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ABSTRACT. This paper deals with the mathematical analysis of solutions for
a new class of Choquard equations. The main features of the problem stud-
ied in this paper are the following: (i) the equation is driven by a differential
operator with variable exponent; (ii) the Choquard term contains a nonstan-
dard potential with double variable growth; and (iii) the lack of compactness
of the reaction, which is generated by a critical nonlinearity. The main result
establishes the existence of infinitely many solutions in the case of high per-
turbations of the source term. The proof combines variational and analytic
methods, including the Hardy-Littlewood-Sobolev inequality for variable expo-
nents and the concentration-compactness principle for problems with variable
growth.

1. INTRODUCTION AND ABSTRACT SETTING

Consider the following Choquard problem with variable exponents and critical
reaction:

(1)
—Apyu+ a|u\p(m)’2u = (fRN |;i(?;"%dy) flz,u(x)) + ﬂ(w)|u|ﬁ*(”)’2u in RY,
u € Wl’p(’“)(RN),

where A : RV xRY — R, f : RY xR +— Rand 3 : RV — R are continuous functions,
and p : RY = R is a Lipschitz radially symmetric function satisfying 1 < p~ <
p(z) < p™ < N. Let p*(z) = Np(x)/(N—p(z)) denote the critical Sobolev exponent
and assume that a > 0. Here, p™ and p~ are defined by p™ := sup,cpn~ p(z)

and p~ := inf cpny p(z). We assume that F(y,t) = fot f(y,s)ds and Apyu =
div (|Vu|p(m)’2Vu) denotes the p(x)-Laplace operator with variable exponent.
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We recall that the Choquard equation was first introduced in the pioneering

work of Frohlich [3] and Pekar [12] for the modeling of quantum polaron:

(2) —Au+u= <%| * u|2> u in R3.

As pointed out by Frohlich and Pekar, this model corresponds to the study of free
electrons in ionic lattices interacting with phonons associated to deformations of the
lattices or with the polarisation created on the medium (interaction of an electron
with its own hole). In the approximation to Hartree-Fock theory of one component
plasma, Choquard used equation (2)) to describe an electron trapped in its own
hole.

The Choquard equation is also known as the Schrodinger-Newton equation in
models coupling the Schrédinger equation of quantum physics together with non-
relativistic Newtonian gravity. The equation can also be derived from the Einstein-
Klein-Gordon and Einstein-Dirac systems. Such a model was proposed for boson
stars and for the collapse of galaxy fluctuations of scalar field dark matter. We refer
for details to Elgart and Schlein [2], Giulini and Grofardt [7], Jones [8], Lions [10],
and Schunck and Mielke [16]. Penrose [I3}[I4] proposed equation (2)) as a model
of self-gravitating matter in which quantum state reduction was understood as a
gravitational phenomenon. As pointed out by Lieb [9], Choquard used equation
@) to describe steady states of the one component plasma approximation in the
Hartree-Fock theory. We refer to Mingione and R&édulescu [II] for an overview
of recent results concerning elliptic variational problems with nonstandard growth
conditions and related to different kinds of nonuniformly elliptic operators.

The main features of the present paper are the following:

(i) the source term of problem () is driven by a differential operator with vari-
able exponent and a power-type nonhomogeneous term (the corresponding term in
problem (2)) is linear);

(ii) a key role in the left-hand side of problem ({J) is played by the parameter «
(due to the fact that we establish the main result in the case of high values of this
parameter);

(iii) the presence of the variable exponent A(z,y) in the Choquard nonlinearity
and the contribution of a critical nonlinearity in the reaction;

(iv) since the problem contains both critical and nonlocal terms, the analysis
developed in this paper uses more refined techniques than in the standard case.

We start with some basic notions on variable exponent spaces (see [I5] for more
details).

Set CY*(RY):={y€ C(RY): 1<~y <y < +oo}, where v := sup,cpn 7(2)
and v~ = inf cpy y().

Let M(RY™) be the space of all measurable functions u : RY +— R. For ¢ €
CT(RY), let LE@(RY) = {u:ue M(RY) and [y |u(2)f@dz < +oo0} denote
the Lebesgue space with variable exponent £(-). This space is equipped with the
“Luxemburg norm” defined by

£(z) }
dr<1;.

|l Le mry = inf {77 >0: /
RN

Let WHE@(RY) = {ue LE&(RN) : [Vu| € LE@(RN)} denote the Sobolev
space with variable exponent £(-). On W@ (RN) we can consider one of the

u(z)
n
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following equivalent norms

lullw.ee @yy = [[ull Lee @ny + [ Vull Lee @)

() ()
[l ::inf{n>0:/ (‘Vu—(ac) )dmél},
RN n

that is, there exist two positive constants k1, ko such that

or

u(@)
n

_|_

(3)  millullwrew @y < lull < K2llullwrce @ny  forallu e Wwhe@) (RN,

Let C.(RY) be the subspace of functions in C(R") with compact support and de-
note by Co(RY) the closure of C.(RY) with respect to the norm |¢|. =
sup {|¢(z)] : @ € RV }. A finite measure on RY is a continuous linear functional
on Co(RY). For any finite measure p we define ||| := sup{|(i, ¢)| : ¢ € Co(RY),
|ploo = 1}, where (1, ) = [ pdp.

Let M(RY) be the space of finite non-negative Borel measures on RY. A se-
quence fi, — p weakly-x in M(RN) if (1, 0) — (u,¢) for all ¢ € Co(RY) as
n — 0.

In the sequel, if hy, hy € C(RY), we say that hy < hy if inf {ha(z) — hi(z) :
zeRV} > 0.

Throughout the paper, C' will denote a positive constant and the same C' may
represent different constants.

2. HIGH PERTURBATIONS OF THE SOURCE TERM

Throughout this paper we assume that the following conditions are fulfilled:
(C1) f e CRYN xR,R) and |f(z,1)] < g1(a)[t]"™) 7" + ga(a)[t[*) 71, ¥ (2,1) €
RY x R, where

p* ()t p*(z)q

0< g1 € L®RY) N Lrr@-r@at (RN) N L@ -r@a (RY),

p* (x)gt p*(z)q~

0< g2 € L°RY) N Lr@—@aF (RV) N Lr*@-=@a (RY)

and r, s € D:= {¢EC’+(RN) :p(z) <o(x)g™ <Pp(x)qt <p*(2), VwERN}
verify

p<Lrg <rgt <p, p<sqgT <sqt < ptandrt, sT>pT /2,

where ¢ € CT(RY), ﬁ + )‘(m S q(y) =2, forallz,y e RN, 0 < A\~ :
inf, ,erv AM(z,y) < AT = supmﬁyeRN Az,y) < N.

(C2) f(z,—t) = —f(z,t) for all (z,t) e RN x R.

(C3) f(z,t) = f(|z|,t) for all (z,t) € RN x R.

(C4) B € C(RN)NL>®(RYN), where 3 is radially symmetric, that is, 3(|z|) = 8(z)
for all » € RY, 3(x) > (£) 0 and 5(0) = B(c0) = 0.

(C5) There exists p < 6 such that 0 < 0(x)F(z,t) < 2f(x,t)t for all (x,t) €
RY x R, where F(x,t) = fo f(x,s)ds.

Let W2 (RY) denote the subspace of WP (RN) containing all functions

rad
with radial symmetry.
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Definition 1. We say that u € er b (@) (RY) is a weak solution of problem (I if

/ (|Vu|p 729UV + alulP® " 2up — ﬂ(x)|u\p*(m)*2uv) dx

/ / (y, u(y)f (@, u(z))v(z) dxdy for allv € W" () (RM).
RN JRN |

xr — ‘)\(x,y) rad

Our main result establishes the existence of infinitely many radial solutions in
the case of high perturbations of the absorption term. More precisely, we prove the
following multiplicity property.

Theorem 1. Assume that hypotheses (C1)—(C5) are satisfied. Then there exists
ap > 0 such that for all o > v, problem () has infinitely many radial solutions.

2.1. Auxiliary properties. The energy functional associated to problem () is
given by

Iow) = 1(0) = ¥(w) = [ Ty a,
where 1
)= /RN p(z) (|Vu|P + alul? ) dx
and

/RN /]RN |:1c — A<(wy7;> u ))dxdy-

It follows from Alves and Tavares [I, Lemma 3.2] that ® € C1(W, rla’;(x) (RM),R)
and

/ / (y, u(y) f (@, u(x))v(z) dxdy for allv e Wl’z(w) (RM).
RN JRN |95—y|A @) "

A straightforward argument shows that I, € C1(W, ’p (@) (RM),R). Thus, the criti-
cal points of the functional I, coincide with the Weak solutions of problem ().

Lemma 1. There exists ag > 0 such that for a > «g, any (PS) sequence {u,} C
whee) (RN) of I, (that is, I,(u,) — ¢ and I/, (u,) — 0 as n — o) is bounded in

rad

w 1,p(x) (RN)

rad
Proof. Let £(z) := p(x) + min {inf . g~ (0(x) — p(x)), inf cpn (p*(z) — p(x))} . Note
that p is a Lipschitz continuous and radially symmetric function on RY. Combining
this fact and condition (C5), we obtain that ¢ is a Lipschitz symmetric function
satisfying p < £ < p*.

By the Young inequality, we can deduce that for any e € (0,1), there exists
C. > 0 such that

(4)

Set

e(“x")gw [P QVunVK‘ e[V, [P + Celun [P

Taking € = %0, from relation () we obtain

(5)

u _ 6 x x
g(;)g |vun|p(m) 2vunv£‘ < 50|VUn‘p( ) + CZO/2|un|p( )
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Let a > 20y, /2/ly =: o > 0, using relation (5) and condition (C5) we have

Iotua) = { T, 125

1 1 w
= - p(z) p(x) n p(x)—2
/ (< (x) f(x)) (|Vun\ + afuy| ) + E(x)QWu"‘ VunV€> dz

/RN /RN a gﬂ]i(w) (f(x,uyz((?))un(@ - F(ﬂc,gn(x))) e

1 «
+ —_— — x)|Un, p (m)dﬂﬁ
L (i~ ) Bl
/ (£0|V7.Ln|p ? + Zoa‘un‘p(x) - %O‘VUMW”) - CZO/ZUHP($)> dz

/RN/R (Y, un(y (f(x,un(x))un(ff) _ F(z,un(2))

~ fo =y 0(x) 2

/ <5|V ‘p(w)+€2 u |p(x)> dr.
RN

It follows that {u,} is bounded in W7 (@) (R™). The proof is now complete. [J

rad

WV

) dxdy

WV

Lemma 2. Any (PS) sequence has a convergent subsequence when a > «q, where
g 15 given in Lemma [

Proof. Let {u,} C W, ’p(m)(RN) be a (PS) sequence. By Lemma [I] we get that

rad

{u,} is bounded for o > «vg. Since W, L (I)(RN ) is reflexive, up to a subsequence,

we may assume that there exists u & er P (@) (RY) such that u,, — u weakly in

Wwhee) (RN, u, — u weakly in WP (RN) and u,(z) — u(z) a.e. 2 € RV,

rad

We first prove that
(@ (up) — ®'(u), up —u) — 0, as n — oo.
Indeed, since u, — u weakly in WT o (I)(RN ), as n — oo, we obtain

(D' (u), up —u) — 0, as n — oo,

rad

where ®'(u) € (W ’p(x)(]RN)) .
It remains to prove that

(@' (up,), up, — u) — 0 as n — oco.

By the Hardy-Littlewood-Sobolev inequality for variable exponents (see Alves
and Tavares [I, Proposition 2.4]), we have

(6) |<(I)'(un),un - u>\ < CHF('vun)HLqu(]RN)Hf('vun)(un - u)||Lq+(RN)
+ CIEC un)ll o @y 1 G5 un) (tn = W)l o gy
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By condition (C1) and the boundedness of {u,} in W:ag @) (RY), we obtain

(7) ||F('aun)||Lq+(RN)

1
T
<¢ (/ (lun 77 4 |77 dm)
RN
1 1
pe
<C</ |u |q rz)d1.> +C</ |u |q SI)dl’)
RN RN

. ’
< Cmax {unllyi o vy 10l v |

o+ Cmax {unll 3o o ovys Nl o oy }

<C
and

(8) Gl vy < Cmax {funll o avys Nnllye o vy |

+Cmax{||u7l||Lq 5(1:)(]RN)’ ||un‘|;;1*s(w)(]RN)}
<C.

Moreover, the compact embeddings

Wl,p(z) (RN) N Lq*r(x) (RN)7 WLP(!E) (RN) N L‘IJrS(QC)(RN)7

rad rad
WEHD ®Y) s L1 7O RY), WLHD ®Y) o L1+ (RY)

combined with condition (C1) and the boundedness of {u,} in WN’IZ(I) (RY) imply
that

9) 1) = 01
+ +
O™ I il =l gy
+( +
D) N i Pt

+ afr”
SCmax { It =l o oy lim = L‘TI:T(“(RN)}

Q+i+ +
+ C' max { |ln, — U’HL;*T(I)(RN)’ lun — uHqurr(z)(]RN)}
o

+ ts-
+ CmaX{Hun - u‘l%q+s(:ﬂ)(RN)7 ||u7’b - ulL;l+s(:c)(RN)}

ot .
e Cmax{a = 0l o = e,

=o0,(1), asn — oo
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and

(10) 1) (= )1,

[[un = ul

ngax{Hun —ul|?

9" r—
—
Lq_r(m)(]RN)7 Lq_r(a;)(]RN)}

—7 q_
ey I =T}

qa—s—
st
LqS(I)(]RN)}
— ot

O =l g o = 2,
=0, (1), as n — oo.

By relations (@)—(I0), we have (¥’ (uy,), un, —u) — 0 as n — oo.
Next, we prove that

| o

Note that u, — u weakly in WP (RN) as n — oo. Up to a subsequence,
still denoted by {u,}, we may assume that there exist p, v € M(RY) such
that |Vu,|[P®) + alu,[P® — u and |u,|”®) — v weakly-+x in M(RN). By
the concentration-compactness principle for variable exponents (see Fu and Zhang
[6l Theorem 2.2]), we know that

p= |Vl 4 aful @ + 3" b, + i
jeJ

v=[ul"® +3 v,
jeJ
where J is a countable set, {yx;}, {v;} C [0,400), {z;} C RY, §,, is the Dirac
mass centered at z;, i € M(RY) is a non-atomic non-negative measure. By the
concentration-compactness principle for variable exponents, we have

limsup/ un |P” ) da :/ dv + v :/ |ulP” I)dx—l—Zl/J + Voo
RN RN

n— oo jeJs

a—rt

+Cmax{||un —ul, "

l|tn — ul

+ Cmax{”un - UHqufsu)(RN)’

pr(@)=2y, ‘u|p*(w)—2u) (up, —u)dz — 0, as n — oo.

and

(i) We prove that v; = 0. For any ¢ > 0, we choose a radially symmetric function
v € C§°(B2:(0)) such that 0 < ¢ < 1, [Vp| < 2/e; ¢ =1 on B.(0). Since {unp} is
bounded in W:&Z(w) (RYN), we obtain (I’ (uy), une) — 0 as n — co. It follows that

(14, (un), unep)

= [ (9P T ) + 0l P — Bl ) da
/ / yaun f(x un(x))un(‘r)(/)(z)dmdy
RN JRN

‘;1; — |>\(3¢ Y)

- /RN ((IVanlP@ + afun P2 0 + [Vt P2V, Vg — B2) @ p)

- <(I)I(un)v un‘P>'
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Next, we show that

(@ (un), unp) — /]RN /]];{N (v u(z ))u(x)@(i)da:dy = (®'(u),up), as n — oo.

=i

By condition (C1) and using again the compact embeddings

Wt (RY) = LET O RN), Wi RY) s LT (RY),

rad rad
W B (RY) — LT T @RN), W5 (RY) < L1 @ (RY),

the Hardy-Littlewood-Sobolev inequality for variable exponents, the boundedness

of {up}in W, (;Z(z) (R™), relations (@) (), and the Lebesgue dominated convergence
theorem, we obtain

) tnp) = (®'(0), ug)
/ / CROIEELITOE (L
RN JRN

|z —y|Mew)

| [ [, el - Fonstg) o syt

|z =y M)
< CIFCy )l ot gy 1ot )tim = )l s )
+ CIIF (- un)ll fo- (RN)Hf( Un)Un, —f(',U)UHLq—(RN)
T CIFCtn) = Pl ot oy 0l s gy
T OIFC ) = Fe)l o o 0l g
<O f(un)u— f(- u)“Hyﬁ (RN) + CIf (- un)u — f(-,u)uHLq—(RN)
+ CuHF(:un) - F('7“)HL4+(RN) + CHHF(7un) - F('au)”Lq*(RN)

= o,(1), as n — o0,

where C,, is a positive constant.
Thus, we get (D' (uy,), unp) — (P’ (u),up) as n — oco. Therefore

n—r oo

lim \Vun|p(“’)*2Vuanoundx:/ —npdu+/ B(z)pdv + (D' (u), up).
RN RN RN

Since u, — u in LP*)(By.(0)), we have IVounl Lo @y = IVoull poe) @y as
n — oo. It follows that

lim
n—oo

/ |V, [P =2V, Vou, dz
RN

<limsup/ |V, [P@ Y| Vou, | dx
RN

n—o0

<limsup CJf|Vun PO e ([Vounl ooz,
n—o00 Lr(@)—1(RN)
< C||V<P“||Lp<w>(RN)-
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Furthermore, by a straightforward computation we get

/ |VoulP™ da
RN

- / [VeulP@dz < Cll[VlP @ e 1?0 e o)
B2 (0) LP*(@)=p(®) (By.(0)) L P(®) (B3.(0))
T P
N N
< C'max / [Ve|N da , / V|~ da Nwl”N
B (0) B (0) L P(®) (B3, (0))

+

D p_
ANwn\ ¥ N\ ¥
< C'max ( N ) ,( N H|U|P(x)H »* (2)
L P(2) (B3 (0))

=o0:(1), ase =0,

where wy is the surface area of the unit sphere in RY. Similarly, we can also infer
that

(@' (u), ugp)]
< CHF(',U)HLqu (RN)||f('7U)USOHLq+(RN)
+ CHF(VU)HLq* (RN)”f(Vu)u‘PHLq* (RN)
< C”f('au)uSOHLq*(RN) + C||f('7U)U(,0||Lq—(RN)

1 1
at at
C </ gz11+ |u|r(m)q+dx +C (/ gt21+ |u‘5(m)q+d:c
325(0) B2E(O)

1

1
_ _ a= _ _ q
+C (/ 9(11 |u‘r(x)q dit) +C (/ gg |u|s(x)q d.r)
B2 (0) B (0)
Fea e
q q
<C (/ W[ @ dz )+ / Jul* @ 4z
B2:(0) B2 (0)

1 1

~ _ \=+
+C / lu"9" dx +C / |u*®) dg =0.(1), as e — 0.
Bac (0) Bac(0)

Therefore, ({0}) = B(0)v({0}) = 0 (since B(0) = 0), hence 0 is not an atom of .

Now, we prove that for any j € J, v; = 0. From the above information, we may
assume that there exists x;, # 0 (jo € J) such that v;, = v;,({z;,}) > 0. Due
to u, € WTI(;Z(I) (RY), the measure v is O(N)-invariant, where O(N) is the group
of orthogonal linear transformations in RY. For any g € O(N), vj,({g9zj,}) =
vj,({zj,}) > 0. We know that

N

OW)| = _jnt_O(N)| = +2x,
where |O(N),| denotes the cardinality of {gz : g € O(N)}. Then, v, ({gzj, : g €
O(N)}) = 4+00. But the measure v is finite, hence we get a contradiction. So, we
obtain v; = 0 for any j € J.

(ii) We show that vo, = 0. For any R > 0, we take a radially symmetric function
wr € C®(RY) such that 0 < wg < 1, |Vwg| < 2/R; wg = 1 in RV \ Byg(0),
wgr = 0 in Br(0). Clearly, {u,wg} is bounded in whee) (RM). So, we can easily

rad
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obtain (I/,(uy), unwr) — 0, as n — co. Hence, we have

(11) (I (), upwi) = / (192l + afun ") wr
RN
+|Vau, P2V, Vg, — ﬂ(x)|un|p*(“’)w3) dx — (D' (uy), unwr).
Due to B(oc0) = 0, we have

(12) lim limsup B(z)un|P @ da = 0.
RN

R—+400 nsoo

Since 1 < p~ < p(x) < pT < N, by the definition of wg we get

lim |Vwru[P®dz = 0.
R—)+OO RN

Thanks to u, — u strongly in LP(®)(Byr(0) \ Br(0)), we can easily observe that
HILH;O [Vwrun| oe @yy = IVwrYl| Lo @y

So, by Holder’s inequality and the above inequalities we obtain

(13) lim limsup

R—+400 nsoo

/ \Vun|p(m)72VuanRunda:
]RN

<C REIEOO hyrln_ilip [Vwrun| Lo @y

< CRLHEOO vaRuHLp(m)(RN) =0.
Since
p*(x)gt p*(x)q—

0< g1 € L@ —r@a (RN) (M| L@ -—r@a (RY)
and
P (@)q

__pr@at R
0 < go € L @—@at (RV) mLp*f;)—s(qw)r RM),

we can deduce that

p* (@)q p* (@)q
lim g1Pr@—r@at dp =0, lim goP*@—s@at dr =0,
Rtoo JRN\BR(0) Rt00 JRN\BR(0)
p*(x)g” p*(x)g~
lim g1P*@-r@ae dr =0, lim gor*@—s@a dr = 0.
R—+o00 RN\ Br(0) R—+o0 RN\Bgr(0)

By the above four relations, condition (C1) and the boundedness of {u,} in
WP (RN, we get

rad

lim limsup/ |f($7un)un‘q+dx
RN\BRr(0)

R—+400 nosoco

< C lim limsup/ glq+\un\r(‘”)q+dx
RN\ BR(0)

R—+00 nosco

+C lim limsup/ ggq+|un\s(x)q+dx
RN\ Br(0)

R—+400 pooo

. +
<C lim g7 || _ »r0r
R—+o00 Lp* @) —r(@)at (RN\ B (0))

. +
+C lim |g? || @ =0
fi=rtoo LP* @ =24t (RN\BR(0))
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and

lim limsup/ |f (2, up)un|? da
RN\ Bg(0)

R—+0c0 posoco
<C lim g7 | »* (@)
R—4o00 Lp*(@)—r(z)q— (RN\BRr(0))

+C lim g || e =0.
fimrroo LP*@=2(a" (RN\Bg(0))

By (@), (8) and the Hardy-Littlewood-Sobolev inequality for variable exponents,
we have

(14) Rlim lim sup [(®'(uy,), unwg)|

—+00 n—oo

< CRLim lim sup (”f(a un)uanHLqu (RN) + ||f(‘,un)uan||Lq*(RN))

+00 n—oo

S O lim limsup (”f("“")“”HLq*(RN\BRm)) + Hf(”“n)“"”Lf(RN\BR(o)))

—+00 noco
=0.
By relations (), (I2), (I3) and (I4), we obtain

loo = lim limsup/ (|Vn [P + o, [P wpde = 0.
R—+ RN

© n—oo

Furthermore, we can conclude that

lim limsup/ (IV (unwr)[P® + alu,wrP™)ds = 0.
RN

R—+400 pn—oo
It follows that

Voo = lim 1imsup/ lwrun|P @ dz = 0.
R—+0© nooo JRN

Using (i) and (ii), we obtain

limsup/ \un|p*(m)dx:/ lulP”®) da.
n—00 RN RN

Next, by the Brezis-Lieb-type lemma (see [5, Lemma 2.1]) we find

lim [t — ulP” @ dz =0,
n—oo RN

that is, |lun — ullLp* @ (y) = 0, as n — co. Combing this fact and 3 € L (RY),
we can deduce that

lim B(z) (|un\p*(w)_2un — |u|p*(”)_2u) (up, —u)dz = 0.

n—oo Jpn
Furthermore, from the above information, we have
nl;&([&(un) — I (), un — u) + (D' (uy) — &' (u), uy, —u) = 0.
It follows that
nli_)n;(}('f'(u@ =Y (u), up — u)
= lim ((I{x(un) — I (u), up — u) + (D' (u,) — D' (u), u, — u)

n—oo
+/ B(x) (‘un‘p*(m)ﬂun _ |u|p*(x)*2u) (tn, — u)dﬂ:) =0.
RN
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Finally, by taking similar steps as Fu [4, Theorem 3.1], we can derive that
nh~>Holo ||Un — u”Wl,p(z)(RN) =0.
The proof is now complete. |

Since er (;Z(I) (R™) is a separable and reflexive Banach space, we can find {e,, }°°

C Wb (RY) and (Y )5 € (W5 (RY)) such that ¥m(en) = dum (Oum =

rad rad

1if n =m and é, = 0 if n£m), whee) (RN)=span{e, }> ; and (W:f;(z) (RN))

rad
= span{y, }>°_;.
In the sequel, we use V,j to denote span{e; :i =k,...} (k=1,2,...). Then we
have the following auxiliary property.

Lemma 3. For any large enough k € N, there exist 7, > 0 and px, > 0 such that
Io(u) = 7 for any u € V& with ||ullyr .m0 @y = p-

Proof. For any u € V" with [Jully1.pe) @y > max{%,l} (k1 is given in (),
combining condition (C1), the growth of F' and the Hardy-Littlewood-Sobolev in-
equality for variable exponents we have

1 *
Io(u) > min{1, ao} (Wu|p(r) i |u|p(m)) d _/ 5*(33) P @ dg
RN P+ rN P¥(x)

= ClIFC w7 —ClIF (w7

o+ (RY) La™ (RN)

min{1, ao} (‘Vu|p(x) + |U|p(w)) dx _/ oo Jul”” P da
RN P+ ry P7(2)
2

o =3
- C (/ |u|r(ac)q+dx> - C (/ |u|s(x)q+dx>
RN RN

2 2

_C </ || (@) dx) T _ o (/ |u|5("”)q_dx> o
RN RN

ot =sup {/ u[" @9 d ;€ Vi lullwrre @ry =1
RN

Set

)
)

o, =sup {/ |U|T(z)qid1‘ Tu € V;jv ||u||W1vP<’”>(1RN) =1
RN

)

OZ+ = sup {/ |U|S(m)q+dac tu € V]ja ||U||W1=P<“)(1RN) =1
RN

— —— —— ——

o, =sup {/ |U|S(z)qidac Tu € V;jv ||UHW11P(“(RN) =1
RN

We first show that o} " — 0, as k — co. We observe that o " > o1, > 0, hence
ot — o™ >0, as k — 0o. Choose uy, € V" with [lug |l @y = 1 such that

1
0<opt = [ e < g

for each k € N*. Since W:&Z(x)(RN ) is reflexive, {uy} admits weakly convergent

subsequence, up to a subsequence, still denoted by {uj}. Then there exists u €

W:&Z(m) (RY) such that uy — u weakly in W:&Z(m) (RM), as k — co. Now we assert
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that u = 0. Indeed, for any v, € {t, : n=1,2,..., m,...}, ¥ (ur) = 0 for any
k > m. So, ¥y (ug) — 0, as k — oo. This implies that ¢, (u) = 0 for any ., €
{pp :n=1,2,..., m,...}. Due to the denseness of {¢), :n=1,2,..., m,...} in

(eréz(w) (RN )) , we obtain v = 0. By condition (C1) and the compact embedding
whp@) (RV) < L™@3" | we have

rad
n
/ lug|" ™ dz — 0, as k — co.
RN

Thus, we conclude that ot — 0 (as k — oc) holds true.

Similarly, we can deduce that o, — 0, O’Z+ —0and o] —0, as k — oo.
Denote

B(x) .
Uk = L P O dr s u € Vi e =1,
R {/RN p*(x) |7_L| L k> HUHWL () (RN)

Next, with the same ideas as in the proof of Lemma 3.5 of Fu and Zhang [6], we
get 9 — 0, as k — oo.
From the above information, we have

&2 min{1, ag}
p+
N

2 2 +
= Clop ") ||u||%/17;1,p(m)(RN) —C(o3) " ||u||%,51,,,<z>(RN)

o

“t
Io(u) > ||UHW1,p(w>(RN) - 19k||u||€vl,p(z)(RN)

= + 2 +
—C(o}, ) ||u||%47;1,p<z>(RN) —C(og7 ) ||U‘|%51,p(m>(RN)-

Thanks to p**, 7+, s > p~ /2, we can take

P = Max {1, i, C«I<:1/(rn£1)(~{21ﬂ4r7 2st, p*+}p)} 7
K1

where

/#lf min{1, ag}p~

o+t (Clop )™ +Clo) ) + Clofh)™ +Cloy ) + k)

Cy, =

Note that p, = Ckl/(max{QTJr’ 255,07 p7) for sufficiently large k. So, for any
[ullwrpe @y = pr, we have

D

kY min{l, « - .t o 2 2 o+
o) > L 0d gt (00T + 00 )
2
- <C(UZ+)G+ +C(op )“_> o
S Ky mm{LaO}pi_

2

2 - sty = s— max{2rT, 251, p*t
‘<0<oz*>q++c<az )i~ + O e +Cloi ) +ﬂk)pk gy

> KE mm{l,fzo}ip*+ —P) .. g
pTp*
It is easy to see that 7, — +00, as k — 0o. The proof is now complete. ([l
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Using condition (C4), we can find 2o € RY such that 3(x¢) > 0. Thus, there
exist positive constants g; < g2 such that g1 < |xg| < 02, Pz, = SUPg, <|z|< 05 p(z) <
Py, = infy cjzj<p, P*(2), and B(z) = B(20)/2 for all |z| € (01,02). Then we can
choose radially symmetric functions ¢; € C§°(B,,(0)\ B,,(0)) (: =1,2,..., k) such
that supp p; Nsuppp; =0 fori # j (4, j =1,2,...,k).

Set Vi ={pi:i=1,2,...k} C era’;(x)(]RN) Then for any k& € N we have
codim V,:' +1=dimV, .

Lemma 4. For every k € N, there exists Ry, > 0 such that I,(u) < 0 for any
u €V and |[ullwree) @y 2 Ry

Proof. For any u € V,~ and |[ully1pe) @vy = 1/61 (k1 is given in (@)). Using
condition (C1), the growth of F' and the Hardy-Littlewood-Sobolev inequality for
variable exponents, we have

I (u) = / 1 <|Vu|p(””) + a|u|p(w)) dr _/ @mvn*(m)dx
01<|z| <02 p(a:) o1<|z|<o2 P (x)

_1/ / F(:mu(:v))li((f,;t(y))dxdy
2 o1<]z|<e2 Jo1<|yl<o2 |z — y| Moy

< max{1,a} (|Vu|p(”) —|—|u|p(’”))da:—/ B(xo) lu .

—_ *
p 01<|z|<02 o1<|z]<02 2p (‘T)

+ CIECul) o gny + CIFC w0 gy
< max{l,a} (|vu|p(z) + |u|p(x)> dx _/ ﬂ(fO) |

- o1<]z|<e2 o1<]z|<e2 2p (

1

1
pe2 =
+C / gf+|u|q+’”(w)d;v +C / q |uf?" 5 dg
o1<|z]<o2 91<\x|<gz

1

1

+C / g‘1f|u\q_7’(””)dx +C / gl |ul? T5(2) gy
o1<|z| <02 Q1<|:L’\<92

By the Young inequality, for any £ > 0, there exist C;(g), Ca(e), C5(e), Cy(e)

such that
o (z q+|u|q+r(z) < 6|u‘p*(ﬂ0) +C1(e)gi(z p*(x)/(p*(z)—q r(x))

atp(2)/(p"(2)—q" s(x))

(x) ()i
g2(@)" Jul?" @ < elulr @ + Co(e)gale
e )

(

)
)
x q7|u|q_7’(z) < E‘u|p*(l’) + Cs(e {h(.’[)q p*(x)/(p* (z)qur(z)),
(z)
)

q p"(z)/(p (I)*q_S(I)).

g2(2)? Ju|? * L efuP" ™) + Cy(e)ga(x

Using the above inequalities and condition (C1) we obtain

Ta(u) < 2xilo) OVuP@)+|MM@)dx—:/ Bo) | (@) gy

*
p o1<]z|<e2 o1<|z|< o2 2p (‘T)

1

1
a1 . a* a . K
+ Cedt / [ulP” @) da + Cea™ / [ulP” @) da
o1<|z][<o2 o1<|z|<02

+C (CLET +Cale) T + Cyle)7 + Cule) 7).
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It is obvious that || - || = g~y is also norm of V,~. On the other hand, V,~ is
a finite-dimensional space, hence the norms || - [| Lo+ @~y and || - [ly1.pe) @y are
equivalent. Thus, we can find a constant Cka > 1/k1 such that [lully1,ee) @y) <
C’ka 1wl o= ) vy for any u € V,™. Hence, for [ully1.pe) @yy = Cka and 0 <e<1
we obtain

L (u) < K270 max{l,a}” 7= / B(xo) juf? (@) g

p whep() R e1<|z|<e2 2p*(x)

a4
+C(5‘1+ —i—Eq_)/ ulP” @ da
o1<|z|<e2

a L o
40 (CUTF +Cale) i + Cole) ™ +Ca0)T )
Pag
Ko * max{l,a} | p. / B(o) | 1p* ()
<2 It — =L P e
R
a2 . 1 a1 1
+05q+/ |u|? (x)dx-l-C'(Cﬁ(s)‘ﬁ' + Cs(e ) + Cs(g)a~ +C’4(5)Q‘),
e1<|z|<e2
where ko is given in (3).
n
. . Blzo) \?
Setting ¢ = min q 1, icpeT , we have
DPxg
Ky ® max{l,a}  p. B(zo) ()
o) < 2 g = [ B s
P Whp() (RN) o1<|z[<o2 4p*
a a2 1 1
+C <Cl(€)q+ —|—CQ(6)‘7+ +03(6)‘17 —|—C4(6)‘17>
Pz
Ko 0 max{1, a} . ( pw
< 2 O ey — % ey +C)
Ky 0 max{1, a} Pag B(zo) 1 Po
< Tl‘u||wl,p(z)(RN) - 4p—*+ ?HUHWIVP(I)(RN) + C(e),
k

where C(e) = C (C’l(e)q%r + CQ(E)# + Cg(e)q% + C4(s)a%). Thanks to pg, <
Py,» We can deduce that there is Ry > 0 such that I, (u) < 0 for any v € V,~ and

[ullwrpe @yy 2 Ry
The proof is now complete. |

2.2. Proof of Theorem [I] completed Firstly, using condition (C2) we know

that I, is an even functional on W, ’p (@) (RY). Next, combining Lemmas [[H] with
Theorem 6.3 of Struwe [17], we deduce that for all @ > ag and large enough k € N,

Cr = 1nf sup I, (h(u))
he uEV7
is a critical value of I, and (i > 7, where

D= {ne o (Wi @) wio @) . e 1= <V

and [[ullyy1.p0e) wvy = R
and ag > 0 is given in Lemma [II Finally, by Lemma Bl we have {, — -+oo, if
T, — +00, as k — o0o. So, we infer that the functional I, admits a sequence of
critical points {ur} C W:(fi(w}(RN) such that I, (ug) = (x — 400, as k — oo.

The proof of Theorem [l is now complete. O
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