44. Mountain Pass Theorems for Non-differentiable Functions and Applications

By Vicențiu D. RĂDULESCU

Laboratoire d'Analyse Nimérique, Paris (Communicated by Kiyosi ITÔ, M. J. A., June 8, 1993)

Abstract: We present some versions of the Mountain Pass Theorem of Ambrosetti and Rabinowitz for locally Lipschitz functionals. A multivalued elliptic problem is solved as an application of these results.

Key words: Clarke subdifferential; critical point theory; multivalued elliptic problem.

1. Introduction. The Mountain Pass Theorem of Ambrosetti and Rabinowitz [1] is a very useful tool for finding critical points of C^1 -functionals. We shall give some variants of this celebrated theorem for locally Lipschitz mappings.

Throughout, X will be a real Banach space. As usual, X^* denotes the dual of X and $\langle \cdot, \cdot \rangle$ is the duality pairing between X^* and X. We say that a function $f: X \to \mathbf{R}$ is locally Lipschitz $(f \in Lip_{loc}(X, \mathbf{R}))$ if, for each $x \in X$, there is a neighbourhood V of x and a constant k = k(V) depending on V such that $|f(y) - f(z)| \le k ||y - z||$ for each $y, z \in V$.

We recall in what follows the definition of the Clarke subdifferential and some of its most important properties (see, for details, [6]).

For each $x, v \in X$, we define the generalized directional derivative at x in the direction v of a given $f \in Lip_{loc}(X, \mathbf{R})$ as

 $f^{0}(x, v) = \lim \sup_{y \to x, \lambda > 0} (f(y + \lambda v) - f(y)) / \lambda.$ It is known that, if $f \in Lip_{loc}(X, R)$, then $f^{0}(x, v)$ is a finite number and $|f^{0}(x, v)| \leq k ||v||$. The mapping $v \mapsto f^{0}(x, v)$ is positively homogeneous and subadditive, and then, it is convex continuous. The generalized gradient (the Clarke subdifferential) of f at x is the subset $\partial f(x)$ of X^* defined by $\partial f(x) = \{x^* \in X^*; f^0(x, v) \ge \langle x^*, v \rangle, \forall v \in X\}.$

The fundamental properties of the Clarke subdifferential are: a) For each $x \in X$, $\partial f(x)$ is a nonempty convex \bigstar -compact subset of X^* .

b) For each $x, v \in X$, we have $f^0(x, v) = max \{\langle x^*, v \rangle; x^* \in \partial f(x) \}$.

c) The set-valued mapping $x \rightarrow \partial f(x)$ is upper semi-continuous in the sense that for each $x_0 \in X$, $\varepsilon > 0$, $v \in X$, there is $\delta > 0$ such that for each $x^* \in \partial f(x)$ with $||x - x_0|| < \delta$, there exists $x_0^* \in \partial f(x_0)$ such that $|\langle x^* - x_0^*, v \rangle| < \varepsilon.$

d) The function $f^{0}(\cdot, \cdot)$ is upper semi-continuous.

e) If f attains a local minimum or maximum at x, then $0 \in \partial f(x)$.

f) The function $\lambda(x) = \min \{ \|x^*\| ; x^* \in \partial f(x) \}$ exists and is lower

Mathematics Subject Classification (1985 Revision). Primary 35J20, 35J60.

semi-continuous.

Definition 1. A point $u \in X$ is said to be a crilical point of $f \in Lip_{loc}(X, \mathbf{R})$ if $0 \in \partial f(u)$, namely $f^{0}(x, v) \geq 0$ for every $v \in X$. A real nymber c is called a critical value of f if there is a critical point $u \in X$ such that $\partial f(u) = c$.

Definition 2. If $f \in Lip_{loc}(X, \mathbb{R})$ and c is a real number, we say that f satisfies the Palais-Smale condition at the level c (in short $(PS)_c$) if any sequence (x_n) in X with the properties $\lim_{n\to\infty} f(x_n) = c$ and $\lim_{n\to\infty} \lambda(x_n) = 0$ has a convergent subsequence.

2. Main results. In what follows, f will be a locally Lipschitz function on the real Banach space X. Let K be a compact metric space and let K^* be a nonempty closed subset of K. If p^* is a fixed continuous map defined on K, let $\mathcal{P} = \{p \in C(K, X) ; p = p^* \text{ on } K^*\}$. Define

(1) $c = \inf_{p \in \mathcal{P}} \max_{t \in K} f(p(t)).$ Clearly, $c \ge \max_{t \in K} f(p^*(t)).$

Theorem 1. Assume that

 $c > max_{t \in K^*} f(p^*(t))$ Then there exists a sequence (x_n) in X such that

i) $\lim f(x_n) = c$, ii) $\lim \lambda(x_n) = 0$.

Corollary 1. If f has $(PS)_c$ and satisfies the same assumptions as in Theorem 1, then c is a critical value of f, corresponding to a critical point which is not in $p^*(K^*)$.

The proof follows from Theorem 1 and the lower-semicontinuity of the function λ .

Corollary 2. Suppose f(0) = 0 and there exists $v \in X \setminus \{0\}$ such that $f(v) \leq 0$. If c > 0 and f satisfies $(PS)_c$, then c is a critical value of f.

For the proof, it suffices to apply Corollary 1 for $K = [0, 1], K^* = \{0, 1\}, p^*(0) = 0$ and $p^*(1) = v$.

If (2) fails, a sufficient condition which ensures the validity of Theorem 1 is given by the following result, which is a variant of Theorem 1 in [9].

Theorem 2. Assume that for every $p \in \mathcal{P}$ there is some point $t \in K \setminus K^*$ such that $f(p(t)) \geq c$. Then there exists a sequence (x_n) in X such that

i) $\lim_{n \to \infty} f(x_n) = c$, ii) $\lim_{n \to \infty} \lambda(x_n) = 0$.

Assume, in addition, that f satisfies $(PS)_c$. Then c is a critical value of f. Furthermore, if (p_n) is any sequence in \mathcal{P} such that $\lim_{n\to\infty} \max f(p_n(t)) = c$, then there exists a sequence (t_n) in K such that $\lim_{n\to\infty} f(p_n(t_n)) = c$ and $\lim_{n\to\infty} \lambda(p_n(t_n)) = 0$.

Proof of Theorem 1. We apply Ekeland's variational principle to the functional $\psi(p) = max \{ f(p(t)) ; t \in K \}$ defined on the complete metric space \mathscr{P} , endowed with the usual metric. The function ψ is continuous on \mathscr{P} and bounded below, because $\psi(p) \geq max_{i \in K^*} f(p^*(t))$. Since $c = inf_{p \in \mathscr{P}} \psi(p)$, it follows that, for every $\varepsilon > 0$, there exists $p \in \mathscr{P}$ such that (3) $\psi(q) - \psi(p) + \varepsilon d(p, q) \geq 0$, for each $q \in \mathscr{P}$ (4) $c \leq \psi(p) \leq c + \varepsilon$. Mountain Pass Theorems

Setting

 $B(p) = \{t \in K ; f(p(t)) = \psi(p)\}$ it suffices to prove that there exists $t' \in B(p)$ such that $\lambda(p(t')) \leq 2\varepsilon.$ (5)

Then the conclusion of the theorem follows easily by choosing $\varepsilon = \frac{1}{m}$ and $x_n = p(t')$.

We need now the following result:

Lemma 1. Let M be a compact metric space and let $\varphi: M \to 2^{x^*}$ be a setvalued mapping which is upper semi-continuous (in the sense of property c)) and with \bigstar -compact convex values. For $t \in M$ denote $\gamma(t) = \inf \{ \| x^* \| ; x^* \in \varphi(t) \}$ and $\gamma = inf \{\gamma(t) : t \in M\}$.

Then, given $\varepsilon > 0$, there exists a continuous function $v: M \to X$ such that for all $t \in M$ and $x^* \in \varphi(t)$, $||v(t)|| \le 1$ and $\langle x^*, v(t) \rangle \ge \gamma - \varepsilon$.

For the proof of this lemma, see [5]. Applying Lemma 1 for M = B(p)and $\varphi(t) = \partial f(p(t))$ we obtain a continuous function $v: B(p) \to X$ such that for all $t \in B(p)$ and $x^* \in \partial f(p(t))$.

(6)
$$||v(t)|| \leq 1 \text{ and } \langle x^*, v(t) \rangle \geq \gamma - \varepsilon.$$

where $\gamma = inf_{t \in B(p)} \lambda(p(t))$.

It follows that for each $t \in B(p)$,

$$f^{0}(p(t), -v(t)) = max\{ < x^{*}, -v(t) > ; x^{*} \in \partial f(p(t)) \} = -min\{ < x^{*}, v(t) > ; x^{*} \in \partial f(p(t)) \} \le -\gamma + \varepsilon.$$

By assumption (2), $B(p) \cap K^* = \emptyset$. Thus there is a continuous function $w: K \to X$ which extends v such that $w|_{K^*} = 0$ and $||w(t)|| \le 1$ for each $t \in K$. We take for q, in (3), small variations of the path p: $q_{h}(t) = p(t) - hw(t)$ where h > 0 is small enough.

It follows from (3) that for every h > 0

(7)
$$-\varepsilon \leq -\varepsilon \|w\|_{\infty} \leq \frac{\psi(q_h) - \psi(p)}{h}.$$

In what follows, $\varepsilon > 0$ is fixed while we let $h \to 0$. Let $t_h \in K$ be such that $f(q_h(t_h)) = max_{t \in K} f(q_h(t))$. For a suitable sequence $h_n \to 0$, t_{h_n} converges to some t_0 which belongs to B(p). Therefore,

$$\frac{\psi(q_h) - \psi(p)}{h} = \frac{\psi(p - hw) - \psi(p)}{h} \le \frac{f(p(t_h) - hw(t_h)) - f(p(t_h))}{h}$$

It follows from (7) that

$$\varepsilon \leq \frac{f(p(t_h) - hw(t_h)) - f(p(t_h))}{h} \leq \frac{f(p(t_h) - hw(t_h)) - f(p(t_h))}{h} \leq \frac{f(p(t_h) - hw(t_h))}{h} \leq \frac{f(p(t_h) - hw(t_h)}{h} \leq \frac{f(p(t_h) - hw(t_h))}{h} \leq \frac{f(p(t_h) - hw(t_h)}{h} \leq$$

$$\leq \frac{f(p(t_{h}) - hw(t_{0})) - f(p(t_{h}))}{h} + \frac{f(p(t_{h}) - hw(t_{h})) - f(p(t_{h}) - hw(t_{0}))}{h}$$

Using the fact that f is locally Lipschitz and that the sequence $(t_{h_{\nu}})$ converges to t_0 , we get

$$\lim_{n\to\infty}\frac{f(p(t_{h_n}) - h_n w(t_{h_n})) - f(p(t_{h_n}) - h_n w(t_0))}{h_n} = 0.$$

Therefore,

c1.1.

No. 6]

.....

V. D. RADULESCU

[Vol. 69(A),

$$-\varepsilon \leq \limsup_{n \to \infty} \frac{f(p(t_0) + z_n - h_n w(t_0)) - f(p(t_0) + z_n)}{h_n}$$

where $z_n = p(t_{h_n}) - p(t_0)$. Consequently,
 $-\varepsilon \leq f^0(p(t_0), -w(t_0)) = f^0(p(t_0), -v(t_0)) \leq -\gamma + \varepsilon$

which implies $\gamma = inf \{ \| x^* \| ; x^* \in \partial f(p(t)), t \in B(p) \} \le 2\varepsilon$.

It follows from the lower semi-continuity of λ that there is some $t' \in B(p)$ such that $\lambda(p(t')) = inf\{||x^*||; x^* \in \partial f(p(t))\} \le 2\varepsilon$.

Proof of Theorem 2. We shall apply Ekeland's variational principle to the functional $\psi_{\varepsilon}(p) = max \{ f(p(t)) + \varepsilon d(t) ; t \in K \}$

for each $\varepsilon > 0$ and $p \in \mathcal{P}$, where $d(t) = min\{dist(t, K^*), 1\}$.

If $c_{\varepsilon} = \inf \phi_{\varepsilon}(p)$, then $c \leq c_{\varepsilon} \leq c + \varepsilon$.

Applying Ekeland's variational principle, we get a path $p \in \mathcal{P}$ such that for each $q \in \mathcal{P}$,

 $\psi_{\varepsilon}(q) - \psi_{\varepsilon}(p) + \varepsilon d(p, q) \ge 0$ (8)

(9)
$$c \leq c_{\varepsilon} \leq \phi_{\varepsilon}(p) \leq c_{\varepsilon} + \varepsilon \leq c + 2\varepsilon.$$

Setting $B_{\varepsilon}(p) = \{t \in K ; f(p(t)) + \varepsilon d(t) = \phi_{\varepsilon}(p)\},\$

it remains to prove that we can find some $t' \in B_{\varepsilon}(p)$ such that $\lambda(p(t')) \leq 2\varepsilon$. We obtain thereafter the conclusion of the first part of the theorem by choosing $\varepsilon = \frac{1}{n}$ and $x_n = p(t')$. Applying Lemma 1 for $M = B_{\varepsilon}(p)$ and $\varphi(t) = \partial f(p(t))$, we get a con-

tinuous map $v: B_{\varepsilon}(p) \to X$ such that for all $t \in B_{\varepsilon}(p)$ and $x^* \in \partial f(p(t))$, $\|v(t)\| \leq 1$ and $\langle x^*, v(t) \rangle \geq \gamma - \varepsilon$

where $\gamma = inf \{\lambda(p(t)) ; t \in B_{\varepsilon}(p)\}.$

But our hypothesis implies

 $\psi_{\varepsilon}(p) > max \{f((p(t)); t \in K^*\}.$ (10)

Hence, $B_{\varepsilon}(p) \cap K^* = \emptyset$. Thus, there exists a continuous function w defined on K which extends v such that $w_{|B,(\phi)} = 0$ and $||w(t)|| \le 1$ for all $t \in$ K^* . We take for q, in (8), small variations of the path p: $q_h(t) = p(t) - hw(t)$ for h > 0 small enough.

In what follows, $\varepsilon > 0$ will be fixed while we let $h \rightarrow 0$. There exists $t_h \in B_{\varepsilon}(p)$ such that $f(q(t_h)) + \varepsilon d(t_h) = \psi_{\varepsilon}(q_h)$. For a suitable sequence $h_n \rightarrow 0$, t_{h_n} converges to some $t_0 \in B_{\varepsilon}(p)$. It follows that

$$-\varepsilon \leq -\varepsilon \|w\|_{\infty} \leq \frac{\psi_{\varepsilon}(q_{h}) - \psi_{\varepsilon}(p)}{h} = \frac{f(q_{h}(t_{h})) + \varepsilon d(t_{h}) - \psi_{\varepsilon}(p)}{h} \leq \frac{f(q_{h}(t_{h})) - f(p(t_{h}))}{h} = \frac{f(p(t_{h}) - hw(t_{h})) - f(p(t_{h}))}{h}.$$

With the same reasoning as in the proof of Theorem 1 we get that there is some $t' \in B_{\varepsilon}(p)$ such that $\lambda(p(t')) \leq 2\varepsilon$.

If f has $(PS)_c$, then c is a critical value because of the lower semicontinuity of λ .

For the second part of the proof, there exists, by Ekeland's varational principle, a sequence of paths (q_n) in \mathcal{P} such that for each $q \in \mathcal{P}$,

 $\psi_{\varepsilon_{\pi}^{2}}(q) - \psi_{\varepsilon_{\pi}^{2}}(q_{n}) + \varepsilon_{n}d(q, q_{n}) \geq 0 \text{ and } \psi_{\varepsilon_{\pi}^{2}}(q_{n}) \leq \psi_{\varepsilon_{\pi}^{2}}(p_{n}) - \varepsilon_{n}d(p_{n}, q_{n}),$ where (ε_n) is a sequence of positive numbers which tends to 0 and (p_n) are paths in \mathscr{P} such that $\psi_{\varepsilon_n^2}(p_n) \leq c + 2\varepsilon_n^2$. It follows that $d(p_n, q_n) \leq 2\varepsilon_n$. Applying the preceding argument to (q_n) , instead of p, we find some elements $t_n \in K$ such that $c - \varepsilon_n^2 \leq f(q_n(t_n)) \leq c + 2\varepsilon_n^2$ and $\lambda(q_n(t_n)) \leq 2\varepsilon_n$.

This is the desired sequence (t_n) . Indeed, by $(PS)_c$, a subsequence of $q_n(t_n)$ converges to a critical point and then the corresponding subsequence of $p_n(t_n)$ converges to the same limit. A standard argument, using the contunuity of f and the lower semi-continuity of λ , shows that for the full sequence, $\lim_{n\to\infty} f(p_n(t_n)) = c$ and $\lim_{n\to\infty} \lambda(p_n(t_n)) = 0$.

3. An application. Let Ω be a smooth bounded domain in \mathbb{R}^{N} $(N \geq 3)$ and g be a measurable function defined on $\Omega \times \mathbb{R}$ satisfying, for all $(x, t) \in \Omega \times \mathbb{R}$

(11)
$$|g(x, t)| \le C_0(1 + |t|^p)$$

where C_0 is a positive constant and $1 \le p < \frac{N+2}{N-2}$. Define the functional ϕ in $L^{p+1}(\Omega)$ by

$$\psi(u) = \int_{\mathcal{Q}} \int_0^{u(x)} g(x, t) dt dx.$$

The fact that ψ is a locally Lipschitz function in $L^{p+1}(\Omega)$ follows from the growth condition (11) and the Hölder inequality.

Setting $G(x, t) = \int_0^t g(x, s) ds$, then, by Theorem 2.1. in [Ch], the Clarke subdifferential $\partial_t G(x, t)$ of the mapping $t \mapsto G(x, t)$ is given by $\partial_t G(x, t) = [g(x, t), \bar{g}(x, t)]$, where

$$\underline{\underline{g}}(x, t) = \lim_{\varepsilon \searrow 0} \operatorname{ess\,inf} [g(x, s); |t-s| < \varepsilon]$$

$$\overline{\underline{g}}(x, t) = \lim_{\varepsilon \searrow 0} \operatorname{ess\,sup} [g(x, s); |t-s| < \varepsilon].$$

Assuming that

(12) \underline{g} and \overline{g} are measurable on $\Omega \times \mathbf{R}$, by Theorems 2.1. and 2.2. in [Ch] it follows that (13) $\partial \phi_{|H_0^1(\Omega_0)}(u) \subset \partial \psi(u) \subset \partial_t G(x, t)$ a.e. $x \in \Omega$. We suppose, in addition, that

(14)
$$g(x, 0) = 0$$
 and $\lim \sup_{t \to 0} \left| \frac{g(x, t)}{t} \right| < \lambda_1$ uniformly in $x \in \Omega$

and

(15)
$$\mu G(x, t) \leq \begin{cases} t \underline{g}(x, t), \ a.e. \ x \in \Omega, \ t \geq r \\ t \overline{g}(x, t), \ a.e. \ x \in \Omega, \ t \leq -r \end{cases}$$

for some $\mu \geq 2$ and $r \geq 0$.

Proposition 1. Let $a \in L^{\infty}(\Omega)$ be a non-negative function and suppose that conditions (11), (12), (13), (14) and (15) hold. Then the multivalued non-linear elliptic problem

(16) $-\Delta u(x) + a(x)u(x) \in [g(x, u(x)), \bar{g}(x, u(x))]$ a,e. $x \in \Omega$ has a solution in $H_0^1(\Omega) \cap W^{2,p'}(\Omega)$, where p' is the conjugated exponent of p.

Sketch of the proof. We consider in $H_0^1(\Omega)$ the locally Lipschitz function

$$\varphi(u) = \frac{1}{2} \| \nabla u \|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \int_{\Omega} a(x) u^{2}(x) dx - \psi(u).$$

To prove our statement it suffices to show that φ has a critical point

 $u_0 \in H_0^1(\Omega)$ corresponding to a positive critical value. Indeed, it is obvious that $\partial \varphi(u) = -\Delta u + a(x)u - \partial \psi_{|H_0^1(\Omega)}(u)$ in $H^{-1}(\Omega)$.

If u_0 would be a critical point of φ it follows that there would exist $w \in \partial \varphi_{H_0^1(\Omega)}(u_0)$ such that $-\Delta u_0 + a(x)u_0 = w$ in $H^{-1}(\Omega)$.

But $w \in L^{p'}(\Omega)$. Then by a standard regularity theorem for elliptic equations we obtain that $u_0 \in W^{2,p}(\Omega)$ and u_0 is a solution of the problem (16).

To prove that φ has a critical point we apply Corollary 2, by showing that φ satisfies the Palais-Smale condition and the following geometrical assumptions:

 $\varphi(0) = 0$ and there exists $v \in H_0^1(\Omega)$ such that $\varphi(v) \leq 0$.

There exist c > 0 and 0 < R < ||v|| such that $\varphi_{|\partial B(0,R)} \ge c$.

Acknowledgements. We would like to thank Prof. H. Brezis for this very valuable advice and his encouragement.

References

- A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal., 14, 349-381 (1973).
- [2] H. Brezis and L. Nirenberg: Nonlinear Functional Analysis and Applications to Partial Differential Equations (in preparation).
- [3] —: Remarks on finding critical points. Publications du Laboratoire d'Analyse Numérique de l'Université Pierre et Marie Curie (1991).
- [4] K. C. Chang: Variational methods for non-differentiable functionals and its applications to partial differential equations. J. Math. Anal. Appli., 80, 102-129 (1981).
- [5] M. Choulli, R. Deville and A. Rhandi: A general mountain pass principle for non differentiable functionals and applications. Personal communication, private communication (1992).
- [6] F. H. Clarke: Generalized gradients of Lipschitz functionals. Adv. in Math., 40, 52-67 (1981).
- [7] —: Generalized gradients and applications. Trans. Amer. Math. Soc., 205, 247-262 (1975).
- [8] L. Nirenberg: Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc., 4, 267-302 (1981).
- [9] P. Pucci and J. Serrin: A mountain pass theorem. J. Diff. Eq., 60, no. 1, 142-149 (1985).