖un − u‖q

−

Lq−r(x)(RN )

}
+ Cmax

{
‖un − u‖q

−

Lq−s(x)(RN )
, ‖un − u‖

q−s−
s+

Lq−s(x)(RN )

}
+ Cmax

{
‖un − u‖

q−s+

s−

Lq−s(x)(RN )
, ‖un − u‖q

−

Lq−s(x)(RN )

}
=on(1), as n → ∞.

By relations (6)–(10), we have 〈Φ′(un), un − u〉 → 0 as n → ∞.
Next, we prove that∫

RN

β(x)
(
|un|p

∗(x)−2un − |u|p∗(x)−2u
)
(un − u)dx → 0, as n → ∞.

Note that un → u weakly in W 1,p(x)(RN ), as n → ∞. Up to a subsequence,
still denoted by {un}, we may assume that there exist μ, ν ∈ M(RN ) such
that |∇un|p(x) + α|un|p(x) → μ and |un|p

∗(x) → ν weakly-∗ in M(RN ). By
the concentration-compactness principle for variable exponents (see Fu and Zhang
[6, Theorem 2.2]), we know that

μ = |∇u|p(x) + α|u|p(x) +
∑
j∈J

μjδxj
+ μ̃

and
ν = |u|p∗(x) +

∑
j∈J

νjδxj
,

where J is a countable set, {μj}, {νj} ⊂ [0,+∞), {xj} ⊂ R
N , δxj

is the Dirac

mass centered at xj , μ̃ ∈ M(RN ) is a non-atomic non-negative measure. By the
concentration-compactness principle for variable exponents, we have

lim sup
n→∞

∫
RN

|un|p
∗(x)dx =

∫
RN

dν + ν∞ =

∫
RN

|u|p∗(x)dx+
∑
j∈J

νj + ν∞.

(i) We prove that νj = 0. For any ε > 0, we choose a radially symmetric function
ϕ ∈ C∞

0 (B2ε(0)) such that 0 � ϕ � 1, |∇ϕ| � 2/ε; ϕ = 1 on Bε(0). Since {unϕ} is

bounded in W
1,p(x)
rad (RN ), we obtain 〈I ′α(un), unϕ〉 → 0 as n → ∞. It follows that

〈I ′α(un), unϕ〉

=

∫
RN

(
|∇un|p(x)−2∇un∇(unϕ) + α|un|p(x)ϕ− β(x)|un|p

∗(x)ϕ
)
dx

−
∫
RN

∫
RN

F (y, un(y))f(x, un(x))un(x)ϕ(x)

|x− y|λ(x,y) dxdy

=

∫
RN

((
|∇un|p(x) + α|un|p(x)

)
ϕ+ |∇un|p(x)−2∇un∇ϕun − β(x)|un|p

∗(x)ϕ
)
dx

− 〈Φ′(un), unϕ〉.
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Next, we show that

〈Φ′(un), unϕ〉 →
∫
RN

∫
RN

F (y, u(y))f(x, u(x))u(x)ϕ(x)

|x− y|λ(x,y) dxdy = 〈Φ′(u), uϕ〉, as n → ∞.

By condition (C1) and using again the compact embeddings

W
1,p(x)
rad (RN ) ↪→ Lq+r(x)(RN ), W

1,p(x)
rad (RN ) ↪→ Lq+s(x)(RN ),

W
1,p(x)
rad (RN ) ↪→ Lq−r(x)(RN ), W

1,p(x)
rad (RN ) ↪→ Lq−s(x)(RN ),

the Hardy-Littlewood-Sobolev inequality for variable exponents, the boundedness

of {un} in W
1,p(x)
rad (RN ), relations (7)–(8), and the Lebesgue dominated convergence

theorem, we obtain

|〈Φ′(un), unϕ〉 − 〈Φ′(u), uϕ〉|

�
∣∣∣∣∫

RN

∫
RN

F (y, un(y))(f(x, un(x))un(x)− f(x, u(x))u(x))

|x− y|λ(x,y) dxdy

∣∣∣∣
+

∣∣∣∣∫
RN

∫
RN

(F (y, un(y))− F (y, u(y)))f(x, u(x))u(x)

|x− y|λ(x,y) dxdy

∣∣∣∣
� C‖F (·, un)‖Lq+ (RN )‖f(·, un)un − f(·, u)u‖Lq+ (RN )

+ C‖F (·, un)‖Lq−(RN )‖f(·, un)un − f(·, u)u‖Lq− (RN )

+ C‖F (·, un)− F (·, u)‖Lq+ (RN )‖f(·, u)u‖Lq+ (RN )

+ C‖F (·, un)− F (·, u)‖Lq−(RN )‖f(·, u)u‖Lq− (RN )

� C‖f(·, un)u− f(·, u)u‖Lq+ (RN ) + C‖f(·, un)u− f(·, u)u‖Lq− (RN )

+ Cu‖F (·, un)− F (·, u)‖Lq+ (RN ) + Cu‖F (·, un)− F (·, u)‖Lq−(RN )

= on(1), as n → ∞,

where Cu is a positive constant.
Thus, we get 〈Φ′(un), unϕ〉 → 〈Φ′(u), uϕ〉 as n → ∞. Therefore

lim
n→∞

∫
RN

|∇un|p(x)−2∇un∇ϕundx =

∫
RN

−ϕdμ+

∫
RN

β(x)ϕdν + 〈Φ′(u), uϕ〉.

Since un → u in Lp(x)(B2ε(0)), we have ‖∇ϕun‖Lp(x)(RN ) → ‖∇ϕu‖Lp(x)(RN ) as
n → ∞. It follows that

lim
n→∞

∣∣∣∣∫
RN

|∇un|p(x)−2∇un∇ϕundx

∣∣∣∣
� lim sup

n→∞

∫
RN

|∇un|p(x)−1||∇ϕun|dx

� lim sup
n→∞

C‖|∇un|p(x)−1‖
L

p(x)
p(x)−1 (RN )

‖∇ϕun‖Lp(x)(RN )

� C‖∇ϕu‖Lp(x)(RN ).
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Furthermore, by a straightforward computation we get∫
RN

|∇ϕu|p(x)dx

=

∫
B2ε(0)

|∇ϕu|p(x)dx � C‖|∇ϕ|p(x)‖
L

p∗(x)
p∗(x)−p(x) (B2ε(0))

‖|u|p(x)‖
L

p∗(x)
p(x) (B2ε(0))

� Cmax

⎧⎪⎨
⎪⎩
(∫

B2ε(0)

|∇ϕ|Ndx

) p+

N

,

(∫
B2ε(0)

|∇ϕ|Ndx

) p−
N

⎫⎪⎬
⎪⎭ ‖|u|p(x)‖

L

p∗(x)
p(x) (B2ε(0))

� Cmax

⎧⎨
⎩
(
4NwN

N

) p+

N

,

(
4NwN

N

) p−
N

⎫⎬
⎭ ‖|u|p(x)‖

L

p∗(x)
p(x) (B2ε(0))

= oε(1), as ε → 0,

where wN is the surface area of the unit sphere in R
N . Similarly, we can also infer

that∣∣〈Φ′(u), uϕ〉
∣∣

� C‖F (·, u)‖
Lq+ (RN )

‖f(·, u)uϕ‖
Lq+ (RN )

+ C‖F (·, u)‖
Lq− (RN )

‖f(·, u)uϕ‖
Lq− (RN )

� C‖f(·, u)uϕ‖
Lq+ (RN )

+ C‖f(·, u)uϕ‖
Lq− (RN )

� C

(∫
B2ε(0)

gq
+

1 |u|r(x)q
+

dx

) 1
q+

+ C

(∫
B2ε(0)

gq
+

2 |u|s(x)q
+

dx

) 1
q+

+ C

(∫
B2ε(0)

gq
−

1 |u|r(x)q
−
dx

) 1
q−

+ C

(∫
B2ε(0)

gq
−

2 |u|s(x)q
−
dx

) 1
q−

� C

(∫
B2ε(0)

|u|r(x)q
+

dx

) 1
q+

+ C

(∫
B2ε(0)

|u|s(x)q
+

dx

) 1
q+

+ C

(∫
B2ε(0)

|u|r(x)q
−
dx

) 1
q−

+ C

(∫
B2ε(0)

|u|s(x)q
−
dx

) 1
q−

= oε(1), as ε → 0.

Therefore, μ({0}) = β(0)ν({0}) = 0 (since β(0) = 0), hence 0 is not an atom of μ.
Now, we prove that for any j ∈ J , νj = 0. From the above information, we may

assume that there exists xj0 
= 0 (j0 ∈ J) such that νj0 = νj0({xj0}) > 0. Due

to un ∈ W
1,p(x)
rad (RN ), the measure ν is O(N)-invariant, where O(N) is the group

of orthogonal linear transformations in R
N . For any g ∈ O(N), νj0({gxj0}) =

νj0({xj0}) > 0. We know that

|O(N)| = inf
x∈RN , x�=0

|O(N)x| = +∞,

where |O(N)x| denotes the cardinality of {gx : g ∈ O(N)}. Then, νj0({gxj0 : g ∈
O(N)}) = +∞. But the measure ν is finite, hence we get a contradiction. So, we
obtain νj = 0 for any j ∈ J .

(ii) We show that ν∞ = 0. For any R > 0, we take a radially symmetric function
wR ∈ C∞(RN ) such that 0 � wR � 1, |∇wR| < 2/R; wR = 1 in R

N \ B2R(0),

wR = 0 in BR(0). Clearly, {unwR} is bounded in W
1,p(x)
rad (RN ). So, we can easily
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obtain 〈I ′α(un), unwR〉 → 0, as n → ∞. Hence, we have

(11) 〈I ′α(un), unwR〉 =
∫
RN

((
|∇un|p(x) + α|un|p(x)

)
wR

+|∇un|p(x)−2∇un∇wRun − β(x)|un|p
∗(x)wR

)
dx− 〈Φ′(un), unwR〉.

Due to β(∞) = 0, we have

lim
R→+∞

lim sup
n→∞

∫
RN

β(x)|un|p
∗(x)dx = 0.(12)

Since 1 < p− � p(x) � p+ < N , by the definition of wR we get

lim
R→+∞

∫
RN

|∇wRu|p(x)dx = 0.

Thanks to un → u strongly in Lp(x)(B2R(0) \BR(0)), we can easily observe that

lim
n→∞

‖∇wRun‖Lp(x)(RN ) = ‖∇wRu‖Lp(x)(RN ).

So, by Hölder’s inequality and the above inequalities we obtain

lim
R→+∞

lim sup
n→∞

∣∣∣∣∫
RN

|∇un|p(x)−2∇un∇wRundx

∣∣∣∣(13)

� C lim
R→+∞

lim sup
n→∞

‖∇wRun‖Lp(x)(RN )

� C lim
R→+∞

‖∇wRu‖Lp(x)(RN ) = 0.

Since

0 � g1 ∈ L
p∗(x)q+

p∗(x)−r(x)q+ (RN )
⋂

L
p∗(x)q−

p∗(x)−r(x)q− (RN )

and

0 � g2 ∈ L
p∗(x)q+

p∗(x)−s(x)q+ (RN )
⋂

L
p∗(x)q−

p∗(x)−s(x)q− (RN ),

we can deduce that

lim
R→+∞

∫
RN\BR(0)

g1
p∗(x)q+

p∗(x)−r(x)q+ dx = 0, lim
R→+∞

∫
RN\BR(0)

g2
p∗(x)q+

p∗(x)−s(x)q+ dx = 0,

lim
R→+∞

∫
RN\BR(0)

g1
p∗(x)q−

p∗(x)−r(x)q− dx = 0, lim
R→+∞

∫
RN\BR(0)

g2
p∗(x)q−

p∗(x)−s(x)q− dx = 0.

By the above four relations, condition (C1) and the boundedness of {un} in

W
1,p(x)
rad (RN ), we get

lim
R→+∞

lim sup
n→∞

∫
RN\BR(0)

|f(x, un)un|q
+

dx

� C lim
R→+∞

lim sup
n→∞

∫
RN\BR(0)

g1
q+ |un|r(x)q

+

dx

+ C lim
R→+∞

lim sup
n→∞

∫
RN\BR(0)

g2
q+ |un|s(x)q

+

dx

� C lim
R→+∞

‖g1q
+‖

L

p∗(x)

p∗(x)−r(x)q+ (RN\BR(0))

+ C lim
R→+∞

‖g2q
+‖

L

p∗(x)

p∗(x)−s(x)q+ (RN\BR(0))

= 0
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and

lim
R→+∞

lim sup
n→∞

∫
RN\BR(0)

|f(x, un)un|q
−
dx

� C lim
R→+∞

‖g1q
−‖

L

p∗(x)

p∗(x)−r(x)q− (RN\BR(0))

+ C lim
R→+∞

‖g2q
−‖

L

p∗(x)

p∗(x)−s(x)q− (RN\BR(0))

= 0.

By (7), (8) and the Hardy-Littlewood-Sobolev inequality for variable exponents,
we have

lim
R→+∞

lim sup
n→∞

|〈Φ′(un), unwR〉|(14)

� C lim
R→+∞

lim sup
n→∞

(
‖f(·, un)unwR‖Lq+ (RN ) + ‖f(·, un)unwR‖Lq− (RN )

)
� C lim

R→+∞
lim sup
n→∞

(
‖f(·, un)un‖Lq+ (RN\BR(0)) + ‖f(·, un)un‖Lq− (RN\BR(0))

)
= 0.

By relations (11), (12), (13) and (14), we obtain

μ∞ = lim
R→+∞

lim sup
n→∞

∫
RN

(|∇un|p(x) + α|un|p(x))wRdx = 0.

Furthermore, we can conclude that

lim
R→+∞

lim sup
n→∞

∫
RN

(|∇(unwR)|p(x) + α|unwR|p(x))dx = 0.

It follows that

ν∞ = lim
R→+∞

lim sup
n→∞

∫
RN

|wRun|p
∗(x)dx = 0.

Using (i) and (ii), we obtain

lim sup
n→∞

∫
RN

|un|p
∗(x)dx =

∫
RN

|u|p∗(x)dx.

Next, by the Brezis-Lieb-type lemma (see [5, Lemma 2.1]) we find

lim
n→∞

∫
RN

|un − u|p∗(x)dx = 0,

that is, ‖un − u‖Lp∗(x)(RN ) → 0, as n → ∞. Combing this fact and β ∈ L∞(RN ),
we can deduce that

lim
n→∞

∫
RN

β(x)
(
|un|p

∗(x)−2un − |u|p∗(x)−2u
)
(un − u)dx = 0.

Furthermore, from the above information, we have

lim
n→∞

〈I ′α(un)− I ′α(u), un − u〉+ 〈Φ′(un)− Φ′(u), un − u〉 = 0.

It follows that

lim
n→∞

〈Υ′(un)−Υ′(u), un − u〉

= lim
n→∞

(
〈I ′α(un)− I ′α(u), un − u〉+ 〈Φ′(un)− Φ′(u), un − u〉

+

∫
RN

β(x)
(
|un|p

∗(x)−2un − |u|p∗(x)−2u
)
(un − u)dx

)
= 0.
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Finally, by taking similar steps as Fu [4, Theorem 3.1], we can derive that

lim
n→∞

‖un − u‖W 1,p(x)(RN ) = 0.

The proof is now complete. �

SinceW
1,p(x)
rad (RN ) is a separable and reflexive Banach space, we can find {en}∞n=1

⊂ W
1,p(x)
rad (RN ) and {ψm}∞m=1 ⊂

(
W

1,p(x)
rad (RN )

)∗
such that ψm(en) = δnm (δnm =

1 if n = m and δnm= 0 if n 
=m), W
1,p(x)
rad (RN )=span{en}∞n=1 and

(
W

1,p(x)
rad (RN )

)∗

= span{ψm}∞m=1.

In the sequel, we use V +
k to denote span{ei : i = k, . . .} (k = 1, 2, . . .). Then we

have the following auxiliary property.

Lemma 3. For any large enough k ∈ N, there exist τk > 0 and ρk > 0 such that
Iα(u) � τk for any u ∈ V +

k with ‖u‖W 1,p(x)(RN ) = ρk.

Proof. For any u ∈ V +
k with ‖u‖W 1,p(x)(RN ) � max

{
1
κ1
, 1

}
(κ1 is given in (3)),

combining condition (C1), the growth of F and the Hardy-Littlewood-Sobolev in-
equality for variable exponents we have

Iα(u) �
∫
RN

min{1, α0}
p+

(
|∇u|p(x) + |u|p(x)

)
dx−

∫
RN

β(x)

p∗(x)
|u|p∗(x)dx

− C‖F (·, u)‖2
Lq+(RN )

− C‖F (·, u)‖2
Lq−(RN )

�
∫
RN

min{1, α0}
p+

(
|∇u|p(x) + |u|p(x)

)
dx−

∫
RN

β(x)

p∗(x)
|u|p∗(x)dx

− C

(∫
RN

|u|r(x)q+dx
) 2

q+

− C

(∫
RN

|u|s(x)q+dx
) 2

q+

− C

(∫
RN

|u|r(x)q−dx
) 2

q−

− C

(∫
RN

|u|s(x)q−dx
) 2

q−

.

Set

σr+
k = sup

{∫
RN

|u|r(x)q+dx : u ∈ V +
k , ‖u‖W 1,p(x)(RN ) = 1

}
,

σr−
k = sup

{∫
RN

|u|r(x)q−dx : u ∈ V +
k , ‖u‖W 1,p(x)(RN ) = 1

}
,

σs+
k = sup

{∫
RN

|u|s(x)q+dx : u ∈ V +
k , ‖u‖W 1,p(x)(RN ) = 1

}
,

σs−
k = sup

{∫
RN

|u|s(x)q−dx : u ∈ V +
k , ‖u‖W 1,p(x)(RN ) = 1

}
.

We first show that σr+
k → 0, as k → ∞. We observe that σr+

k � σr+
k+1 � 0, hence

σr+
k → σr+ � 0, as k → ∞. Choose uk ∈ V +

k with ‖uk‖W 1,p(x)(RN ) = 1 such that

0 � σr+
k −

∫
RN

|uk|r(x)q
+

dx <
1

k
,

for each k ∈ N
+. Since W

1,p(x)
rad (RN ) is reflexive, {uk} admits weakly convergent

subsequence, up to a subsequence, still denoted by {uk}. Then there exists u ∈
W

1,p(x)
rad (RN ) such that uk → u weakly in W

1,p(x)
rad (RN ), as k → ∞. Now we assert
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that u = 0. Indeed, for any ψm ∈ {ψn : n = 1, 2, . . . , m, . . .}, ψm(uk) = 0 for any
k > m. So, ψm(uk) → 0, as k → ∞. This implies that ψm(u) = 0 for any ψm ∈
{ψn : n = 1, 2, . . . , m, . . .}. Due to the denseness of {ψn : n = 1, 2, . . . , m, . . .} in(
W

1,p(x)
rad (RN )

)∗
, we obtain u = 0. By condition (C1) and the compact embedding

W
1,p(x)
rad (RN ) ↪→ Lr(x)q+ , we have∫

RN

|uk|r(x)q
+

dx → 0, as k → ∞.

Thus, we conclude that σr+
k → 0 (as k → ∞) holds true.

Similarly, we can deduce that σr−
k → 0, σs+

k → 0 and σs−
k → 0, as k → ∞.

Denote

ϑk = sup

{∫
RN

β(x)

p∗(x)
|u|p∗(x)dx : u ∈ V +

k , ‖u‖W 1,p(x)(RN ) = 1

}
.

Next, with the same ideas as in the proof of Lemma 3.5 of Fu and Zhang [6], we
get ϑk → 0, as k → ∞.

From the above information, we have

Iα(u) � κp−

1 min{1, α0}
p+

‖u‖p
−

W 1,p(x)(RN )
− ϑk‖u‖p

∗+

W 1,p(x)(RN )

− C(σr+
k )

2

q+ ‖u‖2r+W 1,p(x)(RN ) − C(σs+
k )

2

q+ ‖u‖2s+W 1,p(x)(RN )

− C(σr−
k )

2

q− ‖u‖2r+W 1,p(x)(RN ) − C(σs−
k )

2

q− ‖u‖2s+W 1,p(x)(RN ).

Thanks to p∗+, r+, s+ > p−/2, we can take

ρk = max

{
1,

1

κ1
, Ck

1/(max{2r+, 2s+, p∗+}−p−)
}
,

where

Ck =
κp−

1 min{1, α0}p−

p+p∗+
(
C(σr+

k )
2

q+ + C(σr−
k )

2

q− + C(σs+
k )

2

q+ + C(σs−
k )

2

q− + ϑk

) .

Note that ρk = Ck
1/(max{2r+, 2s+, p∗+}−p−) for sufficiently large k. So, for any

‖u‖W 1,p(x)(RN ) = ρk, we have

Iα(u) � κp−

1 min{1, α0}
p+

ρp
−

k − ϑkρ
p∗+

k −
(
C(σr+

k )
2

q+ + C(σr−
k )

2
q−

)
ρ2r

+

k

−
(
C(σs+

k )
2

q+ + C(σs−
k )

2
q−

)
ρ2s

+

k

� κp−

1 min{1, α0}
p+

ρp
−

k

−
(
C(σr+

k )
2

q+ + C(σr−
k )

2
q− + C(σs+

k )
2

q+ + C(σs−
k )

2
q− + ϑk

)
ρ
max{2r+, 2s+, p∗+}
k

� ρp
−

k

κp−

1 min{1, α0}(p∗+ − p−)

p+p∗+
=: τk > 0.

It is easy to see that τk → +∞, as k → ∞. The proof is now complete. �
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Using condition (C4), we can find x0 ∈ R
N such that β(x0) > 0. Thus, there

exist positive constants �1 < �2 such that �1 < |x0| < �2, px0
= sup�1<|x|<�2

p(x) <

p∗x0
= inf�1<|x|<�2

p∗(x), and β(x) � β(x0)/2 for all |x| ∈ (�1, �2). Then we can

choose radially symmetric functions ϕi ∈ C∞
0 (B�2

(0)\B�1
(0)) (i = 1, 2, . . . , k) such

that suppϕi ∩ suppϕj = ∅ for i 
= j (i, j = 1, 2, . . . , k).

Set V −
k = {ϕi : i = 1, 2, . . . , k} ⊂ W

1,p(x)
rad (RN ). Then for any k ∈ N we have

codimV +
k +1 = dimV −

k .

Lemma 4. For every k ∈ N, there exists Rk > 0 such that Iα(u) � 0 for any
u ∈ V −

k and ‖u‖W 1,p(x)(RN ) � Rk.

Proof. For any u ∈ V −
k and ‖u‖W 1,p(x)(RN ) � 1/κ1 (κ1 is given in (3)). Using

condition (C1), the growth of F and the Hardy-Littlewood-Sobolev inequality for
variable exponents, we have

Iα(u) =

∫
�1<|x|<�2

1

p(x)

(
|∇u|p(x) + α|u|p(x)

)
dx−

∫
�1<|x|<�2

β(x)

p∗(x)
|u|p∗(x)dx

− 1

2

∫
�1<|x|<�2

∫
�1<|y|<�2

F (x, u(x))F (y, u(y))

|x− y|λ(x,y) dxdy

� max{1, α}
p−

∫
�1<|x|<�2

(
|∇u|p(x) + |u|p(x)

)
dx−

∫
�1<|x|<�2

β(x0)

2p∗(x)
|u|p∗(x)dx

+ C‖F (·, u(·))‖2
Lq+(RN )

+ C‖F (·, u(·))‖2
Lq−(RN )

� max{1, α}
p−

∫
�1<|x|<�2

(
|∇u|p(x) + |u|p(x)

)
dx−

∫
�1<|x|<�2

β(x0)

2p∗(x)
|u|p∗(x)dx

+ C

(∫
�1<|x|<�2

gq
+

1 |u|q+r(x)dx

) 1

q+

+ C

(∫
�1<|x|<�2

gq
+

2 |u|q+s(x)dx

) 1

q+

+ C

(∫
�1<|x|<�2

gq
−

1 |u|q−r(x)dx

) 1

q−

+ C

(∫
�1<|x|<�2

gq
−

2 |u|q−s(x)dx

) 1

q−

.

By the Young inequality, for any ε > 0, there exist C1(ε), C2(ε), C3(ε), C4(ε) > 0
such that

g1(x)
q+ |u|q+r(x) � ε|u|p∗(x) + C1(ε)g1(x)

q+p∗(x)/(p∗(x)−q+r(x)),

g2(x)
q+ |u|q+s(x) � ε|u|p∗(x) + C2(ε)g2(x)

q+p∗(x)/(p∗(x)−q+s(x))
,

g1(x)
q− |u|q−r(x) � ε|u|p∗(x) + C3(ε)g1(x)

q−p∗(x)/(p∗(x)−q−r(x)),

g2(x)
q− |u|q−s(x) � ε|u|p∗(x) + C4(ε)g2(x)

q−p∗(x)/(p∗(x)−q−s(x))
.

Using the above inequalities and condition (C1) we obtain

Iα(u) � max{1, α}
p−

∫
�1<|x|<�2

(
|∇u|p(x) + |u|p(x)

)
dx−

∫
�1<|x|<�2

β(x0)

2p∗(x)
|u|p∗(x)dx

+ Cε
1

q+

(∫
�1<|x|<�2

|u|p∗(x)dx

) 1

q+

+ Cε
1

q−

(∫
�1<|x|<�2

|u|p∗(x)dx

) 1

q−

+ C
(
C1(ε)

1

q+ + C2(ε)
1

q+ + C3(ε)
1

q− + C4(ε)
1

q−
)
.
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It is obvious that ‖ · ‖Lp∗ (RN ) is also norm of V −
k . On the other hand, V −

k is

a finite-dimensional space, hence the norms ‖ · ‖Lp∗(x)(RN ) and ‖ · ‖W 1,p(x)(RN ) are

equivalent. Thus, we can find a constant CV −
k

> 1/κ1 such that ‖u‖W 1,p(x)(RN ) �
CV −

k
‖u‖Lp∗(x)(RN ) for any u ∈ V −

k . Hence, for ‖u‖W 1,p(x)(RN ) � CV −
k

and 0 < ε < 1

we obtain

Iα(u) � κ
px0
2 max{1, α}

p−
‖u‖px0

W1,p(x)(RN )
−

∫
�1<|x|<�2

β(x0)

2p∗(x)
|u|p

∗(x)dx

+ C

(
ε

1
q+ + ε

1
q−

)∫
�1<|x|<�2

|u|p
∗(x)dx

+ C

(
C1(ε)

1
q+ + C2(ε)

1
q+ + C3(ε)

1
q− + C4(ε)

1
q−

)

� κ
px0
2 max{1, α}

p−
‖u‖px0

W1,p(x)(RN )
−

∫
�1<|x|<�2

β(x0)

2p∗+
|u|p

∗(x)dx

+ Cε
1

q+

∫
�1<|x|<�2

|u|p
∗(x)dx+ C

(
C1(ε)

1
q+ + C2(ε)

1
q+ + C3(ε)

1
q− + C4(ε)

1
q−

)
,

where κ2 is given in (3).

Setting ε = min

{
1,

(
β(x0)
4Cp∗+

)q+
}
, we have

Iα(u) � κ
px0
2 max{1, α}

p−
‖u‖px0

W1,p(x)(RN )
−

∫
�1<|x|<�2

β(x0)

4p∗+
|u|p

∗(x)dx

+ C

(
C1(ε)

1
q+ + C2(ε)

1
q+ + C3(ε)

1
q− + C4(ε)

1
q−

)

� κ
px0
2 max{1, α}

p−
‖u‖px0

W1,p(x)(RN )
− β(x0)

4p∗+
‖u‖

p∗x0

Lp∗ (RN )
+ C(ε)

� κ
px0
2 max{1, α}

p−
‖u‖px0

W1,p(x)(RN )
− β(x0)

4p∗+

(
1

C
V −
k

‖u‖W1,p(x)(RN )

)p∗x0

+ C(ε),

where C(ε) = C
(
C1(ε)

1

q+ + C2(ε)
1

q+ + C3(ε)
1

q− + C4(ε)
1

q−
)
. Thanks to px0

<

p∗x0
, we can deduce that there is Rk > 0 such that Iα(u) � 0 for any u ∈ V −

k and
‖u‖W 1,p(x)(RN ) � Rk.

The proof is now complete. �

2.2. Proof of Theorem 1 completed. Firstly, using condition (C2) we know

that Iα is an even functional on W
1,p(x)
rad (RN ). Next, combining Lemmas 1–4 with

Theorem 6.3 of Struwe [17], we deduce that for all α � α0 and large enough k ∈ N,

ζk = inf
h∈Γk

sup
u∈V −

k

Iα(h(u))

is a critical value of Iα, and ζk � τk, where

Γk =

{
h ∈ C

(
W

1,p(x)
rad (RN ),W

1,p(x)
rad (RN )

)
:

h is odd, h(u) = u, if u ∈ V −
k

and ‖u‖W1,p(x)(RN ) � Rk

}

and α0 > 0 is given in Lemma 1. Finally, by Lemma 3, we have ζk → +∞, if
τk → +∞, as k → ∞. So, we infer that the functional Iα admits a sequence of

critical points {uk} ⊂ W
1,p(x)
rad (RN ) such that Iα(uk) = ζk → +∞, as k → ∞.

The proof of Theorem 1 is now complete. �
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[11] Giuseppe Mingione and Vicenţiu Rădulescu, Recent developments in problems with nonstan-
dard growth and nonuniform ellipticity, J. Math. Anal. Appl. 501 (2021), no. 1, 125197, DOI
10.1016/j.jmaa.2021.125197. MR4258810

[12] S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akad. Verlag, 1954.

[13] Roger Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond.
Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356 (1998), no. 1743, 1927–1939, DOI
10.1098/rsta.1998.0256. MR1650465

[14] Roger Penrose, The road to reality, Alfred A. Knopf, Inc., New York, 2005. A complete guide
to the laws of the universe. MR2116746
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