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Abstract:

We prove a Lusternik-Schnirelmann type theorem for locally Lipschitz functionals,

by replacing the notion of Fréchet-differentiability with the Clarke generalized gradient. We apply
our abstract framework to solve a multivalued second order periodic problem generated by

non-smooth mappings.
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1. Introduction. In the theory of differen-
tial equations two of the most important tools for
proving the existence of solutions are the Moun-
tain Pass Theorem of Ambrosetti-Rabinowitz and
the Lusternik-Schnirelmann Theorem. These ab-
stract results apply to the case where the solu-
tions of the given problem are critical points of
an appropriate functional of energy f, which is
supposed to be real and of class Cl, defined on a
real Banach space. The case when f fails to be
differentiable arises frequently in non-smooth
mechanics. In [8] we proved a generalization of
the Mountain Pass Theorem for locally Lipschitz
functionals. The aim of this paper is to give a
variant of the Lusternik-Schnirelmann Theorem
for such functionals.

We recall in what follows the main prop-
erties of locally Lipschitz functionals. For proofs
and further details see [2] or [3].

Throughout, X will be a real Banach space.
Let X™ be its dual and <z*, 2>, forr € X, xr €
X*, denote the duality pairing between X* and
X. Let f : X— R be a locally Lipschitz (f €
Lip,,.(X, R)). For each x, v € X, we define the
generalized directional derivative at x in the
direction v of f as

f’(x, v) = lim sup
y—x
AN0

The generalized gradient (the Clarke subdif-

ferential) of f at x is the subset 8f(z) of X ™ de-
fined by
f(x) = {z* € X*; 4, v) = <™ v,
for all v € X)

fly + Av) — f(y)
A

Locally Lipschitz functional; Clarke subdifferential; Lusternik-Schnirelmann categ-

If f is convex, 8f(x) coincides with the sub-
differential of f at x in the sense of convex
analysis.

The fundamental properties of the Clarke
subdifferential are:

a) For each x € X, df(x) is a nonempty
convex weak-% compact subset of X*

b) For each x, v € X, we have

%z, v) = max{<z™, v); 2™ € of(x)}

¢) The set-valued mapping x + 0f(x) is up-
per semi-continuous in the sense that for each
r, € X,e>0, v E X, there is 0 > 0 such that
for each z* € af(x) with |z — z, | < &, there
exists x, € 0f(x,) such that | <z™ — z, v |
<e.

d) The function fo(',‘) is upper semi-
continuous.

e) If f achieves a local minimum or max-
imum at x, then 0 € 3f(x).

f) The function

. *
Al@) = min ||z |
r*eaf(x)
exists and is lower semi-continuous.

Definition 1. A point u € X is said te be a
critical point of f € Lip,,.(X, R) if 0 € 0f (),
namely f°(u, v) = 0 for every v € X. A real num-
ber ¢ is called a critical value of f if there is a cri-
tical point u € X such that f(u) = c.

2. The main result. Let Z be a discrete
subgroup of the real Banach space X, that is

inf |z[|>0

zezZ\{0}
A function f:X— R is said to be Z-
periodic if f(x + 2) = f(x), for every £ € X and
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zE Z

If f€ Lip,,.(X, R) is Z-periodic, then x +
%, v) is Z-periodic, for all v € X and 0f is
Z-invariant, that is 0f(x + 2) = df(x), for ev-
ery x € X and z € Z. These impliy that A in-
herits the Z-periodicity property.

If #:X— X/Z is the canonical surjection
and z is a critical point of f, then " ((x)) con-
tains only critical points. Such a set is called a
critical orbit of f. Note that X/Z is a complete
metric space endowed with the metric

d(x(@), n(y) = inf lz—y— 2l
F4

Definition 2. A locally Lipschitz Z-periodic
function f : X— R is said to satisfy the (PS),-
condition provided that, for each sequence (x,) in X
such that (f(x,)) is bounded and A(x,) — 0, the
sequence (1(x,)) is relatively compact in X/ Z. If ¢
is a real number, then [ is said fo satisfy the
(PS) ;.- condition if, for any sequence (x,) in X
such that f(x,) — ¢ and 2(x,) — 0, there is a con-
vergent subsequence of (m(x,)).

We recall some well-known properties of the
Lusternik-Schnirelmann category. See [7] for
proofs and details.

Lemma 1. Let A and B be subsets of X.
Then the following hold :

i) If A C B, then Caty(A) < Caty(B)

ii) Caty(A U B) < Cat,(A) + Cat,(B)

iii) Let h:[0,1]1 X A— X be a continuous
mapping such that h(0,x) = x for every x € A. If
A is closed and B = h(l, A), then Caty(4) <
Cat,(B)

iv) If n is the dimension of the vector space
generated by the discrete group Z, thenm , for each
1< i< n+1, the set
4;,={AC X ;A is compact and Cat,y,7(A) = i}
is nonempty. Obviously, 4, D A,D ... D d,,,.

The following two Lemmas are proved in [9].

Lemma 2. Foreach 1 < j < n-+ 1, the space
A, endowed with the Hausdorff metric
0(A, B) = max{sup dist(a, B), sup dist(b, A)}

€

acA b
1s a complete metric space.
Lemma 3. If1<i<n+1 and f € CX,
R), then the function n : 4,— R defined by
7(A) = max f(x)

T€EA
1S lower semi- continuous.
Let f : X— R be a Z-periodic locally Lips-
chitz function with the (RS),-property. Moreov-
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er, we suppose that f is bounded below. We shall
denote by Cr(f, ¢) the set of critical points of f
at the level ¢ € R, that is

Cr(f,o) ={re€ X;f(@ = cand A(x) = 0}

For each ¢ € R we denote [f<¢] = {x €
X; fx) <c}.

Theorem 1. Let f : X— R be a bounded be-
low Z-periodic locally Lipschitz function which
satisfies the (PS) - condition.

Then f has at least m + 1 distinct critical
orbits, wheve n is the dimension of the vector space
generated by the discrete group Z.

Proof. Foreachl <i<w#n+1,let

¢; = inf n(4)

Aed

It follows from Lemma 1 1) and the lower

boundedness of f that
—0o <<l ...Su <t

It is sufficient to show that, if 1 <1< j<n
+1 and ¢;=c¢,=c, then the set Cr(f, ¢
contains at least j — ¢ + 1 distinct critical orbits.
We argue by contradiction and suppose that, for
some ¢ < j, Cr(f, ¢) has k < j — i distinct cri-
tical orbits, generated by x,...,x, € X. We
construct first an open neighbourhood of
Cr(f, ¢) of the form

k
V,=U U Bz, + 2, 7
I=12€Z

Moreover, we may suppose that > 0 is
chosen such that 7 is one-to-one on B(x, 27).
This condition ensures that Cat,y (r(B(z,
27))) =1,foreach [=1,...,k Here V,= @ if
k=0.

Step 1. We prove that there exists 0 < ¢

. (1
< mm[z, r} such that, for each x € [c — e £

f<c+el\V,, one has
(1) Ax) > e

Indeed, if not, there is a sequence (x,) in
X\ V, such that, for each m = 1,

1 1 1
c—ﬁéf(xm)éc+7n-and2(xm)sﬁ

Since f satisfies (PS),, it follows that, up to
a subsequence, 7(x,) — 7(x) as m— o , for
some x € X\ V,. By the Z-periodicity of f and
A, we can assume that x, — x as m— . The
continuity of f and the lower semi-continuity of
A imply f(x) = ¢ and A(x) = 0, which is a con-
tradiction, since x € X\ V,.

Step 2. For € found above and according to
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the definition of ¢;, there exists A € &; such that
max f(x) < ¢+ &

T€A

Setting B = A\ V,,, we get by Lemma 1 that

J < Cat,y (r(A)) < Catyy (r(B) U n(V,,)) <
< Cat,y, (m(B)) + Cat,y, ((V,)) <
Cat,, (t(B)) + k < Cat,,(x(B)) +j — 1

Hence, Cat,, (w(B)) = ¢, thatis B € 4.

Step 3. For € and B as above we apply the
Ekeland’s Principle to the functional 1 defined in
Lemma 3. It follows that there exists C € 4,
such that, for each D € &, D # C,

n(C) <nB) <n) < c+ ¢
0B, C) <¢
(2) n(D) > n(C) — ed(C, D)

Since BN V,,= @ and (B, C) <e<,
it follows that C N V, = @ . In particular, the
set F=1[c—¢e <f] N C is contained in [c — ¢
<f<c+eland FNV,= @ . Applying Lem-
ma 1 in [8] to ¢ = 0f on F, we find a continuous
map v:F— X such that, for all x € F and

z* € af(@),
lo@ | <1 and <z*, v(@> = inf A(x) — ¢ =
xeF
inf A(x) —e=>vVe —¢
xeC

where the last inequality is justified by (1).
It follows that, for each £ € F and 2™ €

of(x),
f’z, —v@) = max <z, — @) =
r*edf(x)
— max <z¥, v(x)>f <e—ye< —g

r¥*eof(x)
from our choice of e.

From the upper semi-continuity of f0 and
the compactness of F, there exists 6 > 0 such
thatifr € F,y<€ X, |y — x| < 8, then
(3) 'y, —v@) < —¢

Since C N Cr(f, ¢) = @ and C is compact,
while Cr(f, ¢) is closed, there is a continuous
extension w : X— X of v such that w|c e = 0
and |w(x) | < 1, for all x € X.

Let a: X— [0,1] be a continuous Z-per-
iodic function such that @ =1 on [f = ¢] and
a=0on[f=c—e¢€]l. Let h:[0,1] X X— X be
the continuous mapping defined by

h(t, x) = x — toa(x)w(x)

If D= hr(, C), it follows from Lemma 1

that
Cat,, (r(D)) = Cat iy (n(C)) =i
which shows that D € 4, since D is compact.

Step 4. By Lebourg’s mean value theorem
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(see [4]) we get that, for each x € X, there exists
6 € (0,1) such that
@, ») — fh, x)) € <6f(h, ),
— da@w(x)>
Hence, there is some z* € 0f(h(6, x)) such
that
fr@, ) — frQ, 0) = al@)<z™, — dwx)>
It follows from (3) that, if x € F, then
(4) fr@, ») — f, 1)
= da(@) <™, — w(x))
< da) f(x — Ba@wx), — v(x)>
< — ebalr)
It follows that, for each x € C,
f(r@, ) < f(o
Let xz, € C be such that f(h(1, z)) =
1 (D). Hence,
c<fhQ, x)) < f(x,)

By the definition of & and F, it follows that
a(x,) = 1 and x, € F. Therefore, by (4), we get
FhQ@, x) — flx,) < — &b

Thus,
(5) n(D) + &6 < f(x,) < (0O
Taking into account the definition of D, it
follows that
o(C,D) <o
Therefore,
n(D) + ¢d6(C, D) < n(0O)
so that (2) implies C = D, which contradicts (5).
Ol
3. An application. We shall study the
periodic multivalued problem of the forced-
pendulum

©) {x”(t) + £ € [gx®), gx®)] ae t< (0,1)

z(0) = x(1)
where
(7) fe L’0,1) for some p > 1
(8) gEL"R), glx+ 1 = glx)

for some T>0,2e. T€E R

9 gl = 1i<n essinf {g(®); |t —s| <e}
&N\0

Z(s) = limesssup {g(® ;| t—s| <e}
&\.0

fOTg(t>dt= j;rf(t)dt= 0

Theorem 2. If f, g ave as above, then the
problem (6) has at least two solutions in
X :=H,0,1) = {x € H(0,1); 200) = 1)},
which arve distinct in the sense that their differvence
is not an integer multiple of T.

Sketch of the proof. The critical points of the
locally Lipschitz map

(10)
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1 1 2 1 1
X == "+ -
0:X—R ok 2) jo‘f;r j{: G)
are solutions of (6), where G(¢) = g(s)ds.
o

Since ¢(x + T) = ¢(x), we are going to use
Theorem 1. We shall verify only that ¢ has the
(PS) ,.-property, for each real ¢. The details of
the proof and further results will appear else-
where.

Let (z,) € X be such that

(11) olx,) — ¢
(12) A(z,) — 0
Let w, € d¢(x,) < L7(0,1) (since g-°x,

<w,<g-°x,and g, & € L"(R)) be such that
Az,) =z’ + f— w,— 0in H'(0,1)
Then, multiplying (12) by x, we get

1 1 1
[ @t [ fa+ [ wa, =0 Izl
and, by (11),

)
—s L@+ [ rm- [ e@—e,

so that there exist positive constants C,, C, such
that

1
fo @)*< C + Cylla, |l

Note that G is also T-periodic, hence bound-
ed.

Replacing x, by x, + kT for a suitable inte-
ger k, we may suppose that

z,(0) € [0, T]

so that (z,) is bounded in H,.

Let x € H,,1 be such that, up to a subsequ-
ence, x, — x and x,(0) — x(0).
Then

1
_/; @D =L —z/— f+w, x, — 2

+ w,(x, — x)

Locally Lipschitz Functioaals 167

because x, — x in L, where p’ is the conjugated
exponent of p.
It follows that x, — x in H,. ]
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