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Abstract We are concerned with the degenerate anisotropic problem

−
N∑

i=1

∂xiai(x, ∂xiu) + b(x)|u|P
+
+ −2u = f(x, u) in Ω,

u = 0 on ∂Ω.

We first establish the existence of an unbounded sequence of weak solutions. We also obtain the existence
of a non-trivial weak solution if the nonlinear term f has a special form. The proofs rely on the fountain
theorem and Ekeland’s variational principle.
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1. Introduction

Let Ω ⊂ R
N (N � 3) be a bounded domain with smooth boundary. The purpose of this

paper is to analyse the existence of multiple weak solutions to the anisotropic problem

−
N∑

i=1

∂xiai(x, ∂xiu) + b(x)|u|P
+
+ −2u = f(x, u) in Ω,

u = 0 on ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭ (1.1)
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where b ∈ L∞(Ω̄), f : Ω̄ × R → R and ai : Ω̄ × R → R are Carathéodory functions
fulfilling some natural hypotheses.

The solution of problems of type (1.1) is strongly motivated and important research
efforts have been made recently with the aim of understanding anisotropic phenomena
described by non-homogeneous differential operators. We recall that equations of this
type can be regarded as models for phenomena arising in the study of electrorheological
fluids (see [6,13,22]), elasticity (see [25]) or image processing and restoration (see [5,9]).
A survey of the history of this research field with a comprehensive bibliography is provided
by Diening et al . [7].

The anisotropic differential operator
∑N

i=1 ∂xi
ai(x, ∂xi

u) is a p(·)-Laplace-type opera-
tor, where p(x) = (p1(x), p2(x), . . . , pN (x)) and P+

+ = maxi∈{1,...,N}{supx∈Ω pi(x)}. For
i = 1, . . . , N we assume that pi is a continuous function on Ω̄.

Let ai(x, η) denote the continuous derivative with respect to η of the mapping Ai : Ω̄×
R

N → R
N , Ai = Ai(x, η), that is, ai(x, η) = (∂/∂η)Ai(x, η). Throughout this paper we

assume that the following hypotheses are fulfilled.

(A0) Ai(x, 0) = 0 for almost every (a.e.) x ∈ Ω.

(A1) There exists a positive constant c̄i such that ai satisfies the growth condition

|ai(x, η)| � c̄i(1 + |η|pi(x)−1)

for all x ∈ Ω̄ and η ∈ R
N .

(A2) The inequalities
|η|pi(x) � ai(x, η)η � pi(x)Ai(x, η)

hold for all x ∈ Ω̄ and η ∈ R
N .

(A3) There exists ki > 0 such that

Ai

(
x,

η + ξ

2

)
� 1

2Ai(x, η) + 1
2Ai(x, ξ) − ki|η − ξ|pi(x)

for all x ∈ Ω̄ and η, ξ ∈ R
N , with equality if and only if η = ξ.

(A4) The mapping Ai is even with respect to its second variable, that is,

Ai(x,−η) = Ai(x, η)

for all x ∈ Ω̄ and η ∈ R
N .

The differential operator
∑N

i=1 ∂xiai(x, ∂xiu) is the anisotropic p(x)-Laplace-type oper-
ator (where p(x) = (p1(x), . . . , pN (x))) because when we take

ai(x, η) = |η|pi(x)−2η
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for all i ∈ {1, . . . , N}, we have Ai(x, η) = (1/pi(x))|η|pi(x) for all i ∈ {1, . . . , N}, that is,

Δp(x)(u) =
N∑

i=1

∂xi(|∂xiu|pi(x)−2∂xiu).

Obviously, there are many other operators deriving from
∑N

i=1 ∂xiai(x, ∂xiu). Indeed, to
give another interesting example, if we take

ai(x, η) = (1 + |η|2)(pi(x)−2)/2η

for all i ∈ {1, . . . , N}, we have Ai(x, η) = (1/pi(x))[(1 + |η|2)pi(x)/2 − 1] for all i ∈
{1, . . . , N}. Thus, we obtain the anisotropic variable mean curvature operator

N∑
i=1

∂xi [(1 + |∂xiu|2)(pi(x)−2)/2∂xiu].

The papers [4,18] studied the anisotropic quasilinear elliptic problem

−
N∑

i=1

∂xi(|∂xiu|pi(x)−2∂xiu) = f(x, u) in Ω,

u = 0 on ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭ (1.2)

where Ω ⊂ R
N (N � 3) is a bounded domain with smooth boundary. In [4], Boureanu et

al . considered problem (1.2), where f is a Carathéodory function verifying some appro-
priate conditions. Their arguments are based on the symmetric mountain pass theorem
of Ambrosetti and Rabinowitz [1]. In [18] Mihăilescu et al . studied eigenvalue problems
where f(x, u) = λ|u|q(x)−2u and established the multiplicity of the solution by combining
the mountain pass theorem with the Ekeland variational principle [8]. Kone et al . [14]
established the existence and uniqueness of a weak energy solution to the nonlinear
problem

−
N∑

i=1

∂xiai(x, ∂xiu) = f in Ω,

u = 0 on ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (1.3)

In [16], Mihăilescu and Moroşanu considered (1.3) where f = λ(x)|u|q(x)−2u. Combining
the mountain pass theorem with Ekeland’s variational principle, they proved that under
suitable conditions (1.3) has two non-trivial weak solutions. Boureanu [3] proved that
problem (1.3) has a sequence of weak solutions by means of the symmetric mountain pass
theorem. Motivated by the above papers and [17], the goal of this paper is to establish
the existence of a sequence of high-energy solutions of problem (1.1). In addition, we
consider problem (1.1) in a case where the function f has a special form. A central role
in our arguments will be played by the fountain theorem, which is due to Bartsch [2].
This result is nicely presented in [23] by using the quantitative deformation lemma. We
also point out that the dual version of the fountain theorem is due to Bartsch and Willem
(see [23]). Both the fountain theorem and its dual form are effective tools for studying the
existence of infinitely many large or small energy solutions. It should be noted that the
Palais–Smale condition plays an important role for these theorems and their applications.
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2. Abstract framework

We recall in what follows some definitions and basic properties of Lebesgue and Sobolev
spaces with variable exponents Lp(x)(Ω) and W

1,p(x)
0 (Ω), where Ω is a bounded domain

in R
N . As pointed out in [18], anisotropic Lebesgue and Sobolev spaces are functional

spaces of Lebesgue- and Sobolev-type in which different space directions have different
roles.

Set C+(Ω̄) = {h ∈ C(Ω̄) : minx∈Ω̄ h(x) > 1}. For any h ∈ C+(Ω̄) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

If p ∈ C+(Ω̄), we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{

u : u is a measurable real-valued

function such that
∫

Ω

|u(x)|p(x) dx < ∞
}

endowed with the Luxemburg norm defined by

|u|p(x) = inf
{

μ > 0;
∫

Ω

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx � 1
}

,

which is a separable and reflexive Banach space (see [15]).
If p ∈ C+(Ω̄), the variable exponent Sobolev space W 1,p(x)(Ω) contains all func-

tions u ∈ Lp(x)(Ω) such that the gradient ∇u exists almost everywhere and belongs to
[Lp(x)(Ω)]N . Then W 1,p(x)(Ω) is a separable and reflexive Banach space with respect to
the norm

‖u‖ = |u|p(x) + |∇u|p(x).

As shown by Zhikov [26,27] in relationship with the Lavrentiev phenomenon, the smooth
functions are in general not dense in W 1,p(x)(Ω). However, if p ∈ C+(Ω̄) is logarithmic
Hölder continuous, that is,

|p(x) − p(y)| � − M

log(|x − y|) for all x, y ∈ Ω such that |x − y| � 1/2, (2.1)

then the smooth functions are dense in W 1,p(x)(Ω). Let W
1,p(x)
0 (Ω) denote the Sobolev

space of functions with zero boundary values under the norm ‖ · ‖. Furthermore, if p ∈
C+(Ω̄) satisfies (2.1), then C∞

0 (Ω) is dense in W
1,p(x)
0 (Ω) (see [19]). Since Ω is an open

bounded set and p ∈ C+(Ω̄) satisfies (2.1), the p(x)-Poincaré inequality

|u|p(x) � C|∇u|p(x)

holds for all u ∈ W
1,p(x)
0 (Ω), where C depends on p, |Ω|, diam(Ω) and N [19, p. 13], and

so
‖u‖1,p(x) = |∇u|p(x)
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is an equivalent norm in W
1,p(x)
0 (Ω). Also, of course the norm

‖u‖p(x) =
N∑

i=1

|∂xiu|p(x)

is an equivalent norm in W
1,p(x)
0 (Ω). Hence, W

1,p(x)
0 (Ω) is a separable and reflex-

ive Banach space. Note that if s ∈ C+(Ω̄) and s(x) < p�(x) for all x ∈ Ω̄, where
p�(x) = Np(x)/[N − p(x)] if p(x) < N and p�(x) = ∞ if p(x) � N , then the embedding
W

1,p(x)
0 (Ω) ↪→ Ls(·)(Ω) is compact and continuous.
We now introduce a natural generalization of the function space W

1,p(x)
0 (Ω), which

will play a central role in our statements. For this purpose, let us denote by p : Ω̄ → R
N

the vectorial function p = (p1, . . . , pN ). We define W
1,p(x)
0 (Ω), the anisotropic variable

exponent Sobolev space, as the closure of C∞
0 (Ω) with respect to the norm

‖u‖p(x) =
N∑

i=1

|∂xi
u|pi(·).

For the case in which pi ∈ C+(Ω̄) are constant functions for any i ∈ {1, . . . , N}, the
resulting anisotropic Sobolev space is denoted by W 1,p

0 (Ω), where p is the constant
vector (p1, . . . , pN ). The theory of such spaces was developed in [12,20,21]. We point
out that W 1,p

0 (Ω) is a reflexive Banach space for any p ∈ R
N with pi > 1 for all

i ∈ {1, . . . , N}. This result can be easily extended to W
1,p(x)
0 (Ω). Indeed, defining X =

Lp1(·)(Ω)×· · ·×LpN (·)(Ω) and considering the operator T : W
1,p(x)
0 (Ω) → X, defined by

T (u) = ∇u, it is clear that W
1,p(x)
0 (Ω) and X are isometric with respect to T , since

‖Tu‖X =
N∑

i=1

|∂xiu|pi(·) = ‖u‖p(x).

Thus, T (W 1,p(x)
0 (Ω)) is a closed subspace of X, which is a reflexive Banach space, and

hence T (W 1,p(x)
0 (Ω)) is reflexive, and consequently W

1,p(x)
0 (Ω) is a reflexive Banach

space.
We define X := W

1,p(x)
0 (Ω). Since X is reflexive, by [24] there exist {ej} ⊂ X and

{e∗
j} ⊂ X∗ such that

X = span{ej : j = 1, 2, . . . }, X∗ = span{e∗
j : j = 1, 2, . . . }

and

〈ei, e
∗
j 〉 =

{
1 if i = j,

0 if i 
= j,

where 〈·, ·〉 denotes the duality product between X and X∗. We define

Xj = span{ej}, Yk =
k⊕

j=1

Xj , Zk =
∞⊕

j=k

Xj .
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3. Main results

An important role in what follows will be played by the vectors P+,P− ∈ R
N and by

the real numbers P+
+ , P+

− , P−
+ , P−

− ∈ R
+ defined as

P+ = (p+
1 , p+

2 , . . . , p+
N ), P− = (p−

1 , p−
2 , . . . , p−

N ),

P+
+ = max{p+

1 , p+
2 , . . . , p+

N}, P+
− = max{p−

1 , p−
2 , . . . , p−

N},

P−
+ = min{p+

1 , p+
2 , . . . , p+

N}, P−
− = min{p−

1 , p−
2 , . . . , p−

N}.

Throughout this paper we assume that

N∑
i=1

1
p−

i

> 1. (3.1)

This condition ensures that the anisotropic space W
1,p(x)
0 (Ω) is embedded into some

Lebesgue space Lr(Ω). If hypothesis (3.1) is no longer fulfilled, then one has embeddings
into Orlicz or Hölder spaces.

Define P ∗
− ∈ R

+ and P−,∞ ∈ R
+ by

P ∗
− =

N∑N
i=1(1/p−

i ) − 1
, P−,∞ = max{P+

− , P ∗
−}.

For the Carathéodory function f : Ω × R → R, we consider the anti-derivative F : Ω ×
R → R,

F (x, s) =
∫ s

0
f(x, t) dt.

With the previous notation, the functions b, f satisfy the following conditions.

(B) b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) � b0 for all x ∈ Ω.

(F1) There exist a positive constant c1 and α(x) ∈ C+(Ω̄) with α(x) < P−,∞ such that

|f(x, t)| � c1(1 + |t|α(x)−1) for all (x, t) ∈ Ω × R. (3.2)

(F2) There exist M > 0, θ > P+
+ such that for all x ∈ Ω and all t ∈ R with |t| � M ,

0 < θF (x, t) � tf(x, t).

(F3) The function f is odd with respect to its second variable, that is,

f(x,−t) = −f(x, t)

for all x ∈ Ω and t ∈ R.

Definition 3.1. A function u ∈ W
1,p(x)
0 (Ω) that verifies∫

Ω

{ N∑
i=1

ai(x, ∂xi)∂xiϕ + b(x)|u|P
+
+ −2uϕ − f(x, u)ϕ

}
dx = 0

for all ϕ ∈ W
1,p(x)
0 (Ω) is called a weak solution of problem (1.1).
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The following result establishes the existence of infinitely many solutions of problem
(1.1), provided that the right-hand side is odd.

Theorem 3.2. Problem (1.1) admits a sequence (±un) of weak solutions with high
energies.

In addition, we consider the case in which f(x, u) = λ|u|q(x)−2u, where the parameter
λ is positive and q(x) is a continuous function on Ω̄. Problem (1.1) then becomes

−
N∑

i=1

∂xi
ai(x, ∂xi

u) + b(x)|u|P
+
+ −2u = λ|u|q(x)−2u in Ω,

u = 0 on ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

Definition 3.3. A function u ∈ W
1,p(x)
0 (Ω) is said to be a weak solution of problem

(3.3) if and only if

∫
Ω

{ N∑
i=1

ai(x, ∂xi
)∂xi

ϕ + b(x)|u|P
+
+ −2uϕ − λ|u|q(x)−2uϕ

}
dx = 0

for all ϕ ∈ W
1,p(x)
0 (Ω).

Our main result concerning problem (3.3) can be described as follows.

Theorem 3.4. Assume that q− < P−
− � P+

+ < P−,∞ for all x ∈ Ω̄. There then
exists a positive constant λ∗ such that for any λ ∈ (0, λ∗), problem (3.3) has at least one
non-trivial weak solution.

In what follows we use ci to denote a general non-negative or positive constant (the
exact value may change from line to line).

4. Infinitely many high energy solutions

In this section we are concerned with the existence of multiple weak solutions of problem
(1.1). We associate with problem (1.1) the energy functional I : X → R defined by

I(u) =
∫

Ω

{ N∑
i=1

Ai(x, ∂xiu) +
b(x)
P+

+
|u|P

+
+ − F (x, u)

}
dx.

Due to [14, Lemma 3.4], by a standard calculus we deduce that I is well defined and
I ∈ C1(X, R) with

〈I ′(u), ϕ〉 =
∫

Ω

{ N∑
i=1

ai(x, ∂xiu)∂xiϕ + b(x)|u|P
+
+ −2uϕ − f(x, u)ϕ

}
dx

for all u, ϕ ∈ X. Hence, any critical point u ∈ X of I is a weak solution of problem (1.1).
The idea of the proof of Theorem 3.2 is to show that all the hypotheses of the fountain
theorem [23, Theorem 3.6] are fulfilled. To this end, we will prove three corresponding
auxiliary properties.
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Lemma 4.1. For every k ∈ N there exists rk > 0 such that infu∈Zk, ‖u‖=rk
I(u) → ∞

as k → ∞.

Proof. By (A2) and (F1) for any u ∈ Zk, ‖u‖ = rk > 1 (rk will be specified below),
we have

I(u) =
∫

Ω

{ N∑
i=1

Ai(x, ∂xi
u) +

b(x)
P+

+
|u|P

+
+ − F (x, u)

}
dx

� 1
P+

+

N∑
i=1

∫
Ω

|∂xi
u|pi(x) dx +

b0

P+
+

∫
Ω

|u|P
+
+ dx − c1

∫
Ω

(1 + |u|α(x)) dx

� 1
P+

+

N∑
i=1

∫
Ω

|∂xiu|pi(x) dx +
b0

P+
+

|u|P
+
+

L
P

+
+ (Ω)

− c2 max{|u|α+

Lα(x)(Ω), |u|α−

Lα(x)(Ω)} − c3.

(4.1)

Using (B) we can write

1
P+

+

∫
Ω

b(x)|u|P
+
+ dx � b0

P+
+

|u|P
+
+

L
P

+
+ (Ω)

� 0. (4.2)

For each i ∈ {1, 2, . . . , N} we define

αi =

{
P+

+ if |∂xiu|pi(x) < 1,

P−
− if |∂xiu|pi(x) > 1.

Using [11, Theorem 1.3] and the Jensen inequality (applied to the convex function
g : R

+ → R
+, g(t) = tP

−
− , P−

− > 1), we have

N∑
i=1

∫
Ω

|∂xiu|pi(x) dx �
N∑

i=1

|∂xiu|αi

pi(x)

�
N∑

i=1

|∂xiu|P
−
−

pi(x) −
∑

{i;αi=P+
+ }

(|∂xiu|P
−
−

pi(x) − |∂xiu|P
+
+

pi(x))

� N

(∑N
i=1 |∂xiu|pi(x)

N

)P −
−

− N

=
‖u‖P −

−

NP −
− −1

− N. (4.3)

Taking into account relations (4.2) and (4.3), the inequality (4.1) reduces to

I(u) � ‖u‖P −
−

P+
+ NP −

− −1
− c2 max{|u|α+

Lα(x)(Ω), |u|α−

Lα(x)(Ω)} − c4.

Define
αk = sup{|u|Lα(x)(Ω); ‖u‖ = 1, u ∈ Zk}.

By [10, Proposition 3.5], we know that limk→∞ αk = 0.
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If max{|u|α+

Lα(x)(Ω), |u|α−

Lα(x)(Ω)} = |u|α+

Lα(x)(Ω), we have

I(u) � ‖u‖P −
−

P+
+ NP −

− −1
− c2α

α+

k ‖u‖α+ − c4. (4.4)

Depending on the relation between P−
− and α+, we distinguish the following cases.

Case 1 (P −
− > α+). For sufficiently large k we have αk < 1/(2c2P

+
+ NP −

− −1), so
relation (4.4) yields

I(u) � 1

2c2P
+
+ NP −

− −1
‖u‖P −

− .

By choosing rk such that rk → ∞ as k → ∞ for u ∈ Zk with ‖u‖ = rk, we have that
I(u) → ∞.

Case 2 (α− > P +
+ ). Choose rk = (c2N

P −
− −1α+αα+

k )1/(P −
− −α+). We deduce that

I(u) � 1

NP −
− −1

(
1

P+
+

− 1
α+

)
r

P −
−

k − c4.

Since αk → 0 and rk → ∞ as k → ∞, we obtain I(u) → ∞.
Similarly, if max{|u|α+

Lα(x)(Ω), |u|α−

Lα(x)(Ω)} = |u|α−

Lα(x)(Ω), we can deduce that for u ∈ Zk

with ‖u‖ = rk > 1, I(u) → ∞ as k → +∞ and the proof is complete. �

Lemma 4.2. For every k ∈ N there exists ρk > rk (rk given by Lemma 4.1) such that

max
u∈Yk, ‖u‖=ρk

I(u) � 0.

Proof. From (A0) and (A1) we have

Ai(x, η) =
∫ 1

0
ai(x, tη)η dt � c5

(
|η| +

1
pi(x)

|η|pi(x)
)

for all x ∈ Ω̄ and η ∈ R
N , where c5 = maxi∈{1,...,N} c̄i. Therefore,

∫
Ω

N∑
i=1

Ai(x, ∂xiu) dx � c5

( N∑
i=1

∫
Ω

|∂xiu| dx +
N∑

i=1

∫
Ω

|∂xiu|pi(x)

pi(x)
dx

)
.

Moreover, by rewriting condition (F2) we can obtain the existence of a positive constant
c6 such that

F (x, s) � c6|s|θ
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for all x ∈ Ω and s ∈ R. Then, for any u ∈ Yk\{0} with ‖u‖ = 1 and 1 < ρk = tk with
tk → ∞, we have

I(tku) =
∫

Ω

N∑
i=1

Ai(x, ∂xi(tku)) dx +
1

P+
+

∫
Ω

b(x)|tku|P
+
+ dx −

∫
Ω

F (x, tku) dx

� c5

( N∑
i=1

∫
Ω

|∂xi
(tku)| dx +

N∑
i=1

∫
Ω

|∂xi(tku)|pi(x)

pi(x)
dx

)
+

1
P+

+

∫
Ω

b(x)|tku|P
+
+ dx

− c6

∫
Ω

|tku|θ dx + c7

� c5t
P+

+
k

N∑
i=1

∫
Ω

(
|∂xiu| +

|∂xiu|pi(x)

P−
−

)
dx +

t
P+

+
k

P+
+

∫
Ω

b(x)|u|P
+
+ dx

− c6t
θ
k

∫
Ω

|u|θ dx + c7.

Since dimYk < ∞ and all norms are equivalent in the finite-dimensional space, it is easy
to see that I(tku) → −∞ as k → ∞ for u ∈ Yk, due to θ > P+

+ . Therefore, we deduce
that for ρk large enough (ρk > rk),

max
u∈Yk, ‖u‖=ρk

I(u) � 0.

This completes the proof. �

Lemma 4.3. The energy functional I satisfies the Palais–Smale condition.

Proof. Let (un) ⊂ X be a sequence such that

|I(un)| < c8 and I ′(un) → 0 as n → ∞. (4.5)

We claim that (un) is bounded. Arguing by contradiction, we assume that, passing even-
tually to a subsequence still denoted by (un), ‖un‖ → ∞ as n → ∞.

Using (4.5), for n large enough we have

1 + c8 + ‖un‖ � I(un) − 1
θ
〈I ′(un), un〉

�
N∑

i=1

∫
Ω

[
Ai(x, ∂xiun) − 1

θ
ai(x, ∂xiun)∂xiun

]
dx

+
(

1
P+

+
− 1

θ

) ∫
Ω

b(x)|u|P
+
+ dx −

[ ∫
Ω

F (x, un) − 1
θ
unf(x, un)

]
dx.

(4.6)

From (A2), for all x ∈ Ω and i ∈ {1, . . . , N} we have

ai(x, ∂xiun)∂xiun � pi(x)Ai(x, ∂xiun) � P+
+ Ai(x, ∂xiun),
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which implies that

−1
θ
ai(x, ∂xi

un)∂xiun � −
P+

+

θ
Ai(x, ∂xiun).

Combining the previous inequality with relation (4.6) and using (F2) we obtain

1 + c8 + ‖un‖ �
(

1 −
P+

+

θ

) N∑
i=1

∫
Ω

Ai(x, ∂xiun) dx.

Again from (A2), we have

Ai(x, ∂xi
un) � 1

pi(x)
|∂xi

un|pi(x) � 1
P+

+
|∂xi

un|pi(x)

for all x ∈ Ω and i ∈ {1, . . . , N}.
Taking into consideration relation (4.3), we obtain

1 + c8 + ‖un‖ �
(

1
P+

+
− 1

θ

)(
‖un‖P −

−

Np−
−−1

− N

)
.

Dividing the above inequality by ‖un‖P −
− and passing to the limit as n → ∞, we obtain

a contradiction.
It follows that (un) is bounded in X. This information, combined with the fact that

X is reflexive, implies that there exist a subsequence, still denoted by (un), and u0 ∈ X

such that (un) converges weakly to u0 in X.
Due to [18, Theorem 1], the embeddings X ↪→ Lα(x)(Ω) and X ↪→ LP+

+ (Ω) are com-
pact. Thus, (un) converges strongly to u0 in Lα(x)(Ω) and also in LP+

+ (Ω).
Using the Hölder-type inequality and (F1), we deduce that

lim
n→∞

∫
Ω

f(x, un)(un − u0) dx = 0, (4.7)

lim
n→∞

∫
Ω

b(x)|un|P
+
+ −2un(un − u0) dx = 0. (4.8)

Using (4.5) we infer that
lim

n→∞
〈I ′(un), un − u0〉 = 0;

more precisely,

lim
n→∞

∫
Ω

[ N∑
i=1

ai(x, ∂xiun)(∂xiun − ∂xiu0) + b(x)|un|P
+
+ −2un(un − u0)

− f(x, un)(un − u0)
]

dx = 0.
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Combining the above relation with (4.7) and (4.8) we have

lim
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xi
un)(∂xi

un − ∂xi
u0) dx = 0.

Using [16, Lemma 1], we deduce that (un) converges strongly to u0 in X; in other words,
I satisfies the Palais–Smale condition. �

4.1. Proof of Theorem 3.2 completed

The fact that the mapping Ai is even and f is odd with respect to their second
variables implies that I is even. The proof follows immediately from Lemmas 4.1–4.3 and
the fountain theorem.

5. The case of small positive parameters

This section is devoted to the proof of Theorem 3.4, which is essentially based on the
Ekeland variational principle [8]. Let us define the functional Iλ : X → R by

Iλ(u) =
∫

Ω

{ N∑
i=1

Ai(x, ∂xiu) +
b(x)
P+

+
|u|P

+
+ − λ

q(x)
|u|q(x)

}
dx.

Then the functional Iλ associated with problem (3.3) is well defined and of C1 class on
X. Moreover, we have

〈I ′
λ(u), ϕ〉 =

∫
Ω

{ N∑
i=1

ai(x, ∂xiu)∂xiϕ + b(x)|u|P
+
+ −2uϕ − λ|u|q(x)−2uϕ

}
dx

for all u, ϕ ∈ X. Thus, weak solutions of (3.3) are exactly the critical points of the func-
tional Iλ. Due to [14, Lemma 3.5], we can show that Iλ is weakly lower semi-continuous
in X.

We establish the following two auxiliary properties.

Lemma 5.1. There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) there exist ρ, a > 0
such that Iλ(u) � a > 0 for any u ∈ X with ‖u‖ = ρ.

Proof. Under the conditions of Theorem 3.4, X is continuously embedded in Lq(x)(Ω).
Thus, there exists a positive constant c9 such that

|u|q(x) � c9‖u‖ for all u ∈ X. (5.1)

Now, let us assume that ‖u‖ � min{1, 1/c9}, where c9 is the positive constant from
above. Then we have |u|q(x) < 1. Using [11, Theorem 1.3] we find∫

Ω

|u|q(x) dx � |u|q
−

q(x) for all u ∈ X with ‖u‖ = ρ ∈ (0, 1). (5.2)
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Relations (5.1) and (5.2) yield∫
Ω

|u|q(x) dx � cq−

9 ‖u‖q−
for all u ∈ X with ‖u‖ = ρ. (5.3)

Using the hypotheses (A2), (B) and (5.2), we deduce that for any u ∈ X with ‖u‖ = ρ,
the following holds:

Iλ(u) =
∫

Ω

{ N∑
i=1

Ai(x, ∂xiu) +
b(x)
P+

+
|u|P

+
+ − λ

q(x)
|u|q(x)

}
dx

� 1
P+

+

N∑
i=1

∫
Ω

|∂xiu|pi(x) dx +
b0

P+
+

|u|P
+
+

L
P

+
+ (Ω)

− λ

q− cq−

9 ‖u‖q−
. (5.4)

Here, we let ‖u‖ < 1, so |∂xi
u|pi(x) < 1, i ∈ {1, . . . , N}. For such an element u, by [11,

Theorem 1.3], we have

N∑
i=1

∫
Ω

|∂xi
u|pi(x) dx �

N∑
i=1

|∂xiu|p
+
i

pi(x) �
N∑

i=1

|∂xiu|P
+
+

pi(x)

� N

(∑N
i=1 |∂xiu|pi(x)

N

)P+
+

=
‖u‖P+

+

NP+
+ −1

. (5.5)

Taking into account relations (4.2) and (5.5), the inequality (5.4) reduces to

Iλ(u) � ‖u‖P+
+

P+
+ NP+

+ −1
− λ

q− cq−

9 ‖u‖q−
=

ρP+
+

P+
+ NP+

+ −1
− λ

q− cq−

9 ρq−

= ρq−
(

1

P+
+ NP+

+ −1
ρP+

+ −q− − λ

q− cq−

9

)
.

If we define

λ∗ =
q−

2P+
+ NP+

+ −1cq−

9

ρP+
+ −q−

, (5.6)

then, for any λ ∈ (0, λ∗) and u ∈ X with ‖u‖ = ρ, there exists a = ρP+
+ /(2P+

+ NP+
+ −1)

such that Iλ(u) � a > 0. �

Lemma 5.2. For any λ ∈ (0, λ∗), where λ∗ is given by (5.6), there exist ψ ∈ X such
that ψ � 0, ψ is not equivalent to zero and Iλ(tψ) < 0 for all t > 0 small enough.

Proof. From (A0) and (A1) we have

Ai(x, η) =
∫ 1

0
ai(x, tη)η dt � c10

(
|η| +

1
pi(x)

|η|pi(x)
)
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for all x ∈ Ω̄ and η ∈ R
N , where c10 = maxi∈{1,...,N} c̄i. Therefore,

∫
Ω

N∑
i=1

Ai(x, ∂xiu) dx � c10

N∑
i=1

∫
Ω

(
|∂xiu| +

|∂xi
u|pi(x)

pi(x)

)
dx.

By the conditions of Theorem 3.4, q− < P−
− . Let ε0 > 0 such that q− + ε0 < P−

− . Since
q ∈ C(Ω̄), there exists an open set Ω0 ⊂ Ω such that |q(x) − q−| < ε0 for all x ∈ Ω0. It
follows that q(x) < q− + ε0 < P−

− for all x ∈ Ω0.
Let ψ ∈ C∞

0 (Ω) be such that supp(ψ) ⊃ Ω0, ψ(x) = 1 for all x ∈ Ω0, and 0 � ψ � 1
in Ω. Then, for any t ∈ (0, 1), we have

Iλ(tψ) =
∫

Ω

{ N∑
i=1

Ai(x, ∂xi
(tψ)) +

b(x)
P+

+
|tψ|P

+
+ − λ

q(x)
|tψ|q(x)

}
dx

� c10

N∑
i=1

∫
Ω

(
|∂xi(tψ)| +

|∂xi(tψ)|pi(x)

pi(x)

)
dx +

1
P+

+

∫
Ω

b(x)|tψ|P
+
+ dx

− λ

∫
Ω

1
q(x)

|tψ|q(x) dx

� c10t
P −

−

N∑
i=1

∫
Ω

(
|∂xi

ψ| +
1

P−
−

|∂xi
ψ|pi(x)

)
dx +

tP
+
+

P+
+

∫
Ω

b(x)|ψ|P
+
+ dx

− λ

q+

∫
Ω0

tq(x)|ψ|q(x) dx

� c10t
P −

−

N∑
i=1

∫
Ω

(
|∂xi

ψ| +
1

P−
−

|∂xi
ψ|pi(x)

)
dx +

tP
+
+

P+
+

∫
Ω

b(x)|ψ|P
+
+ dx

− λtq
−+ε0

q+

∫
Ω0

|ψ|q(x) dx.

So, Iλ(tψ) < 0 for t < δ1/(P −
− −q−−ε0), with

0 < δ

< min
{

1,
λ

q+

∫
Ω0

|ψ|q(x) dx

c10
∑N

i=1

∫
Ω

(|∂xi
ψ| + (1/P−

− )|∂xi
ψ|pi(x)) dx + (1/P+

+ )
∫

Ω
b(x)|ψ|P

+
+ dx

}
.

This completes the proof. �

5.1. Proof of Theorem 3.4 completed

Let λ∗ be defined as in (5.6) and let λ ∈ (0, λ∗). By Lemma 5.1, it follows that on the
boundary of the ball centred at the origin and of radius ρ in X, we have

inf
∂Bρ(0)

Iλ(u) > 0.
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On the other hand, by Lemma 5.2, there exists ψ ∈ X such that

Iλ(tψ) < 0 for t > 0 small enough.

Moreover, for u ∈ Bρ(0),

Iλ(u) � ‖u‖P+
+

P+
+ NP+

+ −1
− λ

q− cq−

9 ‖u‖q−
.

It follows that
−∞ < c11 = inf

Bρ(0)
Iλ(u) < 0.

We now let 0 < ε < inf∂Bρ(0) Iλ − infBρ(0) Iλ. Applying the Ekeland variational princi-
ple [8] to the functional Iλ : Bρ(0) → R, we find uε ∈ Bρ(0) such that

Iλ(uε) < inf
Bρ(0)

Iλ + ε

Iλ(uε) < Iλ(u) + ε‖u − uε‖, u 
= uε.

Since
Iλ(uε) � inf

Bρ(0)
Iλ + ε � inf

Bρ(0)
Iλ + ε < inf

∂Bρ(0)
Iλ,

we deduce that uε ∈ Bρ(0). Now, we define Kλ : Bρ(0) → R by Kλ(u) = Iλ(u)+ε‖u−uε‖.
It is clear that uε is a minimum point of Kλ, and thus

Kλ(uε + tv) − Kλ(uε)
t

� 0

for small t > 0 and v ∈ Bρ(0). The above relation yields

Iλ(uε + tv) − Iλ(uε)
t

+ ε‖v‖ � 0.

Letting t → 0, it follows that 〈I ′
λ(uε), v〉 + ε‖v‖ > 0 and we infer that ‖I ′

λ(uε)‖ � ε. We
deduce that there exists a sequence (vn) ⊂ B1(0) such that

Iλ(vn) → c11 and I ′
λ(vn) → 0. (5.7)

It is clear that (vn) is bounded in X. Thus, there exists u1 ∈ X such that, up to
a subsequence, (vn) converges weakly to u1 in X. Theorem 1 in [18] yields that the
embeddings X ↪→ Lq(x)(Ω) and X ↪→ LP+

+ (Ω) are continuous and compact. Then (vn)
converges strongly to u1 in Lq(x)(Ω) and in LP+

+ (Ω).
Using the Hölder-type inequality, we can easily obtain that

lim
n→∞

∫
Ω

|vn|q(x)−2vn(vn − u1) dx = 0,

lim
n→∞

∫
Ω

b(x)|vn|P
+
+ −2vn(vn − u1) dx = 0.
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On the other hand, relation (5.7) yields

lim
n→∞

〈I ′(vn), vn − u1〉 = 0.

Using the above information, we find that

lim
n→∞

∫
Ω

N∑
i=1

ai(x, ∂xi
vn)(∂xi

vn − ∂xi
u1) dx = 0.

Using [16, Lemma 1], we deduce that (vn) converges strongly to u1 in X. So, by (5.7),

Iλ(u1) = c11 < 0 and I ′
λ(u1) = 0,

that is, u1 is a non-trivial weak solution for the problem (3.3). This completes the proof.
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