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Anisotropic Singular Neumann Equations
with Unbalanced Growth
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Abstract
We consider a nonlinear parametric Neumann problem driven by the anisotropic -
Laplacian and a reaction which exhibits the combined effects of a singular term and of a
parametric superlinear perturbation. We are looking for positive solutions. Using a combi-
nation of topological and variational tools together with suitable truncation and comparison
techniques, we prove a bifurcation-type result describing the set of positive solutions as the
positive parameter varies. We also show the existence of minimal positive solutions
and determine the monotonicity and continuity properties of the map .
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1 Introduction

This paper was motivated by several recent contributions to the qualitative analysis of non-
linear problems with unbalanced growth. We mainly refer to the pioneering contributions of
Marcellini [22–24] who studied lower semicontinuity and regularity properties of minimiz-
ers of certain quasiconvex integrals. Problems of this type arise in nonlinear elasticity and
are connected with the deformation of an elastic body, cf. Ball [4, 5].

We are concerned with the qualitative analysis of a class of anisotropic singular problems
with Neumann boundary condition and driven by a differential operator with unbalanced
growth. The features of this paper are the following:

(i) the problem studied in the present work is associated to a double phase energy with
variable exponents (variational integral with anisotropic unbalanced growth);

(ii) the reaction is both singular and anisotropic;
(iii) we assume a Neumann boundary condition.

To the best of our knowledge, this is the first paper dealing with the combined effects
generated by the above features.

1.1 Unbalanced Problems and Their Historical Traces

Let be a bounded domain in ( 2) with a smooth boundary. If is the
displacement and is the matrix of the deformation gradient, then the total energy
can be represented by an integral of the type

(1)

where the energy function is quasiconvex with respect to
, see Morrey [26]. One of the simplest examples considered by Ball is given by functions
of the type

det

where det is the determinant of the matrix , and , are nonnegative convex
functions, which satisfy the growth conditions

1 lim

where 1 is a positive constant and 1 . The condition is necessary to
study the existence of equilibrium solutions with cavities, that is, minima of the integral
(1) that are discontinuous at one point where a cavity forms; in fact, every with finite
energy belongs to the Sobolev space 1 , and thus it is a continuous function if

. In accordance with these problems arising in nonlinear elasticity, Marcellini [22,
23] considered continuous functions with unbalanced growth that satisfy

1 2 1 for all

where 1, 2 are positive constants and 1 . Regularity and existence of solutions of
elliptic equations with –growth conditions were studied in [23].

The study of non-autonomous functionals characterized by the fact that the energy den-
sity changes its ellipticity and growth properties according to the point has been continued
in a series of remarkable papers by Mingione et al. [6, 7, 12]. These contributions are in
relationship with the work of Zhikov [43, 44], which describe the behavior of phenom-
ena arising in nonlinear elasticity. In fact, Zhikov intended to provide models for strongly
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anisotropic materials in the context of homogenisation. In particular, he considered the
following model functional

0 1 (2)

where the modulating coefficient dictates the geometry of the composite made of two
differential materials, with hardening exponents and , respectively.

In the present paper we are concerned with a problem whose energy is of the type defined
in Eq. 2 but such that the exponents and are variable (they depend on the point).

1.2 Statement of the Problem

Let be a bounded domain with a 2-boundary . In this paper we study the
following parametric singular anisotropic -equation:

1 in

0 on 0 for all 0.
( )

In this problem, we make the following hypotheses for the exponents :
1 0 1 for all

where for every we define

min max .

Also for with 1 for all , we denote by the -
Laplace differential operator defined by

div 2 for all 1 .

The potential function satisfies 0 for a.a. . In the reaction we
have two terms. One is the singular term with 0 1 for all
and the other is a parametric perturbation with 0 being the parameter. The
function is a Carathéodory function, that is, for all the mapping
is measurable and for a.a. the function is continuous. We assume that
for a.a. , the function exhibits a ( 1)-superlinear growth near with

max , but without satisfying the so-called Ambrosetti-Rabinowitz condition (the

-condition for short), which is common in the literature when dealing with superlinear
problems. Instead, we use a less restrictive condition which incorporates in our framework
superlinear nonlinearities with slower growth near . The precise hypotheses on
can be found in Section 2 (see hypotheses 1).

We are looking for positive solutions and our aim is to determine how the set of positive
solutions changes as the parameter 0 varies. In this direction we prove a bifurcation-
type result describing the changes in the set of positive solutions of as the positive
parameter increases. We also show that if 0 is admissible (that is, problem
admits positive solutions), then there is a minimal positive solution (that is, a smallest
solution) and we examine the monotonicity and continuity of the map .

Analogous studies for -Laplacian equations with constant exponent, were conducted by
Giacomoni et al. [18] and Papageorgiou and Winkert [28]. More general equations driven
by nonhomogeneous differential operators, were considered recently by Papageorgiou et
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al. [33–36], Papageorgiou and Scapellato [27], Papageorgiou et al. [31], Papageorgiou and
Zhang [30], and Ragusa and Tachikawa [38]. We should also mention the very recent works
of De Filippis and Mingione [13] and Marcellini [25], on the regularity of solutions of
double phase problems. This is a very interesting area with several issues remaining open
and requiring further investigation. Finally, we mention the work of Bahrouni et al. [3] on
a class of double phase problems with convection. Singular anisotropic equations driven by
the -Laplacian, were studied by Byun and Ko [9], Zhang and Rădulescu [42], and Saudi
and Ghanmi [40]. To the best of our knowledge, there are no works on singular anisotropic

-equations.
Boundary value problems driven by a combination of differential operators (such as

-equations) arise in many mathematical models of physical processes. We mention the
historically first such work of Cahn and Hilliard [10], which deals with the process of sep-
aration of binary alloys and the more recent works of Benci et al. [8] on quantum physics,
of Cherfils and Ilyasov [11] on reaction diffusion systems and of Bahrouni et al. [1, 2]
on transonic flow problems. Boundary value problems involving differential operators with
variable exponents, are studied in the book of Rădulescu and Repovš [39], while a compre-
hensive discussion of semilinear singular problems and a rich relevant bibliography can be
found in the book of Ghergu and Rădulescu [17].

2 Mathematical Background and Hypotheses

Although as we already mentioned in the previous section, we require that our exponents
, , are smooth (in order to exploit the existing anisotropic regularity theory), the

introduction of the variable exponent spaces does not require such regularity restrictions.
We introduce the following spaces

measurable

1 1 essinf .

As usual, we identify in two functions which differ only on a set of measure zero.
If 1 , then we set

essinf and esssup .

Given 1 , the variable exponent Lebesgue space is defined by

.

We equip this space with the so-called “Luxemburg norm” defined by

inf 0 1 .

Variable exponent Lebesgue spaces are similar to the classical Lebesgue spaces. More
precisely, they are separable Banach spaces, they are reflexive if and only if 1

(in fact, they are uniformly convex). Moreover, simple functions and continuous
functions of compact support are dense in .

Suppose that 1 . Then we have the following property:

“ continuously
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if and only if

for a.a. ”.

Let 1 such that 1 1 1 for a.a. . Then

and the following Hölder-type inequality is true

1 1

for all and all .
Using the variable exponent Lebesgue spaces, we can define in the usual way variable

exponent Sobolev spaces. So, if 1 , then we set

1 .

This space is furnished with the following norm

.

Evidently, an equivalent norm is given by

inf 0 1 .

The anisotropic Sobolev space 1 is a separable Banach space and if 1
, then 1 is reflexive (in fact, uniformly convex). Note that 1

1 continuously. Also, 1
0 is the closure of the set of 1 -functions

with compact support, that is, of the set

1 with compact .

If 1 , then 1
0 .

We set
if
if .

Suppose that 1 with and (resp.,
) for all , then we have that 1 continuously (resp., com-

pactly). A comprehensive presentation of variable exponent Lebesgue and Sobolov spaces
can be found in the book of Diening et al. [14].

Let 1 and consider the Lebesgue space . The modular function for
this space is given by

.

This function is basic in the study of and is closely related to the norm
introduced above. More specifically, we have the following result.

Proposition 2.1 (a) For , 0, we have

1

(b) 1 (resp. 1, 1) 1 (resp. 1, 1);
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(c) 1 ,

1 ;
(d) 0 0;
(e) .

We consider the map 1 1 defined by

2 for all 1 .

This map has the following properties (see Gasinski and Papageorgiou [16, Proposition
2.5]).

Proposition 2.2 The map 1 1 is bounded (that is, maps
bounded sets to bounded sets), continuous, monotone, hence also maximal monotone and
of type , that is,

“ in 1 lim sup 0 in 1 .”

In addition to the variable exponent spaces, we will use the Banach space 1 . This is
an ordered Banach space with positive cone 1 0 for all .
This cone has nonempty interior given by

int 0 for all .

We will also use another open cone in 1 given by

1 0 for all
1 0

0

with being the outward unit normal on .
Combining the proofs of Proposition 2.5 of [37] and of Proposition 6 in [36] we have the

following strong comparison principle.

Proposition 2.3 If 1 , 1 , 0 1 for all
, , 0 for a.a. , 0 for a.a. and

1 satisfy 0 and

1 in
1 in

then .

If 1
1 with , then we define

1 for a.a.

and
1 for a.a. .

If is a Banach space and 1 , then we denote by the critical set of ,
that is, the set

0 .
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Also, we say that 1 satisfies the “ -condition”, if the following property
holds:

“Every sequence 1 such that 1 is bounded and

and 1 0 in as admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional . It compensates for the fact
that is not locally compact, being in general infinite dimensional. The -condition plays
a crucial role in the minimax theory of the critical values of the functional .

Now we are ready to introduce the hypotheses on the data of .
0: 1 , 1 , 0 1 for all ,

, 0 for a.a. .
1: is a Carathéodory function (that is, is measurable in

and continuous in ) such that 0 0 for a.a. and

(i) 0 1 1 for a.a. , all 0 with and
with for all ;

(ii) if
0

, then lim uniformly for a.a. ;

(iii) if 1 1
1 , then there exists

1 such that

for a.a. all 0

(iv) for every 0, we can find 0 such that

0 for a.a. all

and 0 lim inf
0 1

uniformly for a.a.

(v) for every 0, there exists 0 such that for a.a. , the function

1

is nondecreasing on 0 .

Remarks Since we are looking for positive solutions and all the above hypotheses concern
the positive semiaxis 0 , without any loss of generality, we may assume that

0 for a.a. all 0. (3)

On account of hypotheses 1 we see that for a.a. , is
1 -superlinear. However the superlinearity property of is not expressed in terms of

-condition. We recall that in the present anisotropic setting the -condition says that
there exist and 0 such that

0 for a.a. all (4)

0 essinf . (5)

In fact this is a unilateral version of the -condition due to Eq. 3. Integrating Eq. 4 and
using Eq. 5, we obtain the weaker condition

0 for a.a. all some 0 0

0
1 for a.a. all .
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So, the -condition implies that eventually has 1 -polynomial growth. Here
we replace the -condition by the quasimonotonicity hypothesis 1 . This hypothesis
is a slightly more general version of a condition used by Li and Yang [20]. Note that there
exists 0 such that for a.a.

1
is nondecreasing on

or is nondecreasing on .

Examples Consider the following two functions

1
1 and 2

1 ln 1 .

Both functions satisfy hypothesis 1, but only 1 satisfies the -condition.
By we will denote the weighted -space with weight . Therefore

.

This space is furnished with the norm

inf 0 1 .

Note that since by hypothesis 0 for a.a. (see hypothesis 0), the function

is a modular function (see Diening et al. [14, Definition 2.1.1, p. 20]).
On 1 we consider the norm defined earlier and a new norm given by

.

Proposition 2.4 If hypothesis 0 holds, then and are equivalent norms on
1 .

Proof From the definitions of the two norms, we have

1 for some 1 0 all 1 .

Claim. There exists 2 0 such that 2 for all 1 .
We argue indirectly. So, suppose that the claim is not true. Then we can find 1

1 such that
for all .

Normalizing in , we see that we have

1
for all

0

0 and 0 as . (6)

Evidently 1
1 is bounded. So, by passing to a suitable subsequence if

necessary, we may assume that

in 1 and in

1. (7)
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From Eqs. 6 and 7, we have 0 and

.

On account of Eq. 6, we have

If 0 1, then 0 0, a contradiction.

If 1 , then 0 0, a contradiction.

This proves the Claim.
Using the Claim and the definitions of the two norms, we conclude that and are

equivalent.

In what follows, we denote by 1 the 1-functional defined by

1
for every 1 .

For every 0 the energy functional 1 for problem , is given
by

1 1

1
1

for all 1 .
On account of the third term, this functional is not 1 and so the minimax theorems from

the critical point theory are not directly applicable to this functional. For this reason we use
truncation techniques in order to bypass the singularity and have 1-functionals on which
the critical point theory applies. For this reason in the next section, we deal with a purely
singular problem.

Finally, we mention that, as usual, by a solution of , we understand a function
1 such that

0 0 1 for all 1

and
1

for all 1 .

3 A Purely Singular Problem

In this section we deal with the following purely singular problem

1 in

0 on 0.
(8)
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To solve Eq. 8, we first consider a perturbation of Eq. 8 which removes the singularity.
So, we consider the following approximation of problem Eq. 8:

1 in

0 on 0.
(8 )

We solve this problem using a topological approach (fixed point theory). So, given
, 0 and 0 1 , we consider the following problem:

1 in

0 on 0.
(9)

For this problem we have the following result.

Proposition 3.1 If hypotheses 0 hold, problem Eq. 9 admits a unique solution
int .

Proof Let be the map defined by

2 for all .

Evidently this map is bounded, continuous, strictly monotone. Then we consider the
operator 1 1 defined by

for all 1 .

This operator is bounded, continuous, strictly monotone (thus, maximal monotone too).
Also, if 1 , we have

1

see Corollary 2.1.15 of [14, p. 25] and recall that is modular

2 for some 2 0 (see Proposition 2.4),

is coercive.

We know that a maximal monotone coercive operator is surjective (see Papageorgiou
et al. [32, Corollary 2.8.7, p. 135]). Since , we can find

1 such that
.

Moreover, the strict monotonicity of implies that this solution is unique. Proposition
3.1 of Gasinski and Papageorgiou [16] implies that . Then by Theorem 1.3 of
Fan [15] (see also Lieberman [21]), we have that 0 . Finally the anisotropic
maximum principle of Zhang [41] implies that int .

Using Proposition 3.1 we can define the solution map for
problem Eq. 9 by

. (10)

Clearly, a fixed point of this map will be a solution for problem (8 ).
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Proposition 3.2 If hypotheses 0 hold, then problem (8 ) admits a unique solution
int .

Proof From Proposition 3.1, we have

1 (11)

for all 1 .
In Eq. 11 we choose 1 (see Eq. 10) and we obtain

3 if 1
3 if 1 for some 3 3 0 all

(see Proposition 2.4). (12)

Next, we show that is continuous. To this end let in . From Eq. 12
we have that

1
1 is bounded.

So, we may assume that

in 1 and in . (13)

We have

1 (14)

for all 1 , all .
In Eq. 14 we choose 1 , pass to the limit as and use

Eq. 13. Then we have

lim 0

lim sup 0

(since is monotone),

lim sup 0 (see Eq. 13),

in 1 (see Proposition 2.2). (15)

If in Eq. 14 we pass to the limit as and use Eq. 15, we obtain that

1

for all 1

is continuous.

The continuity of together with Eq. 12 and the compact embedding of 1

into , permit the use of Schauder-Tychonov fixed point theorem (see, for example,
Papageorgiou and Winkert [29, Theorem 6.8.5, p. 581]) and we find int such that

int is a positive solution of Eq. 8.
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Next we show the uniqueness of this solution. Suppose that 1 is another
positive solution of Eq. 8. Again we have int . Also, we have

0

1 1

1 1
0

.

Interchanging the roles of and in the above argument, we also have that ,
therefore . This proves the uniqueness of the positive solution int of
problem (8 ).

Evidently, to produce a positive solution of Eq. 8, we will let 0 .
To this end, the following monotonicity property of the map will be useful.

Proposition 3.3 If hypotheses 0 hold, then the map from 0 1 into is
nonincreasing, that is,

0 1 .

Proof Let 0 1 and consider , int the corresponding unique positive
solutions of problems 8 and Eq. 8 respectively, established in Proposition 3.2.

We have
1

in (since 0 ). (16)

We introduce the Carathéodory function defined by

1
if

1
if .

(17)

We set
0

and consider the 1-functional 1

defined by

1
for all 1 .

We have

4 for some 4 0 (see Eq. 17)

4 1

is coercive (see Proposition 2.4).

Also, exploiting the compact embedding of 1 into , we have that

is sequentially weakly lower semicontinuous.
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Invoking the Weierstrass-Tonelli theorem, we can find 1 such that

min 1

0

2 (18)

for all 1 .
In Eq. 18 we choose 1 and obtain

0 (see Eq. 17),

0

0 0 (see Eq. 18).

Next, in Eq. 18 we choose 1 . We obtain

1

(see Eq. 17)

1

.

So, we have proved that

0 0

(see Eqs. 18, 17 and Proposition 3.2),

.

The proof is now complete.

Now we will pass to the limit as 0 and produce a solution for problem (8).

Proposition 3.4 If hypotheses 0 hold, then problem Eq. 8 admits a unique solution
int .

Proof Let 1 0 1 be such that 0 and let int be as in
Proposition 3.2. We have

1 (19)

for all 1 , all .
We choose 1 . We obtain

1

(since 1 for all , see Proposition 3.3)

1
1 is bounded

(see Proposition 2.4 and recall that 1).
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Proposition 3.1 of Gasinski and Papageorgiou [16], implies that we can find 5 0 such
that

5 for all .

Then the anisotropic regularity theory of Fan [15, Theorem 1.3] implies that we can find
0 1 and 6 0 such that

1
1 6 for all .

The compact embedding of 1 into 1 and the monotonicity of the sequence
1 (see Proposition 3.3), imply that

in 1 . (20)

Since 1 for all , we have 0 and so int . Moreover, passing to
the limit as in Eq. 19 and using Eq. 20, we conclude that int is a positive
solution of problem Eq. 8.

Finally, we show the uniqueness of this positive solution. So, suppose that
1 is another positive solution of Eq. 8. As in the proof of Proposition 3.2, using

the fact that the map is strictly decreasing on 0 , we obtain

int is the unique positive solution of Eq. 8.

The proof is now complete.

In the next section we will use int and truncation techniques to bypass the singu-
larity and show that problem has positive solutions for certain values of the parameter

0.

4 Positive Solutions

We introduce the following two sets

0 problem has a positive solution

set of positive solutions of problem .

We start by showing the nonemptiness of (=the set of admissible parameter values).

Proposition 4.1 If hypotheses 0, 1 hold, then .

Proof Let int be the unique positive solution of problem Eq. 8 produced in
Proposition 3.4.

We consider the following auxiliary problem:

1 1 in

0 on 0.
(21)
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From Proposition 3.1, we know that this problem has a unique positive solution
int . We have

1

(see Eq. 8)

1

1

(since int solves Eq. 21),

. (22)

Since int , on account of hypothesis 1 , we have

0 .

So, we can find 0 0 such that

0 1 for a.a. all 0 0 . (23)

We introduce the Carathéodory function defined by

if
if (see Eq. 22)
if .

(24)

We set
0

and consider the 1-functional 1

defined by

1
for all 1 all 0 0 .

From Eq. 22 it is clear that is coercive. Also, it is sequentially weakly lower
semicontinuous. Hence, we can find 1 such that

min 1

0

2 (25)

for all 1 .
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In Eq. 25 first we choose 1 . We have

2

(see Eq. 24)

(see hypothesis 1 )

1

.

Next, in Eq. 25 we choose 1 . We have

1

(see Eq. 24)

1 (since 0 0 , see Eq. 23)

1 (see Eq. 22)

1

.

So, we have proved that

. (26)

From Eqs. 26, 24 and 25, we infer that

0 0

which concludes the proof.

Proposition 4.2 If hypotheses 0, 1 hold and , then for all .

Proof Let and consider the following function

if 0
if .

(27)

Evidently, this function is Carathéodory on 0 and is singular at 0. We
consider the purely singular problem

1 in

0 on 0.
(28)
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Reasoning as for problem (8), we show that problem (28) admits a positive solution
int (see also Papageorgiou et al. [36, Proposition 10]). We have

1

(see Eq. 27)

(recall that, by definition, 1 for all 1 )

1 (since ),

.

So, we have

0 0. (29)

From Eqs. 29, 27 and Proposition 3.4, it follows that

for all .

The proof is now complete.

According to the previous proposition, if and , then

0 with .

Then the anisotropic regularity theory (see Fan [15]) and the anisotropic maximum
principle (see Zhang [41]), imply the following result concerning the solution set .

Proposition 4.3 If hypotheses 0, 1 hold and , then int .

Let sup .

Proposition 4.4 If hypotheses 0, 1 hold, then .

Proof On account of hypotheses 1 , we can find 0 0 big such that

0
1 for a.a. all 0. (30)

Let 0 and suppose that . Then we can find int (see
Proposition 4.3). Let min 0 (since int ). Let 0 1 ,
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max 1 and let 0 be as postulated by hypothesis 1 . We set

1

1 with 0 as 0

0
1 (see Eq. 30)

1
0

1
0

with 0 (see hypothesis 1 )
1 for 0 small (see hypothesis 1 )

1 ( since ),

for 0 small (see Proposition 2.3)

a contradiction to the definition of 0.
So, we have 0 .

Next, we show that is, in fact, an interval.

Proposition 4.5 If hypotheses 0, 1 hold, and 0 , then .

Proof Since , we can find int (see Proposition 4.3). Then we have

1

in (31)

(recall that 0 and see hypothesis 1 ).

Also we have

1

in (see hypothesis 1 ). (32)

From Proposition 4.2 we know that . So, we can define the following truncation
of the reaction of problem

if
if
if .

(33)

This is a Carathéodory function. We set
0

and consider the

1-functional 1 defined by

1
for all 1 .
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As before (see the proof of Proposition 4.1), using the direct method of the calculus of
variations and Eqs. 31, 32, we can find 1 such that

int

(see Eq. 33),

.

The proof is now complete.

Remark 4.6 As a byproduct of this proof we have that if 0 and
int then we can find int such that

0 .

In fact we can improve this result using the strong comparison principle (see Proposition
2.3).

Proposition 4.7 If hypotheses 0, 1 hold, 0 and int , then
and there exists int such that .

Proof From Proposition 4.5 and its proof, we already know that and we can find
int such that

. (34)

Let and let 0 be as postulated by hypothesis 1 . We have

1

1

1

1 (see Eq. 34 and hypothesis 1 )
1 in . (35)

On account of hypothesis 1 and since int , we have

0 for a.a. .

Hence from Eq. 35 and Proposition 2.3, it follows that

.

The proof is now complete.

Proposition 4.8 If hypotheses 0, 1 hold and 0 , then problem admits at
least two positive solutions

0 int 0 0 .

Proof Let 0 . We know that (see Proposition 4.5). Moreover,
according to Proposition 4.7, we can find int and 0 int such that

0 int . (36)

We introduce the Carathéodory function defined by

0 0 if 0

if 0 .
(37)
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Also we consider the following truncation of :

if
if .

(38)

This is also a Carathéodory function. We set

0
and

0
.

Then we consider the 1-functionals 1 defined by

1

1
for all 1 .

From Eqs. 37, 38 and the anisotropic regularity theory, we have

0 int (39)

0 int . (40)

On account of Eqs. 37 and 39, we see that we may assume that

0 0 . (41)

Otherwise we already have a second positive smooth solution bigger that 0 (see Eqs. 37,
39). Also from Eqs. 37 and 38 we see that

0 0 0 0
. (42)

The functional is coercive and sequentially weakly lower semicontinuous. So, we
can find 0

1 such that

0 min 1

0 0 int (see Eq. 40),

0 0 (see Eqs. 41, 42),

0 is a local 1 -minimizer of (see Eqs. 36, 42),

0 is a local 1 -minimizer of (43)

(see Gasinski and Papageorgiou [16, Proposition 3.3]).

From Eqs. 39 and 37 it is clear that we may assume that

is finite. (44)

Indeed, otherwise we already have a whole sequence of positive smooth solutions all bigger
than 0 and so we are done.

From Eqs. 43, 44 and Theorem 5.7.6 of Papageorgiou et al. [32, p. 449], we know that
we can find 0 1 small such that

0 inf 0 . (45)

Also hypothesis 1 and Eq. 37 imply that if int , then

as . (46)

Claim: satisfies the -condition.
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We consider a sequence 1
1 such that

7 for some 7 0 all (47)

1 0 in 1 as . (48)

From Eq. 48 we have

2

1
(49)

for all 1 , with 0 .
In Eq. 49, we choose 1 and obtain

8

for some 8 0 all (see Eq. 37),

1
1 is bounded. (50)

Next, we choose in Eq. 49 1 and we obtain

(51)

for all .
From Eqs. 47 and 50, we have

9 (52)

for some 9 0, all (recall ).

We add Eqs. 51 and 52. Then

10 (53)

for some 10 0, all (see Eq. 37).

Suppose that 1
1 is not bounded. So, we may assume that

as . (54)

We set for all . Then 1, 0 for all . So, we may

assume that
in 1 and in 0. (55)

Initially we assume that 0. Let 0 . From Eq. 55 we see that
0 (by we denote the Lebesgue measure on ) and

for a.a. .

Hypothesis 1 implies

for a.a.

(by Fatou’s lemma),

(since 0, see hypothesis 1 ). (56)
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From Eqs. 47 and 50, we have

1
11

for some 11 0, all ,

12 (57)

for some 12 0, all (see Eqs. 54 and 37).

Comparing Eqs. 56 and 57, we have a contradiction.
Now we assume that 0. We consider the 1-functional 1

defined by

1

for all 1 .
Evidently we have

. (58)

Let for all 0 1 , all . We can find 0 1 such that

max
0 1

. (59)

For 1 let 2
1

. Then

0 in (see Eq. 55 and recall that 0),

0 as . (60)

On account of Eq. 54, we see that we can find 0 such that

2
1 1

1 for all 0. (61)

From Eqs. 59 and 61, we have

2 1

2 1

2

2
13 for some 13 0

13 for all 1 0

(see Eq. 60 and recall that 1).

But 1 is arbitrary. So, it follows that

as . (62)

We have
0 for all .
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Hence hypothesis 1 implies that

1 14 (63)

for some 14 0, all (see Eq. 53).

We know that

0 0 and 7 for all (see Eqs. 47 and 58).

Then from Eq. 62 it follows that

0 1 for all 2.

So, from Eq. 59 we have

0

for all 2 (by the chain rule),

for all 2

15

for some 15 0, all 2 (see Eqs. 63 and 37),

15 for all 2. (64)

Comparing Eqs. 62 and 64 we have a contradiction.
Therefore we infer that

1
1 is bounded,

1
1 is bounded (see Eq. 50).

So, we may assume that

in 1 and in as . (65)

In Eq. 49 we choose 1 , pass to the limit as and use
Eq. 63. Then reasoning as in the proof of Proposition 3.2, using Proposition 2.2, we obtain
that

in 1

satisfies the -condition.

This proves the Claim.
On account of Eqs. 45, 46 and the Claim, we can apply the mountain pass theorem and

find 1 such that

0 int and . (66)

From Eqs. 66, 45 and 37, we obtain

int 0 0

which concludes the proof.
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We introduce the Carathéodory function defined by

if
if .

(67)

We set
0

and consider the 1-functional 1

defined by
1

for all 1 .
Using this functional, we can establish the admissibility of the critical parameter value

0.

Proposition 4.9 If hypotheses 0, 1 hold, then .

Proof Let 1 0 and assume that . We can find int
such that

0 for all (68)

(see the proof of Proposition 4.5 and Eq. 67).

Also we have
0 for all . (69)

Using Eqs. 68, 69 and reasoning as in the Claim in the proof of Proposition 4.8, we obtain

in 1 (see Proposition 4.2)

int and so .

The proof is now complete.

According to the above proposition, we have

0 .

5 Minimal Positive Solutions

Recall that a set 1 is said to be downward directed, if for all 1 2 , we
can find such that 1, 2.

As in the proof of Proposition 18 of Papageorgiou et al. [36], we prove that for every
, the solution set int is downward directed. We will show that has a

minimal element.

Proposition 5.1 If hypotheses 0, 1 hold and 0 , then problem has a
smallest positive solution int (that is, for all ).

Proof On account of Lemma 3.10 of Hu and Papageorgiou [19, p. 176], we can find
1 decreasing (since is downward directed) such that

inf
1

inf .
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We have

0 for all (70)

1 for all . (71)

From Eqs. 70 and 71, it follows that

1
1 is bounded.

Then as in the proof of Proposition 4.5 and using the fact that 1 is decreasing, we
obtain

in 1

int inf

which concludes the proof.

Next we examine the map from 0 into 1 .

Proposition 5.2 If hypotheses 0, 1 hold, then

(a) the map from 0 into 1 is strictly increasing in the sense that

0

(b) is left continuous from into 1 .

Proof (a) Let 0 . On account of Proposition 4.7, we can find
int such that

.

(b) Let , for all . From Proposition 4.2 and part of this
proposition, we have

1
for all .

It follows that
1

1 is bounded.

Then Proposition 3.1 of Gasinski and Papageorgiou [16] implies that

16 for some 16 0 all .

Using Theorem 1.3 of Fan [15] (see also Lieberman [21]), we see that we can find
0 1 and 17 0 such that

1 and 1 17 for all . (72)

From Eq. 72, the compact embedding of 1 into 1 and the monotonicity of
the sequence 1, we have that

in 1 . (73)

If , then there exists 0 such that

0 0

0 0 for all 0 (see Eq. 73),

contradicting part . So and we have the left continuity of the map .
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The next theorem summarizes our main contributions in this paper concerning problem
.

Theorem 5.3 If hypotheses 0, 1 hold, then there exists such that

(a) for all 0 , problem has at least two positive solutions 0 int ,
0 , 0 ;

(b) for , problem has at least one positive solution int ;
(c) for all , problem has no positive solutions;
(d) for all 0 , problem has a smallest positive solution int

and the map is strictly increasing and left-continuous from into 1 .
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32. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.: Nonlinear Analysis-Theory and Methods. Springer

Monographs in Mathematics. Springer, Cham (2019)

Anisotropic Singular Neumann Equations with Unbalanced Growth 81

https://doi.org/10.1016/j.jmaa.2020.124408
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