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Abstract This paper is concerned with the existence of positive solutions for a class of
quasilinear singular elliptic systems with Dirichlet boundary condition. By studying the
competition between theCaffarelli–Kohn–Nirenberg exponents, the sign-changing potentials
and the nonlinear terms, we establish an interval on the range of multiple parameters over
which solutions exist in an appropriate weighted Sobolev space. The arguments rely on the
method of weak sub- and super-solutions.
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1 Introduction

The study of positive solutions of singular partial differential equations or systems has been
an extremely active research topic during the past few years. Such singular nonlinear prob-
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lems arise naturally and they occupy a central role in the interdisciplinary research between
analysis, geometry, biology, elasticity, mathematical physics, etc.

In this paper, we are concerned with the existence of positive solutions to the boundary
value problem

⎧
⎨

⎩

−div(|x |−ap|∇u|p−2∇u) = |x |−(a+1)p+c1(λ1A(x) f (v) + μ1C(x)h(u)) in �,

−div(|x |−bq |∇v|q−2∇v) = |x |−(b+1)q+c2(λ2B(x)g(u) + μ2D(x)τ (v)) in �,

u = v = 0 on ∂�,

(1.1)

where � is a bounded domain in R
N with 0 ∈ � , 1 < p, q < N , 0 ≤ a <

N−p
p ,

0 ≤ b <
N−q

q , c1, c2, λ1, λ2, μ1, μ2 are positive parameters.We assume that the nonlinear
terms f, g, h, τ : [0,∞) −→ [0,∞) are nondecreasing continuous functions. We also
suppose that the potentials A, B, C , and D are C1 sign-changing functions, that may be
negative only near the boundary.

Nonlinear problems like (1.1) are introduced in relationship with models for physical
phenomena related to the equilibrium of anisotropic media that possibly are somewhere
“perfect” insulators or “perfect” conductors, seeDautray andLions [14, p. 79]. The qualitative
analysis of these problems has been much developed after the pioneering paper by Murthy
and Stampacchia [23]. A crucial milestone in the understanding of the elliptic problems
involving the singular quasilinear elliptic operator −div (|x |−ap|∇u|p−2∇u) is the paper by
Caffarelli, Kohn and Nirenberg [9] (see also [11]).

The study of this type of problems is motivated by its various applications, for example,
in fluid mechanics, population genetics, Newtonian fluids, flow through porous media, and
glaciology, see [2,7,13,18]. On the other hand, quasilinear elliptic systems have an extensive
practical background. They are used to describe the multiplicate chemical reaction catalyzed
by the catalyst grains under constant or variant temperature, in the theory of quasi-regular and
quasi-conformal mappings in Riemannian manifolds with boundary, or in the description of
several physical phenomena such as the propagation of pulses in birefringent optical fibers
and Kerr-like photorefractive media, see [16,28]. We refer to [1,8,17,20] for additional
results on elliptic problems. For the regular case, that is, when a = b = 0, c1 = p and
c2 = q the quasilinear elliptic equation has been studied by several authors (see, e.g., [3]).
We refer to [4,12], where the authors discussed the system (1.1) when p = q = 2, α1 = α2,
β1 = β2 = 0, f , g are increasing, and f, g ≥ 0. In [19], the authors extended the study
of [12] to the case when no sign conditions on f (0) or g(0) were required and in [21] they
extend this study to the case when p = q > 1.

In the present paper we focus on further extending the study in [3] for the quasilinear
elliptic systems involving singularity. Due to this singularity in the weights, the extensions
are challenging and nontrivial. Our approach is based on the method of sub-super solutions,
see [10,15]. Several methods have been used to treat quasilinear equations and systems. In
the scalar case, weak solutions can be obtained through variational methods which provide
critical points of the corresponding energy functional, an approach which is also fruitful
in the case of potential systems, that is, the nonlinearities on the right hand side are the
gradient of a C1-functional [5]. However, due to the loss of the variational structure, the
treatment of nonvariational systems like (1.1) is more complicated and is based mostly on
topological methods [6]. Here we focus on further extending the study in [26] to the system
(1.1), which features multiple parameters, weight functions and stronger coupling. More
precisely, under suitable conditions on f, g, h, τ we show that the singular problem (1.1) has
a positive solution for λi , μi , (i = 1, 2) sufficiently large.
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Positive solutions of singular elliptic systems 147

2 Auxiliary results and technical assumptions

Let � be a bounded domain in R
N with smooth boundary and 0 ∈ �. Let W 1,p

0 (�, |x |−ap)

denote the completion of C∞
0 (�) with respect to the norm ‖u‖ = (

∫

�
|x |−ap|∇u|pdx)1/p .

Consider the nonlinear eigenvalue problem
{−div (|x |−sr |∇φ|r−2∇φ) = λ|x |−(s+1)r+t |φ|r−2φ in �,

φ = 0 on ∂�,
(2.1)

For r = p, s = a and t = c1, let φ1,p be the eigenfunction corresponding to the first
eigenvalue λ1,p of problem (2.1) such that φ1,p > 0 in �, and ‖φ1,p‖∞ = 1. For r = q ,
s = b and t = c2, let φ1,q be the eigenfunction corresponding to the first eigenvalue λ1,q of
problem (2.1) such that φ1,q > 0 in � and ‖φ1,q‖∞ = 1, see [22,29].

The maximum principle implies that ∂φ1,r
∂n < 0 on ∂� for r ∈ {p, q}, where n is the

outward normal. Thus, there are positive constants m0, δ and σp, σq ∈ (0, 1) such that
{

λ1,r |x |−(s+1)r+tφr
1,r − |x |−sr |∇φ1,r |r ≤ −m0 in �δ

φ1,r ≥ σr in �\�δ,
(2.2)

with r ∈ {p, q}, s ∈ {a, b}, t ∈ {c1, c2}, and �δ = {x ∈ � : d(x, ∂�) ≤ δ}, see [22].
We also consider the unique solution (ζp(x), ζq(x))∈W 1,p

0 (�, |x |−ap)×W 1,q
0 (�, |x |−bq)

of the quasilinear singular system
⎧
⎨

⎩

−div (|x |−ap|∇ζp|p−2∇ζp) = |x |−(a+1)p+c1 in �

−div (|x |−bq |∇ζq |q−2∇ζq) = |x |−(b+1)q+c2 in �

u = v = 0 on ∂� .

(2.3)

Then, by [22], we have ζr > 0 in � and ∂ζr
∂n < 0 on ∂� for r ∈ {p, q}.

Throughout this paper, we assume that the weight functions A, B, C , D take negative
values in �δ but require A, B, C , D to be strictly positive in �\�δ . To be precise we assume
that there exist positive constants a0, b0, c0, d0 and a1, b1, c1, d1 such that

A(x) ≥ −a0, B(x) ≥ −b0, C(x) ≥ −c0, D(x) ≥ −d0 on �δ (2.4)

and
A(x) ≥ a1, B(x) ≥ b1, C(x) ≥ c1, D(x) ≥ d1 on �\�δ. (2.5)

Let s0 ≥ 0 be such that

λ1a1 f (s) + μ1c1h(s) > 0 and λ2b1g(s) + μ2c2τ(s) > 0 for every s > s0. (2.6)

3 Main result

In this section, we establish our abstract existence result via the method of sub- and super-
solutions. The concepts of sub- and super-solution were introduced by Nagumo [24] in 1937
who proved, using also the shooting method, the existence of at least one solution for a class
of nonlinear Sturm-Liouville problems. In fact, the premises of the sub- and super-solution
method can be traced back to Picard. He applied, in the early 1880s, the method of successive
approximations to argue the existence of solutions for nonlinear elliptic equations that are
suitable perturbations of uniquely solvable linear problems. This is the starting point of the
use of sub- and super-solutions in connection with monotone methods. Picard’s techniques
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148 G. A. Afrouzi et al.

were applied later by Poincaré [25] in connection with problems arising in astrophysics. We
refer to [27].

A pair of nonnegative functions (ψ1, ψ2), (z1, z2) are called a sub-solution and super-
solution of problem (1.1) if they satisfy (ψ1, ψ2) = (z1, z2) = (0, 0) on ∂� and
∫

�

|x |−ap|∇ψ1|p−2∇ψ1 · ∇ω dx ≤
∫

�

|x |−(a+1)p+c1 [λ1A(x) f (ψ2) + μ1C(x)h(ψ1)]ω dx
∫

�

|x |−bq |∇ψ2|q−2∇ψ2 · ∇ω dx ≤
∫

�

|x |−(b+1)q+c2 [λ2B(x)g(ψ1) + μ2D(x)τ (ψ2)]ω dx

and
∫

�

|x |−ap|∇z1|p−2∇z1 · ∇ω dx ≥
∫

�

|x |−(a+1)p+c1 [λ1A(x) f (z2) + μ1C(x)h(z1)]ωdx
∫

�

|x |−bq |∇z2|q−2∇z2 · ∇ω dx ≥
∫

�

|x |−(b+1)q+c2 [λ2B(x)g(z1) + μ2D(x)τ (z2)]ωdx

for all ω ∈ W = {ω ∈ C∞
0 (�) : ω ≥ 0 in �}.

In what follows, if f1, f2, g1, g2 are real-valued functions, we write

( f1, f2) ≤ (g1, g2) if and only if f1 ≤ g1 and g1 ≤ g2.

In such a case, we write

(u, v) ∈ [( f1, f2), (g1, g2)] if and only if f1 ≤ u ≤ g1 and g1 ≤ v ≤ g2.

A key role in our arguments will be played by the following auxiliary result, which is due
to Miyagaki and Rodrigues, see [22].

Lemma 3.1 Suppose there exist sub- and super-solutions (ψ1, ψ2) and (z1, z2), respectively
of problem (1.1), such that (ψ1, ψ2) ≤ (z1, z2). Then problem (1.1) has at least one positive
solution (u, v) such that (u, v) ∈ [(ψ1, ψ2), (z1, z2)].

In order to introduce our main result, we introduce the following hypotheses:

(H1): f, g : [0,+∞) → R are C1 increasing functions such that

lim
t→+∞ f (t) = lim

t→+∞ g(t) = +∞;
(H2): We have

lim
t→+∞

f (K g(t)
1

q−1 )

t p−1 = 0,

for every constant K > 0;
(H3): h, τ ∈ C1[0,∞) are nonnegative and nondecreasing functions such that

lim
u→+∞

h(u)

u p−1 = 0, lim
u→+∞

τ(u)

uq−1 = 0, lim
u→+∞ h(u) = lim

u→+∞ τ(u) = +∞ ;

(H4): If αp = p−1
p σ

p
p−1

p , αq = q−1
q σ

q
q−1

q , and α = min{αp, αq} then there exists γ > s0
α

such that

max

{
γ λ1,q

b1g(γ
1

p−1 αp) + d1τ(γ
1

q−1 αq)

,
γ λ1,p

a1 f (γ
1

q−1 αq) + c1h(γ
1

p−1 αp)

}

<

min

{
m0γ

b0g(γ
1

p−1 ) + d0τ(γ
1

q−1 )

,
m0γ

a0 f (γ
1

q−1 ) + c0h(γ
1

p−1 )

}

.
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Positive solutions of singular elliptic systems 149

We recall that m0, σp, σq are introduced in relation (2.2) while s0 is defined in (2.6).
We now state our main result for the problem (1.1).

Theorem 3.2 Assume that the conditions (H1)–(H4) are fulfilled. Then there exists a closed
interval [α, β] such that problem (1.1) has a positive solution (u, v) for every λi , μi ∈ [α, β],
i = 1, 2.

Proof Choose r > 0 such that

r ≤ min

{

|x |−(a+1)p+c1 , |x |−(b+1)q+c2

}

in �δ .

Pick γ > s0
α
as in hypothesis (H4). Define

α := max

⎧
⎪⎪⎨

⎪⎪⎩

γ λ1,q

b1g

(

γ
1

p−1 p−1
p α

p
p−1
p

)

+ d1τ

(

γ
1

q−1 q−1
q α

q
q−1
q

) ,

γ λ1,p

a1 f

(

γ
1

q−1 q−1
q α

q
q−1
q

)

+ c1h

(

γ
1

p−1 p−1
p α

p
p−1
p

)

⎫
⎪⎪⎬

⎪⎪⎭

and

β := min

{
m0γ

b0g(γ
1

p−1 ) + d0τ(γ
1

q−1 )

,
m0γ

a0 f (γ
1

q−1 ) + c0h(γ
1

p−1 )

}

.

Set

ψ1 = (γ r)
1

p−1
p − 1

p
φ

p
p−1
1,p and ψ2 = (γ r)

1
q−1

q − 1

q
φ

q
q−1
1,q .

We shall verify that (ψ1, ψ2) is a sub-solution of problem (1.1) for λi , μi ∈ [α, β], i = 1, 2
Indeed, let ω ∈ W with ω ≥ 0 in �. Then a simple calculation shows that

∫

�

|x |−ap|∇ψ1|p−2∇ψ1 · ∇ω dx

= γ r
∫

�

|x |−apφ1,p|∇φ1,p|p−2∇φ1,p · ∇ω dx

= γ r

{∫

�

|x |−ap|∇φ1,p|p−2∇φ1,p · [∇(φ1,pω) − ∇φ1,pω]dx

}

= γ r
∫

�

[
λ1,p|x |−(a+1)p+c1φ

p
1,p − |x |−ap|∇φ1,p|p

]
ω dx . (3.1)

Similarly we obtain
∫

�

|x |−bq |∇ψ2|q−2∇ψ2 · ∇ω dx

= γ r
∫

�

[
λ1,q |x |−(b+1)q+c2φ

q
1,q − |x |−bq |∇φ1,q |q

]
ω dx . (3.2)
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150 G. A. Afrouzi et al.

By relation (2.2) we have λ1,p|x |−(a+1)p+c1φ
p
1,p −|x |−ap|∇φ1,p|p ≤ −m0 on �δ . Using

hypothesis (2.4) in combination with the fact that f is nondecreasing we have for all x ∈ �δ

A(x) f (ψ2) ≥ −a0 f (ψ2) ≥ f (γ
1

q−1 ). (3.3)

In the last inequality we have also used

γ
1

q−1 ≥ (γ r)
1

q−1
q − 1

q
φ

q
q−1
1,q =: ψ2.

A similar argument shows that

C(x)h(ψ1) ≥ −c0h(γ
1

p−1 ) in �δ. (3.4)

Combining relations (3.3), (3.4) and the definition of β we find

γ
(
λ1,p|x |−(a+1)p+c1φ

p
1,p − |x |−ap|∇φ1,p|p

)
≤ −γ m0

≤ −λ1a0 f
(
γ

1
q−1

)
− μ1c0h

(
γ

1
p−1

)

≤ λ1A(x) f (ψ2) + μ1C(x)h(ψ1). (3.5)

Thus, for all λ1, μ1 ∈ [α, β]
γ r

∫

�δ

[
λ1,p|x |−(a+1)p+c1φ

p
1,p − |x |−ap|∇φ1,p|p

]
ω dx

≤
∫

�δ

|x |−(a+1)p+c1
[
λ1A(x) f (ψ2) + μ1C(x)h(ψ1)

]
ωdx . (3.6)

We recall that φ1,p ≥ σp, φ1,q ≥ σq on �\�δ , for some σp, σq ∈ (0, 1). Thus, by the
condition (H1) and the definition of ψ1, ψ2, it follows that

γ
(
λ1,p|x |−(a+1)p+c1φ

p
1,p − |x |−ap|∇φ1,p|p

)
≤ γ λ1,p

≤ λ1a1 f

(

γ
1

q−1
q − 1

q
α

q
q−1
q

)

+ μ1c1h

(

γ
1

p−1
p − 1

p
α

p
p−1
p

)

≤ λ1A(x) f (ψ2) + μ1C(x)h(ψ1), (3.7)

for all λ1, μ1 ∈ [α, β].
Relations (3.5) and (3.7) imply that

∫

�

|x |−ap|∇ψ1|p−2∇ψ1 · ∇ω dx ≤
∫

�

|x |−(a+1)p+c1 [λ1A(x) f (ψ2) + μ1C(x)h(ψ1)]ω dx

(3.8)
A similar argument shows that
∫

�

|x |−bq |∇ψ2|q−2∇ψ2 · ∇ωdx ≤
∫

�

|x |−(b+1)q+c2 [λ2B(x)g(ψ1) + μ2D(x)τ (ψ2)]ωdx

(3.9)

From (3.8) and (3.9), we deduce that (ψ1, ψ2) is a sub-solution of problem (1.1). Moreover,
we have ψ1 > 0 and ψ2 > 0 in �.

Next, we construct a super-solution of problem (1.1). For this purpose, we prove that there
exists a large enough positive constant C so that

(z1, z2) := (Cζp,
[
(λ2‖b‖∞ + μ2‖d‖∞)g(C‖ζp‖∞)

] 1
q−1

ζq(x))
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is a super-solution of problem (1.1), where (ζp, ζq) is a solution of problem (2.3). We first
observe that

∫

�

|x |−ap|∇z1|p−2∇z1 · ∇ω dx = C p−1
∫

�

|x |−ap|∇ζp|p−2∇ζp · ∇ω dx =
C p−1

∫

�

|x |−(a+1)p+c1ω dx
(3.10)

Using the conditions (H2)−−(H3), we can choose the number C > 0 large enough so that

C p−1 ≥ λ1‖a‖∞ f

([
(λ2‖b‖∞ + μ2‖d‖∞)g(C‖ζp‖∞)

] 1
q−1

ζq

)

+ μ1‖c‖∞h(C‖ζp‖∞)

≥ λ1‖a‖∞ f

([
(λ2‖b‖∞ + μ2‖d‖∞)g(C‖ζp‖∞)

] 1
q−1

ζq

)

+ μ1‖c‖∞h(Cζp)

≥ λ1A(x) f (z2) + μ1C(x)h(z1). (3.11)

Therefore
∫

�

|x |−ap|∇z1|p−2∇z1 · ∇ω dx ≥
∫

�

|x |−(a+1)p+c1(λ1A(x) f (z2) + μ1C(x)h(z1))ω dx .

(3.12)
Next, from the definition of z2, the condition (H3) for C > 0 large enough and the fact that
g is increasing

g
(

C‖ζp‖∞
)

≥ τ

([
(λ2‖b‖∞ + μ2‖d‖∞)g(C‖ζp‖∞)

] 1
q−1 ‖ ζq‖∞

)

.

It follows that
∫

�

|x |−bq |∇z2|q−2∇z2 · ∇ω dx

≥ (λ2‖b‖∞ + μ2‖d‖∞)g(C‖ζp‖∞)

∫

�

|x |−(b+1)q+c2ωdx

≥
∫

�

|x |−(b+1)q+c2(λ2‖b‖∞ + μ2‖d‖∞)g
(

C‖ζp‖∞
)
ωdx

=
∫

�

|x |−(b+1)q+c2 [λ2‖b‖∞g
(

C‖ζp‖∞
)

+ μ2‖d‖∞g
(

C‖ζp‖∞
)
]ωdx

≥
∫

�

|x |−(b+1)q+c2 [λ2‖b‖∞g(z1) + μ2‖d‖∞τ(z2)]ωdx

≥
∫

�

|x |−(b+1)q+c2 [λ2‖b‖∞g(z1) + μ2‖d‖∞τ(z2)]ω dx

≥
∫

|x |−(b+1)q+c2 [λ2B(x)g(z1) + μ2D(x)τ (z2)]ω dx . (3.13)

Relations (3.12) and (3.13) yield that (z1, z2) is a super-solution of problem (1.1) with
ψ1 ≤ z1 and ψ2 ≤ z2 for C > 0 large.

Thus, by Lemma 3.1 there exists a positive solution (u, v) of the system (1.1) such that
(ψ1, ψ2) ≤ (u, v) ≤ (z1, z2). This completes the proof of Theorem 3.2. 	
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and numerous useful suggestions. V. Rădulescu acknowledges the support throughGrant CNCSPCE-47/2011.

123



152 G. A. Afrouzi et al.

References

1. G.A. Afrouzi, S.H. Rasouli, A remark on the existence of multiple solutions to a multiparameter nonlinear
elliptic system. Nonlinear Anal. 71, 445–455 (2009)

2. N. Akhmediev, A. Ankiewicz, Partially coherent solitons on a finite background. Phys. Rev. Lett. 82,
2661–2664 (1999)

3. J. Ali, R. Shivaji, Positive solutions for a class of p-Laplacian systems with multiple parameters. J. Math.
Anal. Appl. 335, 1013–1019 (2007)

4. J.Ali, R. Shivaji,M.Ramaswamy,Multiple positive solutions for classes of elliptic systemswith combined
nonlinear effects. Differ. Integral Equ. 19, 669–680 (2006)

5. C.O. Alves, D.G. de Figueiredo, Nonvariational elliptic systems. Discrete Contin. Dyn. Syst. 8, 289–302
(2002)

6. A. Ambrosetti, J.G. Azorero, I. Peral, Existence and multiplicity results for some nonlinear elliptic equa-
tions. Rend. Mat. Appl. 7, 167–198 (2000)

7. C. Atkinson, K. El Kalli, Some boundary value problems for the Bingham model. J. Non Newton. Fluid
Mech. 41, 339–363 (1992)

8. H. Bueno, G. Ercole, W. Ferreira, A. Zumpano, Existence and multiplicity of positive solutions for the
p-Laplacian with nonlocal coefficient. J. Math. Anal. Appl. 343, 151–158 (2008)

9. L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights. Compos. Math.
53, 259–275 (1984)

10. A. Canada, P. Drábek, J.L. Gámez, Existence of positive solutions for some problems with nonlinear
diffusion. Trans. Am. Math. Soc. 349, 4231–4249 (1997)

11. F. Catrina, Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and
nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54, 229–258 (2001)

12. R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems. Nonlinear
Anal. 39, 559–568 (2000)

13. E.N.Dancer, Competing species systemswith diffusion and large interaction. Rend. Sem.Mat. Fis.Milano
65, 23–33 (1995)

14. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol.
1: Physical Origins and Classical Methods (Springer, Berlin, Heidelberg, New York, 1985)

15. P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic
problem. Nonlinear Anal. 44, 189–204 (2001)

16. J.F. Escobar, Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an
eigenvalue estimate. Commun. Pure Appl. Math. 43, 857–883 (1990)

17. F. Fang, S. Liu, Nontrivial solutions of superlinear p-Laplacian equations. J. Math. Anal. Appl. 351,
3601–3619 (2009)
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