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Abstract: We present some versions of the Mountain Pass Theorem of

Ambrosetti and Rabinowitz for locally Lipschitz functionals. A multivalued

elliptic problem is solved as an application of these results.
Key words: Clarke subdifferential critical point theory; multivalued

elliptic problem.

1. Introduction. The Mountain Pass Theorem of Ambrosetti and Rabi-
nowitz [1] is a very useful tool for finding critical points of cl-functionals.
We shall give some variants of this celebrated theorem for locally Lipschitz
mappings.

Throughout, X will be a real Banach space. As usual, X* denotes the
dual of X and (’,’) is the duality pairing between X* and X. We say that a
function f X--* R is locally Lipschitz (f LiPoc(X, R)) if, for each
x X, there is a neighbourhood V of x and a constant k k(V) depending
on V such that f (y) f(z) -- k y z for each y, z V.

We recall in what follows the definition of the Clarke subdifferential
and some of its most important properties (see, for details, [6]).

For each x, v e X, we define the generalized directional derivative at x
in the direction v of a given f LiPoc(X, R) as

f(x, v) lira supy_.x,\o (f(y -b ,v) f(y)) /,.

It is known that, if f LiPoc(X, R), then f(x, v) is a finite number
and f(x, v) l<- k v [I, The mapping v -f(x, v) is positively
homogeneous and subadditive, and then, it is convex continuous. The gener-
alized gradient (the Clarke subdifferential) of f at x is the subset 8f(x) of
X*definedby f(x) {x* X*;f(x, v) >- (x* v) V v X}

The fundamental properties of the Clarke subdifferential are: a) For
each x X, f(x) is a nonernpty convex --compact subset of X*.

b) For eachx, vX, wehavef(x, v) --max{(x*, v) ;x 8f(x)}.
c) The set-valued mapping x -- 8f(x) is upper semi-continuous in the

sensethat for each xo X, e > 0, v X, there is 6 > 0 such that for each
x 8f(x) with Ilx--xoil < (, there exists Xo* 8f(xo) such ,that

I<x*- Xo, v>l< .
d) The function f o(.,.) is upper semi-continuous.
e) If f attains a local minimum or maximum at x, then 0 f(x).

Xf) The function/(x) rain (llx II; f(x)} exists and is lower
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semi-continuous.
Definition 1. A point u X is said to be a crilical point of f

LiPoc(X, t) if 0 f(u), namely f(a:, v) > 0 for every v X. A real
nymber c is called a critical value of f if there is a critical point u X such
that Of(u) c.

Definition 2. If f LiPton(X, lg) and c is a real number, we say that f
satisfies the Palais-Smale condition at the level c (in short (PS)) if any
sequence (a:.) in X with the properties lim._=f (ocn) c and lim._.= 2 (ac.)
0 has a convergent subsequence.

2. Main results. In what follows, f will be a locally Lipschitz function
on the real Banach space X. Let K be a compact metric space and let K* be
a nonempty closed subset of K. If p* is a fixed continuous map defined on K,
let3= {p C(K X) p p* *}.on K Define
1 c inf max,if(P (t)).

Clearly, c >_ maa6, f(p* (t)).
Theorem 1. Assume that

(2) c > maoctz, f(P* (t)
Then there exists a sequence (ac.) in X such that
i) lim f (ac.) c, ii) lim . (oc.) =0.

Corollary 1. If f has (PS) and satisfies the same assumptions as in
Theorem 1. then c is a critical value off, corresponding to a critical point which
is not in p* (K *).

The proof follows from Theorem 1 and the lower-semicontinuity of the
function/.

Corollary 2. Suppose f (O) 0 and there exists v X\ {0} such that

f(v) <-- O. If c > 0 and f satisfies (PS). then c is a critical vdlue off
For the proof, it suffices to apply Corollary 1 or K [0, 1], K*=

{0, 1}, p*(0) 0 and p*(1) v.
If (2) fails, a sufficient condition which ensures the validity of Theorem

i is given by the following result, which is a variant of Theorem i in [9].
Theorem 2. Assume that for every p there is some point t K\ K*

such that f (p(t)) >_ c. Then there exists a sequence (cn) in X such that
i) lim f (:c,) c, ii) lim (:c,) =0.

Assume, in addition, that f satisfies (PS) c. Then c is a critical value off
Furthermore, if (Pn) is any sequence in such that limn_.o ma:c f(p(t)) c,
then there exists a sequence (tn) in K such that limn_.o f(Pn(tn))= c and
lim,_.oo , (p, (t,) O.

Proof of Theorem 1. We apply Ekeland’s variational principle to the
functionalb(p) marc {f(p(t));t K} defined on the complete metric
space 5, endowed with the usual metric. The function b is continuous on 50
and bounded below, because b(p)_> ma:rtc.f(p*(t)). Since c inf
b(p), it follows that, for every > 0, there exists p 50 such that
(3) b(q) b(p) + td(p, q) >_ O, for each q 50

(4) c --< b(p) _< c + t.
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Setting
B(p) (t K ;f(p(t)) (p)}

it suffices to prove that there exists t’ B(p) such that
(5) (p(t’) < 2s.

1Then the conclusion of the theorem follows easily by choosing s

and con p(t’).
We need now the following result:
Lemma 1. Let M be a compact metric space and let o M--* 2x* be a set-

valued mapping which is upper semi-continuous (in the sense of property c)) and with
"it-compact convex values. For t M denote r(t) inf (ll x II;x 0(t)}
ana r inf {r(t); t M}.

Then. given s > O. there exists a continuous function v M X such that

for all t M and x* q)(t). v(t <- 1 and <x* v(O > > r- s
For the proof of this lemma, see [51. Applying Lemma 1 for M B(p)

and p(t) Of(p(t)) we obtain a continuous function v :B(p) ---. X such that
for all t B(p) and z Of(p(t)),

v(0 < 1 and (x* v(t)) >-- )’--s.

where r infB(p) . (p(t) ).
It follows that for each t B(p),

fO(p(t), v(t)) max(< x v(t) > ;x Of(p(t)))
--min(<x v(t) > ;x Of(p(t))) < r+s.

By assumption (2), B(p) f K*= 0. Thus there is a continuous func-
tion w :K--, X which extends v such that w ]r* 0 and w()II <-1 for
each t K. We take for q, in (3), small variations of the path p:
qh(t) p(t) hw(t) where h > 0 is small enough.

It follows from (3) that for every h > 0

In what follows, s > 0 is fixed while we let h 0. Let th K be such
that f(q,(t,))= maxf(q, (t) ). For a suitable sequence h.--O, t,. con-
verges to some to which belongs to B(p). Therefore,
(q) b(p) ,,,(p- hw) (p) _< f(p(t) hw(t)) --f(p(t))

h h h
It follows from (7) that

s <_ f(p(t.) hw(t,)) --f(p(t.)) <_
h

< f(p(t) hw(to)) --f(p(t)) + f(p(t) hw(t)) --f(p(t) hw(to))
h h

Using the fact that f is locally Lipschitz and that the sequence
converges to to, we get

lira f(p(t,.) hw(t.,)) --f(p(t,.,) h W(to))
-.oo h -0o

Therefore,
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e < lira sup f (p(to) + zn hnw(to)) --f(P(to) + z.)

where zn P(thn) P(to). Consequently,

t <-- f(P(to), w(to)) f(P(to), v(to)) <-- " +which implies 7" inf([[x* II;x* 8f(p(t)), t B(p)} _< 2e.
It follows from the lower semi-continuity of 2 that there is some

t’ such that inf(llx II;x <_

Proof of Theorem 2. We shall apply Ekeland’s variational principle to
the functional (p) max {f(p(t)) + ed(t) t K}
for each > 0 and p , where d(t) min{dist(t, K*), 1}.

Ifc infer(p), then c_< c <_ c+.
Applying Ekeland’s variational principle, we get a path p such that

for each q ,
(8) (q) (p) + d(p, q) >_ 0
(9) c<- c<- (p) <- c+e <- c+2.

Setting B(p) {t K f(p(t)) + ed(t) (p)},
it remains to prove that we can find some t" B(p) such that
,(p(t’)) 2e. We obtainlthereafter the conclusion of the first part of the
theorem by choosing e = and xn p(t’).

Applying Lemma 1 for M B(p) and o(t) 8f(p(t)), we get a con-
tinuous map v B(p) -- X such that for all t B(p) and x Df(p(t)),

v(t) < 1 and < x v(t) > "- e
where r inf ( (p(t) ) t B, (p) )

But our hypothesis implies
(10) ,(p) > max (f((p(t)) t K*).

Hence B, (p) q K* 0. Thus, there exists a continuous function w de-
fined on K which extends v such that wlz,<) 0 and w(t) --< 1 for all t
K*. We take for q, in (8), small variationsof the path p"
qh(t) = p(t) hw(t) for h > 0 small enough.

In what follows, e > 0 will be fixed while we let h---} 0. There exists

th B,(p)such that f(q(th)) + td(th)= ,(qh)" For a suitable sequence

h-- O, th converges to some to B(p). It follows that

w < (qh) ) (P) f(q, (ta)) + d(t,) , (p)
h h

<_ f(q(t)) f(p(t)) f(p(t) hw(t)) f(p(t))
h h

With the same reasoning as in the proof of Theorem 1 we get that there
is some t’ B(p) such that

If f has (PS)c, then c is a critical value because of the lower semi-
continuity of .

For the second part of the proof, there exists, by Ekeland’s varational
principle, a sequence of paths (qn) in

(q) n(qn) + end(q, qn) >- 0 and gbn(qn) <-- n(Pn) end(Pn, qn),
where (Sn) is a sequence of positive numbers which tends to 0 and (p) are
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paths in 0 such that 4(pn) --< c + 2e2n It follows that d(pn, qn) _< 2e.. Ap-
plying the preceding argument to (qn), instead of p, we find some elements

t K such that c- e2 <-f(q(tn)) c + 2e and (q(t)) 2.
This is the desired sequence (t.). Indeed, by (PS)c, a subsequence 0f

q(t,) converges to a critical point and then the corresponding subsequence
of p(t)converges to the same limit. A standard argument, using the con-

tunuity of f and the lower semi-continuity of 2, shows that for the full sequ-
ence, lim_ f(p (t) ) c and lim_ (p (t) ) O.

Ru
3. An application. Let be a smooth bounded domain in (N 3)

and g be a measurable function defined on R satisfying, for all
(x,t)9zR
(11) g(x t) Co(1 +lt[)

N+2
where Co is a positive constant and 1 K p < N- 2"

Define the functional in L+() by

() g(x, t) dtdx.

The fact that is a locally Lipschitz function in L+(D) follows from
the growth condition (11) and the H61der inequality.

Setting G(x, 0 g(x, s)ds, then, by Theorem 2.1. in [Chl, the

Clarke subdifferential OG(x, 0 of the mapping t (x, t) is given by
O,G(x, 0 [g(x, 0, (x, 0], where

g(x, O limo ess inf[g(x, s) t- s] < e}
g)x, t) lim  o ess sup[g(x, t- s I< e).

Assuming that
(12) g and are measurable on 9 x R,
by Theorems 2.1. and 2.2. in [Ch] it follows that
(13) ,Ht(o) (U) 8(U) 8tG(x, O a.e. x 9.

We suppose, in addition, that

(14) g(x, 0) 0and lim suPto’ g(x’t t) < , uniformly in x.
and

(15) pG(x t) < tg(x, t), a.e.x 9, t> r
(x, t), a e x , t<_ -r

for some/z > 2 and r-> 0.
Proposition 1. Let a L(2) be a non-negative function and suppose

that conditions (11), (12), (13), (14) and (15) hold. Then the multivalued non-
linear elliptic problem

(16) Au(x) + a(x) u(x) [g(x, u(x)), g(x, u(x))] a,e.x 9
has a solution in H (2) F W’P’-(Y2), where p" is the conjugated exponent ofp.

Sketch of the proof. We consider in Ho() the locally Lipschitz function

1 1 uv u / a(x) (x)dz (u).

To prove our statement it suffices to show that q has a critical point
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uo Ho(Y2) corresponding to a positive critical value. Indeed, it is obvious
that Oo(u) --Au + a(x)u Od21H,)(U) in H-1(12).

If u would be a critical point of q it follows that there would exist w
Oqgo9) (Uo) such that Auo + a(x)u w in H-(9).
But w LP’(Y2). Then by a standard regularity theorem for elliptic equa-
tions we obtain that u wa’P(12) and uo is a solution of the problem (16).

To prove that q has a critical point we apply Corollary 2, by showing
that q satisfies the Palais-Smale condition and the following geometrical
assumptions:

q(0) 0 and there exists v H0(12) such that q(v) _< 0.
There exist c > 0 and 0 < R < v such that qlS(O,R) >- C.
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