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Abstract: We present some versions of the Mountain Pass Theorem of
Ambrosetti and Rabinowitz for locally Lipschitz functionals. A multivalued
elliptic problem is solved as an application of these results.
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1. Introduction. The Mountain Pass Theorem of Ambrosetti and Rabi-
nowitz [1] is a very useful tool for finding critical points of C'-functionals.
We shall give some variants of this celebrated theorem for locally Lipschitz
mappings.

Throughout, X will be a real Banach space. As usual, X™ denotes the
dual of X and <+, ) is the duality pairing between X™ and X. We say that a
function f : X— R is locally Lipschitz (f € Lip,,.(X, R)) if, for each
x € X, there is a neighbourhood V of x and a constant & = k(V) depending
on Vsuchthat| f(y) —f@) | < k|ly — z| for each y, z € V.

We recall in what follows the definition of the Clarke subdifferential
and some of its most important properties (see, for details, [6]).

For each x, v € X, we define the generalized directional derivative at &
in the direction v of a given f € Lip,,.(X, R) as

O, v) = limsup,_, o (fly+ Av) — f@) /4.

It is known that, if f € Lip,,,(X, R), then f°(z, v) is a finite number
and | f°(,v)| < k|v|. The mapping v+ f°(zx,v)is positively
homogeneous and subadditive, and then, it is convex continuous. The gener-
alized gradient (the Clarke subdifferential) of f at x is the subset 9f(x) of
X* defined by af (@) = (" € X*; f°(x, v) = <z™, v, Vv € X).

The fundamental properties of the Clarke subdifferential are: a) For
each £ € X, df(x) is a nonempty convex Y -compact subset of X .

b) For each z, v € X, we have f (z, v) = max {z™, v> ; ¥ € of (@)},

c) The set-valued mapping x— 9f (x) is upper semi-continuous in the
sense, that for each x, € X, € > 0, v € X, there is d > 0 such that for each
z* € of(@) with |z —x,]| <8, there exists x, € 8f(x,) such .that
| <™ — 2, v | <e.

d) The function f°(+,+) is upper semi-continuous.

e) If f attains a local minimum or maximum at x, then 0 € 9f ().

f) The function A(x) = min {|z™|; z* € 0f (%)} exists and is lower
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semi-continuous.

Definition 1. A point # € X is said to be a crilical point of f €
Lip,,.(X, R) if 0 € 8f(w), namely f°(x, v) =0 for every v € X. A real
nymber ¢ is called a critical value of f if there is a critical point # € X such
that 0f (u) = c.

Definition 2. If f € Lip,,.(X, R) and c is a real number, we say that f
satisfies the Palais-Smale condition at the level ¢ (in short (PS),) if any
sequence (z,) in X with the properties lim,_., f(x,) = ¢ and lim,_., A(x,) =
0 has a convergent subsequence.

2. Main results. In what follows, f will be a locally Lipschitz function
on the real Banach space X. Let K be a compact metric space and let K™ be
a nonempty closed subset of K. If p* is a fixed continuous map defined on K,
let ®={pe€ CK, X ;p=p"on K*}. Define

(1) ¢ = infoep max,cx (D).

Clearly, ¢ = max,cxx fP™ (D).

Theorem 1. Assume that
(2) ¢ > maz,cex T @)

Then there exists a sequence (x,) in X such that

i) limf(x,) =c, i) imai(z,) =0.

Nn—oo N—00

Corollary 1. If f has (PS), and satisfies the same assumptions as in
Theorem 1, then ¢ is a critical value of f, corresponding to a critical point which
is not in pT(K™).

The proof follows from Theorem 1 and the lower-semicontinuity of the
function A.

Corollary 2. Suppose f(0) = 0 and there exists v € X\ {0} such that
f) < 0. If ¢ > 0 and f satisfies (PS),, then c is a critical value of f.

For the proof, it suffices to apply Corollary 1 for K = [0, 1], K*=
{0, 13, p™(0) = 0 and p*Q) = v.

If (2) fails, a sufficient condition which ensures the validity of Theorem
1 is given by the following result, which is a variant of Theorem 1 in [9].

Theorem 2. Assume that for every p € P there is some point t € K\ K *
such that f(p(D)) = c. Then there exists a sequence (x,,) in X such that

1) imf(z,) =c, ii) limi(z,) = 0.

Nn—o0 N—>00

Assume, in addition, that f satisfies (PS),. Then ¢ is a critical value of f.
Furthermore, if (p,) is any sequence in P such that lim,_, mazx f(p,(t)) = c,
then there exists a sequence (t,) in K such that lim,_. f(p,(t,)) = ¢ and
lim, ., A(p,(t,)) = 0.

Proof of Theorem 1. We apply Ekeland’s variational principle to the
functional¢(p) = max {f(p(H) ; t € K} defined on the complete metric
space ¥, endowed with the usual metric. The function ¢ is continuous on &
and bounded below, because ¢(p) = max,cxs fGB (D). Since ¢ = infy,ep
¢ (@), it follows that, for every & > 0, there exists p € % such that
(3) (@ — ¢@) + ed(p, g0 =0, for each ¢ € P
(4) c< 9@ < c+e.
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Setting

B@p) ={te K;fo®) = ¢@®}
it suffices to prove that there exists ¢ € B(p) such that
(5) AP)) < 2e.

Then the conclusion of the theorem follows easily by choosing & =711-

and z, = p(t').

We need now the following result:

Lemma 1. Let M be a compact metric space and let ¢ : M — 2" be a set-
valued mapping which is upper semi-continuous (in the sense of property c)) and with
Y -compact convex values. For t € M denote 7(#) = inf{|l ™| ; 2™ € ¢ (®}
and v = inf{r(®) ; t € M}.

Then, given € > 0, there exists a continuous function v : M — X such that
foralit€ Mandx™ € @), |[v® | £ 1 and <™, v > = 7 — e.

For the proof of this lemma, see [5]. Applying Lemma 1 for M = B(p)
and @ (#) = af(p(#)) we obtain a continuous function v : B(p) — X such that
for all t € B(p) and ™ € af (p(®),

(6) lo@ | <1 and <, 0@ > =7 —e.

where 7 = inf,cpp) AG@).

It follows that for each t € B(p),

PO, — v®) = max{< z™, —v® > ;2" € of ()} =
= —min{< z™ v@® >;z € ofGM)} < —r+e.

By assumption (2), B(») N K* = @ . Thus there is a continuous func-
tion w: K— X which extends v such that w|g« =0 and |w(® || < 1 for
each t € K. We take for g, in (3), small variations of the path p:
q,(® = p(® — hw(t) where h > 0 is small enough.

It follows from (3) that for every 2 > 0

7) —e< —¢lwl|. < (‘1); @)

In what follows, ¢ > 0 is fixed while we let 2— 0. Let ¢, € K be such
that f(q,(t,)) = max, . f(q,(t)). For a suitable sequence h,— 0, t, con-
verges to some #, which belongs to B(p). Therefore,

$g) —9@) _ ¢ — hw) — 9@) _ ft) — hw(t)) — fp(,))
h h - h )

It follows from (7) that

< ft,) — hw()) — f(p(t)) + o) — hw(t)) — fpt) — hw(ty))
h h ’

Using the fact that f is locally Lipschitz and that the sequence
(¢,) converges to t,, we get
lim f(p(th”) — h’nw(th,,)) _'f(l)(thn) _ h”w(to)) —
N—s00 hn
Therefore,

0.
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foU) + 2, — hw(t)) — Fpt) + 2,)

— & < lim sup

N—00 n
where z, = p(t, ) — p(¢). Consequently,
— e < £y, —wt) = £y, —v(t)) < — 7+

which implies 7 = inf{|z* || ; 2* € af(p(®)), t € B(p)} < 2e.

It follows from the lower semi-continuity of A that there is some
' € B(p) such that A(p(t)) = inf {2 |; ™ € af ()} < 2e.

Proof of Theorem 2. We shall apply Ekeland’'s variational principle to
the functional ¢.(p) = max {f(p®)) + ed(® ; t € K}
for each ¢ > 0 and p € P, where d() = min{dist(t, K*), 1}.

Ifc, = inf g, (p), thenc < ¢, < ¢ + e.

Applyixfgegl::keland’s variational principle, we get a path p € % such that
for each ¢ € ?,

(8) O — ¢ ) +edp, 9 20
(9) c<c¢. < ¢P.P) <c.te=<c+ 2.

Setting B,(p) = {t € K ; f(p () + ed(®) = ¢.(®)},
it remains to prove that we can find some t € B,(p) such that
A@()) < 2¢e. We obtain_thereafter the conclusion of the first part of the
theorem by choosing & = -~ and x, = ().

Applying Lemma 1 for M = B.(p) and ¢ (&) = af (p()), we get a con-
tinuous map v : B,(p) — X such that for all t € B,(p) and ™ € af (1)),

lo@®||<1and <z™ 0@ >=>27—¢
where ¥ = inf {1(p®) ; t € B.(p)}.

But our hypothesis implies
(10) &) > max {f((p(D) ;t € K™},

Hence, B,(p) N K*=¢0. Thus, there exists a continuous function w de-
fined on K which extends v such that w4 = 0 and |w(® || <1 forall t €
K™ We take for ¢, in (8), small variations of the path p:
4,® = p(®) — hw(®) for h > 0 small enough.

In what follows, € > 0 will be fixed while we let #— 0. There exists
t, € B.(p) such that f(q(t,)) + ed(t,) = ¢.(g,). For a suitable sequence
h,— 0, t, converges to some ¢, € B,(p). It follows that

< ¢:(g,) ; . @) — f(g,(8) + a;f(th) - ¢.() <

—e< —¢|wl,

< [a,(8) ; fp@) _ foi) — hw(’tl,,)) — @)

With the same reasoning as in the proof of Theorem 1 we get that there
is some ¢ € B,(p) such that A(p(¢)) < 2e.

If f has (PS),, then ¢ is a critical value because of the lower semi-
continuity of A.

For the second part of the proof, there exists, by Ekeland’s varational
principle, a sequence of paths (g,) in % such that for each ¢ € #,

¢sf,(q) - (pef,(qn) + snd(q’ qn) 2 0 and gbsf,(qn) < (pef,(pn) - 6nd(pnr qn)’
where (g,) is a sequence of positive numbers which tends to 0 and (p,) are
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paths in & such that ¢eg(17n) <c+ 28,2,. It follows that d(p,, q,) < 2¢,. Ap-
plying the preceding argument to (g,), instead of p, we find some elements
t, € K such that ¢ — &, < f(q,(t,)) < ¢+ 2¢2 and A(g,(t,) < 2s,.

This is the desired sequence (f,). Indeed, by (PS),, a subsequence of
q,(t,) converges to a critical point and then the corresponding subsequlence
of p,(¢,) converges to the same limit. A standard argument, using the con-
tunuity of f and the lower semi-continuity of A, shows that for the full sequ-
ence, lim,_., f(p,(t,)) = c and lim,_., 2(p,(¢)) = 0.

3. An application. Let £ be a smooth bounded domain in RY(N = 3)
and g be a measurable function defined on £ X R satisfying, for all
x, ) €2 XR
(11) gz, D] < C,a+ ¢t

where C, is a positive constant and 1 < p < % t 5

Define the functional ¢ in LD by

o(w) = fgj;m) glx, Hdtdx.

The fact that ¢ is a locally Lipschitz function in L***(Q) follows from
the growth condition (11) and the Hoélder inequality.

t
Setting G(x, ) = f g(x, s)ds, then, by Theorem 2.1. in [Ch], the
0

Clarke subdifferential 0,G(x, ) of the mapping ¢t — G(z, f) is given by
0,G(x, t) = [glx, B, Z(x, ], where
glx, H = lim~,essinflglx, s) ;| t—s| <e}
gz, t) = lim. ,esssuplg(x, s) ;| t—s| <e}.
Assuming that

(12) g and £ are measurable on 2 X R,
by Theorems 2.1. and 2.2. in [Ch] it follows that
(13) 0P uign (W) < 0p(u) < 8,G(x, 1) a.e.x € Q.

We suppose, in addition, that
(14) gz, 0) = 0 and lim sup,_,

g—(—‘%;t)l < A; uniformly in x € 2
and
(15) 4Gz, » < {

for some ¢ > 2 and 7 = 0.

Proposition 1. Let a € L”(2) be a non-negative function and suppose
that conditions (11), (12), (13), (14) and (15) hold. Then the multivalued non-
linear elliptic problem

(16) — Adu(@) + a@u@) € [glx, u@), g, ul@)] ae.x€Q
has a solution in HOl ) N W (Q), where p’ is the conjugated exponent of p.
Sketch of the proof. We consider in Hol () the locally Lipschitz function

o(u) = %IIV ulfag + %f;a(x)uz(x)dx — ¢(u).

To prove our statement it suffices to show that ¢ has a critical point

tglx, ), ae.x€Q,t=2r
tg(x, ), ae.x€ Q,t< —vr
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u, € Hol(.Q) corresponding to a positive critical value. Indeed, it is obvious
that 8¢ (w) = —Au + a(@u — 0¢ 30 (W) in H (D).

If u, would be a critical point of ¢ it follows that there would exist w €
0910 () such that — Au, + a(@u, = win H™ ' (Q).
But w € L (). Then by a standard regularity theorem for elliptic equa-
tions we obtain that #, € W>?(£2) and u, is a solution of the problem (16).

To prove that ¢ has a critical point we apply Corollary 2, by showing
that ¢ satisfies the Palais-Smale condition and the following geometrical
assumptions :

©(0) = 0 and there exists v € H, (2) such that ¢(v) < 0.

There exist ¢ > 0 and 0 < R < | || such that @5z = c.
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