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a b s t r a c t

We consider a nonlinear Dirichlet problem driven by a variable exponent
p-Laplacian plus an indefinite potential term. The reaction has the competing
effects of a parametric concave (sublinear) term and a convex (superlinear)
perturbation (the anisotropic concave–convex problem). We prove a bifurcation-
type theorem describing the changes in the set of positive solutions as the positive
parameter λ varies. Also, we prove the existence of minimal positive solutions.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω . In this paper we study the following
anisotropic boundary value problem{

−∆p(z)u(z) + ξ(z)u(z)p(z)−1 = λu(z)q(z)−1 + f(z, u(z)) in Ω ,

u
⏐⏐⏐
∂Ω

= 0, λ > 0, u > 0.
(Pλ)
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In this problem, ∆p(z) denotes the p(z)-Laplacian defined by

∆p(z)u = div (|Du|p(z)−2
Du(z)) for all u ∈ W

1,p(z)
0 (Ω).

Concerning the exponents p, q : Ω → R, we assume that both are functions belonging to C0,1(Ω) and
atisfying

1 < q− ≤ q(z) ≤ q+ < p− ≤ p(z) ≤ p+ for all z ∈ Ω .

The potential function ξ ∈ L∞(Ω) is sign-changing. Therefore the differential operator of (Pλ) (left-hand
ide) is not coercive. In the reaction (the right-hand side of (Pλ)), we have a parametric term with λ > 0
eing the parameter and a perturbation f(z, x) which is jointly measurable and of class C1 in the x-variable.
e assume that f(z, ·) exhibits (p+ − 1)-superlinear growth near +∞ without satisfying the usual in such

ases Ambrosetti–Rabinowitz condition (AR-condition for short). So, in the reaction of problem (Pλ) we
ave the competing effects of a sublinear (concave) term and of a superlinear (convex) term. We are looking
or positive solutions and our aim is to obtain a precise description of the changes in the set of positive
olutions as the parameter λ > 0 varies (a bifurcation-type result).

The study of such parametric concave–convex problems started with the seminal paper of Ambrosetti,
rezis and Cerami [1], where p(z) = 2 for all z ∈ Ω (the semilinear isotropic problem). It was extended

o equations driven by the p-Laplacian and with the reaction being λxq−1 + xr−1 for all x ≥ 0 with
< q < p < r < p∗ by Garcia Azorero, Manfredi and Peral Alonso [10], and Guo and Zhang [13]. Recall

hat

p∗ =

⎧⎨⎩
Np

N − p
, if p ≤ N

+∞, if N < p.

Further extensions can be found in the works of Marano and Papageorgiou [16] and Papageorgiou and
Rădulescu [17]. All the aforementioned works deal with isotropic equations. To the best of our knowledge,
no such results exist for anisotropic equations.

Additional parametric boundary value problems driven by operators with variable exponents and appli-
cations, can be found in the book of Rădulescu and Repovš [23]. We also refer to the recent papers [4,5,19,
21,22,27], all dealing with isotropic or anisotropic nonlinear problems with Dirichlet boundary condition.

2. Mathematical background, auxiliary results and hypotheses

In this section we briefly review some basic facts about variable exponent spaces and we prove two
anisotropic strong comparison theorems which we will need in our analysis of problem (Pλ).

A comprehensive presentation of variable exponent Lebesgue and Sobolev spaces can be found in the book
f Diening, Harjulehto, Hästo and Ruzička [6].

So, let L∞
1 (Ω) = {p ∈ L∞(Ω) : essinfΩ p ≥ 1}. For p ∈ L∞

1 (Ω), we set

p− = essinf
Ω

p and p+ = esssup
Ω

p.

Also let M(Ω) = {u : Ω → R : u(·) is measurable}. As usual, we identify two functions which differ on a
et of zero measure.

Given p ∈ L∞
1 (Ω), we define the following variable exponent Lebesgue space

Lp(z)(Ω) =
{

u ∈ M(Ω) :
∫
Ω

|u|p(z)
dz < +∞

}
.

We equip Lp(z)(Ω) with the following norm (known as the Luxemburg norm)

∥u∥p(z) = inf
{

λ > 0 :
∫ (

|u|
λ

)p(z)
dz ≤ 1

}
.

Ω
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Having defined variable exponent Lebesgue spaces, we can introduce variable exponent Sobolev spaces by

W 1,p(z)(Ω) = {u ∈ Lp(z)(Ω) : |Du| ∈ Lp(z)(Ω)}.

We equip this space with the following norm

∥u∥1,p(z) = ∥u∥p(z) + ∥Du∥p(z).

An equivalent norm of W 1,p(z)(Ω) is given by

∥u∥′
1,p(z) = inf

{
λ > 0 :

∫
Ω

((
|Du|

λ

)p(z)
+
(

|u|
λ

)p(z)
)

dz ≤ 1
}

.

We define W
1,p(z)
0 (Ω) as the closure in the ∥ · ∥1,p(z) of all compactly supported W 1,p(z)(Ω)-functions.

When p ∈ L∞
1 (Ω) and p− > 1, then the spaces Lp(z)(Ω), W 1,p(z)(Ω) and W

1,p(z)
0 (Ω) are all separable,

reflexive and uniformly convex.
We set

p∗(z) =
{

Np(z)
N−p(z) , if p(z) < N

+∞, if p(z) ≥ N.

If p, q ∈ C(Ω), p+ < N and 1 ≤ q(z) ≤ p∗(z) (resp. 1 ≤ q(z) < p∗(z)) for all z ∈ Ω , then W 1,p(z)(Ω) and
1,p(z)
0 (Ω) are embedded continuously (resp. compactly) into Lq(z)(Ω).
If p, p′ ∈ L∞

1 (Ω) and 1
p(z) + 1

p′(z) = 1, then Lp(z)(Ω)∗ = Lp′(z)(Ω) and we have the following Hölder type
nequality ∫

Ω

|uv|dz ≤
(

1
p−

+ 1
p′

−

)
∥u∥p(z)∥v∥p′(z) for all u ∈ Lp(z)(Ω), v ∈ Lp′(z)(Ω).

We say that p ∈ C(Ω) is logarithmic Hölder continuous
(

denoted by p ∈ C
0, 1

| ln t|
)

if it satisfies

|p(z) − p(z′)| ≤ c

| ln |z − z′||
for some c > 0, all z, z′ ∈ Ω , |z − z′| ≤ 1

2 .

Note that C0,1(Ω) ↪→ C
0, 1

| ln t| (Ω). Also, when p ∈ C
0, 1

| ln t| (Ω), then

W
1,p(z)
0 (Ω) = C∞

c (Ω)
∥·∥1,p(z)

.

Moreover, in this case the Poincaré inequality holds and we have

∥u∥p(z) ≤ Ĉ∥Du∥p(z) for all u ∈ W
1,p(z)
0 (Ω),

where Ĉ > 0 depends only on (p, N, |Ω |N , diamΩ), with | · |N denoting the Lebesgue measure on RN . So,
when p ∈ C

0, 1
| ln t| (Ω), then on the Sobolev space W

1,p(z)
0 (Ω), we can use the equivalent norm

∥u∥ = ∥Du∥p(z) for all u ∈ W
1,p(z)
0 (Ω).

We introduce the following modular functions

ρ(u) =
∫
Ω

|u|p(z)
dz for all u ∈ Lp(z)(Ω),

ρ̂(Du) =
∫
Ω

|Du|p(z)
dz for all u ∈ W

1,p(z)
0 (Ω).



4 N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš / Nonlinear Analysis 201 (2020) 111861

P

P
s
i

fi

K

h

C

We have the following property.

Proposition 2.1. (a) For every u ∈ Lp(z)(Ω), u ̸= 0, we have

∥u∥p(z) = λ ⇔ ρ
(u

λ

)
= 1;

(b) ∥u∥p(z) < 1 (resp. = 1, > 1) ⇔ ρ(u) < 1 (resp. = 1, > 1);
(c) ∥u∥p(z) < 1 ⇒ ∥u∥p+

p(z) ≤ ρ(u) ≤ ∥u∥p−
p(z) and ∥u∥p(z) > 1 ⇒ ∥u∥p−

p(z) ≤ ρ(u) ≤ ∥u∥p+
p(z);

(d) ∥un∥p(z) → 0 ⇔ ρ(un) → 0;
(e) ∥un∥p(z) → +∞ ⇔ ρ(un) → +∞.

Similarly, we have the following implications, when p ∈ C
0, 1

| ln t| (Ω).

roposition 2.2. (a) For every u ∈ W
1,p(z)
0 (Ω), u ̸= 0, we have

∥u∥ = λ ⇔ ρ̂

(
Du

λ

)
= 1;

(b) ∥u∥ < 1 (resp. = 1, > 1) ⇔ ρ̂(Du) < 1 (resp. = 1, > 1);
(c) ∥u∥ < 1 ⇒ ∥u∥p+ ≤ ρ̂(Du) ≤ ∥u∥p− and ∥u∥ > 1 ⇒ ∥u∥p− ≤ ρ̂(Du) ≤ ∥u∥p+ ;
(d) ∥un∥ → 0 ⇔ ρ̂(Dun) → 0; (e) ∥un∥ → +∞ ⇔ ρ̂(Dun) → +∞.

Let p ∈ C
0, 1

| ln t| (Ω). Then

W
1,p(z)
0 (Ω)∗ = W −1,p′(z)(Ω)

(
1

p(z) + 1
p′(z) = 1

)
.

Consider the operator A : W
1,p(z)
0 (Ω) → W −1,p′(z)(Ω) = W

1,p(z)
0 (Ω)∗ defined by

⟨A(u), h⟩ =
∫
Ω

|Du|p(z)−2(Du, Dh)RN dz for all u, h ∈ W
1,p(z)
0 (Ω).

This operator has the following properties (see Gasinski and Papageorgiou [11]).

roposition 2.3. The map A : W
1,p(z)
0 (Ω) → W −1,p′(z)(Ω) defined above is bounded (that is, maps bounded

ets to bounded sets), continuous, strictly monotone (hence maximal monotone, too) and of type (S)+, that
s un

w→ u in W
1,p(z)
0 (Ω) and lim supn→∞⟨A(un), (un − u)⟩ ≤ 0 ⇒ un → u in W

1,p(z)
0 (Ω).

Next, we prove two strong comparison theorems, which will be used in the analysis of problem (Pλ). The
rst one extends Proposition 2.6 of Arcoya and Ruiz [3] to the abstract setting of anisotropic problems.

We will use the following notation. Given h, g ∈ L∞(Ω), we write that h ≺ g if and only if for every
⊆ Ω compact, we can find cK > 0 such that 0 < cK ≤ g(z) − h(z) for a.a. z ∈ K. Evidently, if

, g ∈ C(Ω) and h(z) < g(z) for all z ∈ Ω , then h ≺ g. Also, by C+ we denote the positive cone of
1
0 (Ω) = {u ∈ C1(Ω) : u

⏐⏐⏐
∂Ω

= 0}, that is, C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}. This cone has a

nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω ,
∂u

∂n

⏐⏐⏐
∂Ω

< 0
}

,

with n(·) being the outward unit normal on ∂Ω .
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Proposition 2.4. If p ∈ C0,1(Ω), 1 < p(z) for all z ∈ Ω , ξ̂, h, g ∈ L∞(Ω), ξ̂(z) ≥ 0 for a.a. z ∈ Ω , h ≺ g,
∈ W 1,p(z)(Ω), u ̸= 0, v ∈ int C+ and

−∆p(z)u + ξ̂(z)|u|p(z)−2
u = h(z) in Ω , u

⏐⏐⏐
∂Ω

≤ 0,

−∆p(z)v + ξ̂(z)vp(z)−1 = g(z) in Ω ,
∂v

∂n

⏐⏐⏐
∂Ω

< 0,

then v − u ∈ int C+.

Proof. From Theorem 4.1 of Fan and Zhao [8] (see also Proposition 3.1 of Gasinski and Papageorgiou [11]),
we have that u ∈ L∞(Ω). Then invoking Theorem 1.3 of Fan [7], we infer that u ∈ C1(Ω). Also, exploiting
the monotonicity of A(·) (see Proposition 2.3), we see that u ≤ v. We introduce the following two sets.

E = {z ∈ Ω : u(z) = v(z)} and Ê = {z ∈ Ω : Du(z) = Dv(z) = 0}.

Claim. E ⊆ Ê.
Let y = u − v. We have y ≤ 0. Consider z ∈ E. Then y(z) = maxΩ y = 0. So, we have Dy(z) = 0, hence

Du(z) = Dv(z). Arguing by contradiction, suppose that z ̸∈ Ê. Then Dv(z) ̸= 0 and so we can find an open
ball B ⊆ Ω centered at z such that

|Du(x)| > 0, |Dv(x)| > 0, (Du(x), Dv(x))RN > 0 for all x ∈ B.

Consider the N × N matrix A(x) = (aij(x))N
i,j=1 with entries aij(x) defined by

aij(x) =
∫ 1

0
[(1 − t)Du(x) + tDv(x)]

[
δij + (p(x) − 2)Di((1 − t)u + tv)Dj((1 − t)u + tv)

|(1 − t)Du + tDv|2

]
dt

We have aij ∈ C0,α(B) for some α ∈ (0, 1) (see Fan [7]) and

− div (A(x)Dy(x)) = h(x) − g(x) − ξ̂(x)
[
|u(x)|p(x)−2

u(x) − v(x)p(x)−1
]

in B (1)

(see also Guedda and Véron [12]). By choosing the ball B ⊆ Ω even smaller if necessary, we obtain that in
(1) the linear differential operator is strictly elliptic, while the right-hand side is strictly negative. Invoking
Theorem 4 of Vázquez [25], we have

y(x) < 0 for all x ∈ B,

⇒ y(z) < 0, a contradiction.

Therefore z ∈ Ê and this proves the Claim.
Recall that v ∈ int C+. Therefore Ê is compact and so we can find U ⊆ Ω such that

Ê ⊆ U ⊆ U ⊆ Ω . (2)

For ε > 0 small enough, we have

u(z) + ε < v(z) for all z ∈ ∂U (see (2)), (3)
h(z) + ε < g(z) for a.a. z ∈ U (recall that h ≺ g). (4)
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We choose δ > 0 so small that⏐⏐⏐ξ̂(z)
(

|x|p(z)−2
x − |w|p(z)−2

w
)⏐⏐⏐

≤ ∥ξ̂∥∞

⏐⏐⏐|x|p(z)−2
x − |w|p(z)−2

w
⏐⏐⏐ < ε (5)

if |x − w| < δ, z ∈ U (recall that p ∈ C0,1(Ω)).

Then we have for a.a. z ∈ U

−∆p(z)(u + δ) + ξ̂(z)|u + δ|p(z)−2(u + δ)
= −∆p(z)u + ξ̂(z)|u + δ|p(z)−2(u + δ)

= h(z) + ξ̂(z)
[
|u + δ|p(z)−2(u + δ) − |u|p(z)−2

u
]

≤ h(z) + ε (see (5))
< g(z) (see (4))
= −∆p(z)v + ξ̂(z)vp(z)−1,

⇒ u(z) + δ ≤ v(z) for all z ∈ U

(by the weak comparison principle, see (3)),
⇒ u(z) < v(z) for all z ∈ U,

⇒ E = ∅.

Also, by the anisotropic maximum principle of Zhang [26], we have

∂y

∂n

⏐⏐⏐
∂Ω

> 0,

⇒ ∂(v − u)
∂n

⏐⏐⏐
∂Ω

< 0.

The proof is now complete. □

For the second strong comparison principle, we use the following open cone in C1(Ω)

D+ = {u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω , u
⏐⏐⏐
∂Ω∩U−1(0)

< 0}.

roposition 2.5. If p ∈ C0,1(Ω), 1 < p(z) for all z ∈ Ω , ξ̂, h, g ∈ L∞(Ω), ξ̂(z) ≥ 0 for a.a. z ∈ Ω ,
< η ≤ g(z) − h(z) for a.a. z ∈ Ω and u, v ∈ C1(Ω) satisfy u ≤ v and

−∆p(z)u + ξ̂(z)|u|p(z)−2
u = h(z) in Ω ,

−∆p(z)v + ξ̂(z)|v|p(z)−2
v = g(z) in Ω ,

then v − u ∈ D+.

Proof. The reasoning is similar to that in the proof of the previous proposition.
Let w = v − u ≥ 0, w ∈ C1(Ω). As in the proof of Proposition 2.4, we have

− div(A(z)Dw) = g(z) − h(z) − ξ̂(z)
[
|v|p(z)−2

v − |u|p(z)−2
u
]

in Ω . (6)

1,∞
In this case we have aij ∈ W (Ω) for all i, j = 1, . . . , N .



N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš / Nonlinear Analysis 201 (2020) 111861 7

T

(
(

(

R
s

R
c
s
a

Suppose that for some z0 ∈ Ω , we have w(z0) = 0. Then u(z0) = v(z0). The map (z, x) ↦→ |x|p(z)−2
x is

uniformly continuous on Ω × R. So, we can find δ > 0 small enough such that

g(z) − h(z) − ξ̂(z)
⏐⏐⏐|v(z)|p(z)−2

v(z) − |u(z)|p(z)−2
u(z)

⏐⏐⏐ ≥ η

2 > 0

for a.a. z ∈ Bδ(z0) = {z ∈ Ω : |z − z0| < δ}.
From (6) we have

−div (A(z)Dw) ≥ η

2 > 0 for a.a. z ∈ Bδ(z0).

Invoking Theorem 4 of Vázquez [25], we have

w(z) > 0 for all z ∈ Bδ(z0),

a contradiction to the fact that w(z0) = 0. Therefore

w(z) > 0 for all z ∈ Ω .

Let E0 = {z ∈ ∂Ω : w(z) = 0}. We can assume that E0 ̸= ∅. Otherwise we already have that v(z) > u(z)
for all z ∈ Ω and we are done. By Zhang [26] we have

∂w

∂n
(z0) < 0,

⇒ w = v − u ∈ D+.

he proof is now complete. □

Now we introduce our hypotheses on the data of problem (Pλ).
H0: p, q ∈ C0,1(Ω) and 1 < q− ≤ q(z) ≤ q+ < p− ≤ p(z) ≤ p+ for all z ∈ Ω , ξ ∈ L∞(Ω).
We mention that the global regularity results of Fan [7] that we use are actually valid for p ∈ C0,β(Ω)

with 0 < β < 1 (see assumption pH in [7, p. 398]). On the other hand, the Poincaré inequality (that is also
used here) is valid for p(·) being Lipschitz continuous. For this reason we have assumed that p, q ∈ C0,1(Ω).

H1: f : Ω × R → R is a function which for all x ∈ R, is measurable in z ∈ Ω , for a.a. z ∈ Ω we have
f(z, ·) ∈ C1(R) and

(i) 0 ≤ f(z, x) ≤ a(z)(1 + xr(z)−1) for a.a. z ∈ Ω , all x ∈ R, with a ∈ L∞(Ω), r ∈ C(Ω) and
p+ < r(z) < p(z)∗ for all z ∈ Ω ;

ii) if F (z, x) =
∫ x

0 f(z, s)ds, then limx→+∞
F (z,x)

xp+ = +∞ uniformly for a.a. z ∈ Ω ;
iii) if e(z, x) = f(z, x)x − p+F (z, x), then there exist M > 0 and Ĉ > ∥ξ∥∞

(
p+
p−

− 1
)

such that

e′
x(z, x) ≥ Ĉxp(z)−1 for a.a. z ∈ Ω , all x ≥ M ;

iv) limx→0+
f(z,x)
xp−−1 = 0 uniformly for a.a. z ∈ Ω .

emark 2.6. Since we are looking for positive solutions and all the above hypotheses concern the positive
emi-axis R+ = [0, +∞), without any loss of generality, we may assume that

f(z, x) = 0 for a.a. z ∈ Ω , all x ≤ 0. (7)

emark 2.7. Hypothesis H1(ii) implies that for a.a. z ∈ Ω , the function F (z, ·) is p+-superlinear. This
ombined with hypothesis H1(iii), says that for a.a. z ∈ Ω , f(z, ·) is (p+ − 1)-superlinear. However, the
uperlinearity of f(z, ·) is not expressed using the usual for such problems AR-condition (see Ambrosetti
nd Rabinowitz [2]). Instead, we employ the less restrictive condition H (iii) that permits the consideration
1
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of (p+ − 1)-superlinear functions with “slower” growth near +∞, which fail to satisfy the AR-condition (see
the examples below). Note that hypothesis H1(iii) is not global and implies that for a.a. z ∈ Ω , e(z, ·) is
eventually nondecreasing. Then Lemma 2.4(iv) of Li and Yang [15], implies that there exists µ ∈ L1(Ω) such
hat

e(z, x) ≤ e(z, y) + µ(z) for a.a. z ∈ Ω , all 0 ≤ x ≤ y (8)

a global quasi-monotonicity condition on e(z, ·)). Also it is equivalent to saying that there exists M̂ > 0
uch that for a.a. z ∈ Ω , the function

x ↦→ f(z, x)
xp+−1

s nondecreasing on [M̂, +∞) (see Li and Yang [15]).

xample 2.8. Consider the following two functions

f1(z, x) = xr(z)−1 for all x ≥ 0,

f2(z, x) =
{

Ĉxr(z)−1, if x ∈ [0, 1]
Ĉ(xp(z)−1 + xm(z)−1), if 1 < x

(see (7)).

with r, m ∈ C(Ω), p+ < r(z) < p(z)∗, m(z) ≤ p(z) and r(z) = p(z) + m(z) − 2.
Note that f1(z, ·) satisfies the AR-condition, while f2(z, ·) need not (the AR-condition is not satisfied if

{z ∈ Ω : m(z) = p+} has nonempty interior).

Finally, we mention that if X is a Banach space and φ ∈ C1(X,R), then Kφ denotes the critical set of φ,
that is,

Kφ = {u ∈ X : φ′(u) = 0}.

Moreover, a set S ⊆ W
1,p(z)
0 (Ω) is said to be “downward directed”, if given u, v ∈ S, we can find w ∈ S

such that w ≤ u, w ≤ v. In addition if u, v ∈ W
1,p(z)
0 (Ω) with u ≤ v, then we define

[u, v] = {y ∈ W
1,p(z)
0 (Ω) : u(z) ≤ y(z) ≤ v(z) for a.a. z ∈ Ω}

intC1
0 (Ω)[u, v] = the interior in C1

0 (Ω) of [u, v] ∩ C1
0 (Ω),

[u) = {y ∈ W
1,p(z)
0 (Ω) : u(z) ≤ y(z) for a.a. z ∈ Ω}.

. Positive solutions

We introduce the following two sets:

L = {λ > 0 : problem (Pλ) admits a positive solution},

Sλ = set of positive solutions of problem (Pλ).

Let ϑ > ∥ξ∥∞ (see hypothesis H0), λ > 0 and consider the functional φ̂λ : W
1,p(z)
0 (Ω) → R defined by

φ̂λ(u) =
∫
Ω

1
p(z) |Du|p(z)

dz +
∫
Ω

ξ(z)
p(z) |u|p(z)

dz +
∫
Ω

ϑ

p(z) (u−)p(z)dz

− λ

∫
Ω

1
q(z) (u+)q(z)dz −

∫
Ω

F (z, u+)dz for all u ∈ W
1,p(z)
0 (Ω).

Recall that u+ = max{u, 0}, u− = max{−u, 0} and if u ∈ W
1,p(z)
0 (Ω), then

u+, u− ∈ W
1,p(z)
0 (Ω), u = u+ − u−, |u| = u+ + u−.

We have that φ̂λ(·) ∈ C1(W 1,p(z)(Ω)) (see Rădulescu and Repovš [23, p. 31]).
0
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Proposition 3.1. If hypotheses H0, H1 hold and λ > 0, then φ̂λ(·) satisfies the C-condition.

Proof. We consider a sequence {un}n≥1 ⊆ W
1,p(z)
0 (Ω) such that

|φ̂λ(un)| ≤ M1 for some M1 > 0, all n ∈ N, (9)
(1 + ∥un∥)φ̂′

λ(un) → 0 in W −1,p′(z)(Ω) = W
1,p(z)
0 (Ω)∗ as n → ∞. (10)

From (10) we have

|⟨φ̂′
λ(un), h⟩| ≤ εn∥h∥

1 + ∥un∥
for all h ∈ W

1,p(z)
0 (Ω), all n ∈ N, with εn → 0+,

⇒
⏐⏐⏐⟨A(un), h⟩+

∫
Ω

ξ(z)|un|p(z)−2
unhdz −

∫
Ω

ϑ(u−
n )p(z)−1hdz

− λ

∫
Ω

(u+
n )q(z)−1hdz −

∫
Ω

f(z, u+
n )hdz

⏐⏐⏐ ≤ εn∥h∥
1 + ∥un∥

(11)

for all h ∈ W
1,p(z)
0 (Ω), n ∈ N.

In (11) we choose h = −u−
n ∈ W

1,p(z)
0 (Ω). We have⏐⏐⏐⏐ρ̂(Du−

n ) +
∫
Ω

[ξ(z) + ϑ] (u−
n )p(z)dz

⏐⏐⏐⏐ ≤ εn for all n ∈ N,

⇒ u−
n → 0 in W

1,p(z)
0 (Ω) (12)

(recall that ϑ > ∥ξ∥∞ and see Proposition 2.2(d)).

In (11) we choose h = u+
n ∈ W

1,p(z)
0 (Ω). Then⏐⏐⏐⏐ρ̂(Du+

n ) +
∫
Ω

ξ(z)(u+
n )p(z)dz − λ

∫
Ω

(u+
n )q(z)dz −

∫
Ω

f(z, u+
n )u+

n dz

⏐⏐⏐⏐ ≤ εn (13)

or all n ∈ N.
On the other hand, from (9) and (12), we have

|
∫
Ω

p+

p(z) |Du+
n |p(z)

dz +
∫
Ω

p+

p(z)ξ(z)|u+
n |p(z)

dz − λ

∫
Ω

p+

q(z) (u+
n )q(z)dz

−
∫
Ω

p+F (z, u+
n )dz| ≤ M2 (14)

for some M2 > 0, all n ∈ N.

From (13) and (14) it follows that∫
Ω

[
p+

p(z) − 1
]

|Du+
n |p(z)

dz +
∫
Ω

[
p+

p(z) − 1
]

ξ(z)(u+
n )p(z)dz

− λ

∫
Ω

[
p+

q(z) − 1
]

(u+
n )q(z)dz +

∫
Ω

e(z, u+
n )dz ≤ M3 (15)

for some M3 > 0, all n ∈ N.

Let βλ(z, x) = λ
[
1 − p+

q(z)

]
xq(z) + e(z, x) + ξ(z)

[
p+

p(z) − 1
]

xp(z) for all x ≥ 0.
Then from (15) we have ∫

Ω

βλ(z, u+
n )dz ≤ M3 for all n ∈ N. (16)

Claim. The sequence {u+} ⊆ W
1,p(z)(Ω) is bounded.
n n≥1 0
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We argue by contradiction. So, suppose that the claim is not true. Then passing to a subsequence if
necessary, we may assume that

∥u+
n ∥ → ∞ as n → ∞. (17)

Let yn = u+
n

∥u+
n ∥

, n ∈ N. Then ∥yn∥ = 1, yn ≥ 0 for all n ∈ N. So, we may assume that

yn
w→ y in W

1,p(z)
0 (Ω) and yn → y in Lp(z)(Ω), y ≥ 0. (18)

Let Ω+ = {z ∈ Ω : y(z) > 0} and Ω0 = {z ∈ Ω : y(z) = 0}. Then Ω = Ω+ ∪ Ω0 (see (18)).
First we assume that |Ω+|N > 0 (by | · |N we denote the Lebesgue measure on RN ). We have u+

n (z) → +∞
for a.a. z ∈ Ω+ and so on account of hypothesis H1(ii) we have

F (z, u+
n (z))

u+
n (z)p+

→ +∞ for a.a. z ∈ Ω+,

⇒ F (z, u+
n (z))

∥u+
n ∥p+

= F (z, u+
n (z))

u+
n (z)p+

yn(z)p+ → +∞ for a.a. z ∈ Ω+,

⇒
∫
Ω+

F (z, u+
n )

∥u+
n ∥p+

dz → +∞ (by Fatou’s lemma),

⇒
∫
Ω

F (z, u+
n )

∥u+
n ∥p+

dz → +∞ as n → +∞. (19)

On account of (17), we may assume that ∥u+
n ∥ ≥ 1 for all n ∈ N. Then from (9) and (12), we have

λ

∫
Ω

1
q(z)

(u+
n )q(z)

∥u+
n ∥p+

dz +
∫
Ω

F (z, u+
n )

∥u+
n ∥p+

dz

≤ ε′
n + 1

p−

∫
Ω

|Dyn|p(z)
dz + ∥ξ∥∞

p−

∫
Ω

yp(z)
n dz with ε′

n → 0+

≤ M4 for some M4 > 0, all n ∈ N (see (18)). (20)

Comparing (19) and (20), we have a contradiction.
So, we assume that y ≡ 0 (that is, |Ω |N = |Ω0|N ). We define

φ̂λ(tnun) = max{φ̂λ(tun) : 0 ≤ t ≤ 1}. (21)

Let vn = η
1

p− yn for all n ∈ N, with η > 0. Evidently we have

vn
w→ 0 in W

1,p(z)
0 (Ω) (see (18)). (22)

Hypothesis H1(i), (18) and the dominated convergence theorem imply that∫
Ω

F (z, vn)dz → 0 as n → ∞. (23)

Also, we have ∫
Ω

1
p(z)ξ(z)vp(z)

n dz → 0,

∫
Ω

1
q(z)vq(z)

n dz → 0 (24)

(see (22) and Proposition 2.1).

Moreover, (17) implies that we can find n0 ∈ N such that

η
1

p−

+ ∈ (0, 1] for all n ≥ n0. (25)

∥un ∥
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Then from (21) and (25), we have

φ̂λ(tnu+
n ) ≥ φ̂λ(vn)

=
∫
Ω

1
p(z) |Dvn|p(z)

dz +
∫
Ω

1
p(z)ξ(z)vp(z)

n dz

− λ

∫
Ω

1
q(z)vq(z)

n dz −
∫
Ω

F (z, vn)dz for all n ≥ n0,

≥ 1
2p+

η for all n ≥ n1 ≥ n0

(see (23), (24) and use the Poincaré inequality).

Since η > 0 is arbitrary, we can infer that

φ̂λ(tnu+
n ) → +∞ as n → ∞. (26)

We know that
φ̂λ(0) = 0 and φ̂λ(u+

n ) ≤ M5 for some M5 > 0, all n ∈ N. (27)

From (26) and (27) it follows that we can find n2 ∈ N such that

tn ∈ (0, 1) for all n ≥ n2. (28)

Then from (21) and (28) we infer that

tn
d

dt
φ̂λ(tu+

n )

⏐⏐⏐⏐⏐
t=tn

= 0,

⇒ ⟨φ̂′
λ(tnu+

n ), tnu+
n ⟩ = 0 for all n ≥ n2 (29)

(by the chain rule).

For all n ≥ n2 we have

φ̂λ(tnu+
n )

= φ̂λ(tnu+
n ) − 1

p+
⟨φ̂′

λ(tnu+
n ), tnu+

n ⟩ (see (29))

≤
∫
Ω

[
1

p(z) − 1
p+

]
|D(tnu+

n )|p(z)
dz +

∫
Ω

[
1

p(z) − 1
p+

]
ξ(z)(tnu+

n )p(z)dz

− λ

∫
Ω

[
1

q(z) − 1
p+

]
(tnu+

n )q(z)dz + 1
p+

∫
Ω

e(z, tnu+
n )dz

≤
∫
Ω

[
1

p(z) − 1
p+

]
|Du+

n |p(z)
dz + 1

p+

∫
Ω

βλ(z, tnu+
n )dz. (30)

For the integrand βλ(z, x), we have for a.a. z ∈ Ω , all x ≥ 0

(βλ)′
x(z, x) = λ [q(z) − p+] xq(z)−1 + e′

x(z, x) + ξ(z) [p+ − p(z)] xp(z)−1

≥ Ĉxp(z)−1 − λC1xq(z)−1 for some C1 > 0
(see hypothesis H1(iii)).

Since q+ < p−, we can find M6 ≥ 1 such that

(βλ)′
x(z, x) ≥ 0 for a.a. z ∈ Ω , all x ≥ M6,

⇒ β (z, ·) is nondecreasing on [M , ∞) for a.a. z ∈ Ω ,
λ 6
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T

P

P
t

⇒ βλ(z, x) ≤ βλ(z, y) + µλ(z) (31)
for a.a. z ∈ Ω , all 0 ≤ x ≤ y, with µλ ∈ L1(Ω).

It follows from (30) and (31) that

φ̂λ(tnu+
n )

≤
∫
Ω

[
1

p(z) − 1
p+

]
|Du+

n |p(z)
dz + 1

p+

∫
Ω

βλ(z, u+
n )dz + 1

p
∥µλ∥1

for all n ≥ n2

= φ̂λ(u+
n ) − 1

p+
⟨φ̂′

λ(u+
n ), u+

n ⟩

≤ φ̂λ(u+
n ) + εn

p+
for all n ≥ n2 (see (13)),

⇒ φ̂λ(u+
n ) → +∞ as n → ∞ (see (26)),

a contradiction (see (27)).

Therefore {u+
n } ⊆ W

1,p(z)
0 (Ω) is bounded and this proves the claim.

Then from (12) and the claim it follows that

{un}n≥1 ⊆ W
1,p(z)
0 (Ω) is bounded.

We may assume that

un
w→ u in W

1,p(z)
0 (Ω) and un → u in Lr(z)(Ω) as n → ∞. (32)

In (11) we choose h = un − u ∈ W
1,p(z)
0 (Ω), pass to the limit as n → ∞ and use (32). Then

lim
n→∞

⟨A(un), un − u⟩ = 0,

⇒ un → u in W
1,p(z)
0 (Ω) (see Proposition 2.3),

⇒ φ̂λ(·) satisfies the C-condition.

he proof is now complete. □

roposition 3.2. If hypotheses H0, H1 hold, then L ≠ ∅ and we have Sλ ⊆ int C+ for every λ ∈ L.

roof. On account of hypotheses H1(i), (iv), we see that given ε > 0, we can find C2 = C2(ε) > 0 such
hat

F (z, x) ≤ ε

p+
xp+ + C2xr+ for a.a. z ∈ Ω , all x ≥ 0. (33)

For every u ∈ W
1,p(z)
0 (Ω), we have

φ̂λ(u) ≥
∫
Ω

1
p(z) |Du|p(z)

dz +
∫
Ω

1
p(z)ξ(z)|u|p(z)

dz

− λ

q+

∫
Ω

(u+)q(z)dz − ε

p+
∥u∥p+

p+ − C3∥u∥r+ (34)

for some C3 > 0 (see (33) and recall that ϑ > ∥ξ∥∞).
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For ∥u∥p(z) ≤ 1 we have∫
Ω

1
p(z)ξ(z)|u|p(z)

dz ≤ ∥ξ∥∞

p−
∥u∥p−

p(z) ≤ C4∥u∥p− for some C4 > 0,

⇒
∫
Ω

1
p(z)ξ(z)(u+)dz ≤ λ∥u∥q+ + C5∥u∥r+ (35)

for some C5 = C5(λ) > 0 (recall that q+ < p− ≤ p+ < r+).

We return to (34) and use (35). Then for u ∈ W
1,p(z)
0 (Ω) with max{∥u∥, ∥u∥p(z)} ≤ 1 we have

φ̂λ(u) ≥ 1
p+

(1 − εC6) ∥u∥p+ − C7 (λ∥u∥q+ + ∥u∥r+)

for some C6, C7 > 0.

We choose ε ∈
(

0, 1
C6

)
and obtain

φ̂λ(u) ≥ C8∥u∥p+ − C7 (λ∥u∥q+ + ∥u∥r+) for some C8 > 0,

⇒ φ̂λ(u) ≥
[
C8 − C7

(
λ∥u∥q+−p+ + ∥u∥r+−p+

)]
∥u∥p+ . (36)

Consider the function
kλ(t) = λtq+−p+ + tr+−p+ for all t > 0.

Evidently, kλ ∈ C1(0, +∞) and since q+ < p− ≤ p+ < r+ we have

kλ(t) → +∞ as t → 0+ or t → +∞.

So, we can find t0 > 0 such that

kλ(t0) = min{kλ(t) : t > 0},

⇒ k′
λ(t0) = 0,

⇒ λ(p+ − q+)tq+−p+−1
0 = (r+ − p+)tr+−p+−1

0 ,

⇒ t0 =
[

λ(p+ − q+)
r+ − p+

] 1
r+−q+

. (37)

Then

kλ(t0) = λ
r+−p+
r+−q+

(r+ − p+)
p+−q+
r+−q+

(p+ − q+)
p+−q+
r+−q+

+ λ
r+−p+
r+−q+

(p+ − q+)
r+−p+
r+−q+

(r+ − p+)
r+−p+
r+−q+

,

⇒ kλ(t0) → 0 as λ → 0+.

Let C0 > 0 be such that ∥ · ∥p(z) ≤ C0∥ · ∥. So, we can find λ0 > 0 such that

0 < t0 ≤ min
{

1
C0

, 1
}

and kλ(t0) <
C8

C7
for all λ ∈ (0, λ0) (see (36), (37)).

Then from (36) it follows that

φ̂λ(u) ≥ m̂λ > 0 for all ∥u∥ = t0. (38)

On account of superlinearity hypothesis H1(ii), for u ∈ int C+, we have

φ̂ (tu) → −∞ as t → +∞. (39)
λ
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Then (38), (39) and Proposition 3.1, permit the use of the mountain pass theorem. Therefore for every
λ ∈ (0, λ0) we can find uλ ∈ W

1,p(z)
0 (Ω) such that

uλ ∈ Kφ̂λ
and 0 < m̂λ ≤ φ̂λ(uλ) (see (38)). (40)

From (40) we have uλ ̸= 0 (recall that φ̂λ(0) = 0) and

⟨φ̂′
λ(uλ), h⟩ = 0 for all h ∈ W

1,p(z)
0 (Ω). (41)

Choosing h = −u−
λ ∈ W

1,p(z)
0 (Ω), we obtain∫

Ω

1
p(z) |Du−

λ |p(z)
dz +

∫
Ω

ϑ + ξ(z)
p(z) (u−

λ )p(z)dz = 0,

⇒ 1
p+

[
ρ̂(Du−

λ ) + C9ρ(u−
λ )
]

≤ 0 for some C9 > 0,

⇒ uλ ≥ 0, uλ ̸= 0.

Then from (41) it follows that uλ is a positive solution (Pλ). As before, the anisotropic regularity theory
see [7,8]) implies that

uλ ∈ C+ \ {0}.

We have

−∆p(z)u(z) + ξ(z)u(z)p(z)−1 ≥ 0 for a.a. z ∈ Ω ,

⇒ ∆p(z)u(z) ≤ ∥ξ∥∞u(z)p(z)−1 for a.a. z ∈ Ω ,

⇒ u ∈ int C+ (see Zhang [26]).

So, we have proved that (0, λ0) ⊆ L and so L ≠ ∅. Moreover, we have Sλ ⊆ int C+ for all λ > 0. □

Next, we show that L is an interval.

Proposition 3.3. If hypotheses H0, H1 hold, λ ∈ L and 0 < µ < λ, then u ∈ L and given uλ ∈ Sλ, we can
nd uµ ∈ Sµ such that uµ ≤ uλ.

Proof. Since λ ∈ L, we can find uλ ∈ Sλ ⊆ int C+. With ϑ > ∥ξ∥∞, we introduce the Carathéodory
unction gµ(z, x) defined by

gµ(z, x) =
{

µ(x+)q(z)−1 + f(z, x+) + ϑ(x+)p(z)−1, if x ≤ uλ(z)
µuλ(z)q(z)−1 + f(z, uλ(z)) + ϑuλ(z)p(z)−1, if uλ(z) < x.

(42)

We set Gµ(z, x) =
∫ x

0 gµ(z, s)ds and consider the C1-functional Ψµ : W
1,p(z)
0 (Ω) → R defined by

Ψµ(u) =
∫
Ω

1
p(z) |Du|p(z)

dz +
∫
Ω

ϑ + ξ(z)
p(z) |u|p(z)

dz −
∫
Ω

Gµ(z, u)dz

or all u ∈ W
1,p(z)
0 (Ω).

Since ϑ > ∥ξ∥∞, from (42) it is clear that Ψµ(·) is coercive. Also, using the fact that W
1,p(z)
0 (Ω) ↪→

p(z)(Ω) compactly, we see that Ψµ(·) is sequentially weakly lower semicontinuous. So, by the Weierstrass–
onelli theorem, there exists uµ ∈ W

1,p(z)
0 (Ω) such that

Ψµ(uµ) = inf
{
Ψµ(u) : u ∈ W

1,p(z)(Ω)
}

. (43)
0
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Since q+ < p−, we see that

Ψµ(uµ) < 0 = Ψµ(0),
⇒ uµ ̸= 0.

From (43) we have
Ψ ′

µ(uµ) = 0,

⇒ ⟨A(uµ), h⟩ +
∫
Ω

[ϑ + ξ(z)] |uµ|p(z)−2
uµhdz =

∫
Ω

gµ(z, uµ)hdz (44)

for all h ∈ W
1,p(z)
0 (Ω).

In (44) first we choose h = −u−
µ ∈ W

1,p(z)
0 (Ω). We obtain

ρ̂(Du−
µ ) + C10ρ(u−

µ ) ≤ 0 for some C10 > 0 (see (42)),
⇒ uµ ≥ 0, uµ ̸= 0.

Next, in (44) we choose h = (uµ − uλ)+ ∈ W
1,p(z)
0 (Ω). We have

⟨A(uµ), (uµ − uλ)+⟩ +
∫
Ω

[ϑ + ξ(z)]up(z)−1
µ (uµ − uλ)+dz

=
∫
Ω

[µu
q(z)−1
λ + f(z, uλ) + ϑu

p(z)−1
λ ](uµ − uλ)+dz (see (42))

≤
∫
Ω

[λuλuq(z)−1 + f(z, uλ) + ϑu
p(z)−1
λ ](uµ − uλ)+dz (since µ < λ)

= ⟨A(uλ), (uµ − uλ)+⟩ +
∫
Ω

[ϑ + ξ(z)]up(z)−1
λ (uµ − uλ)+dz (since uλ ∈ Sλ).

The monotonicity of A(·) (see Proposition 2.3) and the fact that ϑ > ∥ξ∥∞ imply that

uµ ≤ uλ,

⇒ uµ ∈ [0, uλ], uµ ̸= 0,

⇒ uµ ∈ Sµ ⊆ int C+ (see (42) and (44)).

The proof is now complete. □

So, according to Proposition 3.3, the solution multifunction λ ↦→ Sλ has a kind of weak monotonicity
property. We can improve this monotonicity property by adding one more condition on the perturbation
f(z, ·).

The new hypotheses on f(z, x) are the following:
H2: f : Ω × R → R is a function which is measurable in z ∈ Ω , for a.a. z ∈ Ω we have f(z, ·) ∈ C1(R),

ypotheses H2(i) → (iv) are the same as the corresponding hypotheses H1(i) → (iv), and

v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function

x ↦→ f(z, x) + ξ̂ρxp(z)−1

is nondecreasing on [0, ρ].

emark 3.4. This is a one-sided local Hölder condition on f(z, ·). It is satisfied if for every ρ > 0, we can
nd Ĉρ > 0 such that f ′

x(z, x) ≥ −Ĉρxp(z)−1 for a.a. z ∈ Ω and all 0 ≤ x ≤ ρ.
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Proposition 3.5. If hypotheses H0, H2 hold, λ ∈ L, uλ ∈ Sλ ⊆ int C+ and µ ∈ (0, λ), then µ ∈ L and we
can find uµ ∈ Sµ ⊆ int C+ such that

uλ − uµ ∈ int C+.

Proof. From Proposition 3.3 we know that µ ∈ L and there exists uµ ∈ Sµ ⊆ int C+ such that

uλ − uµ ∈ C+ \ {0}. (45)

Let ρ = ∥uλ∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H2(v). We can always assume that
ρ̂ > ∥ξ∥∞. Then we have

−∆p(z)uµ + [ξ(z) + ξ̂ρ]up(z)−1
µ

= µuq(z)−1
µ + f(z, uµ) + ξ̂ρup(z)−1

µ

≤ µu
q(z)−1
λ + f(z, uλ) + ξ̂ρu

p(z)−1
λ (see (45) and hypothesis H2(v))

≤ λu
q(z)−1
λ + f(z, uλ) + ξ̂ρu

p(z)−1
λ (since µ < λ)

= −∆p(z)uλ + [ξ(z) + ξ̂ρ]up(z)−1
λ . (46)

Note that since uλ ∈ int C+ and µ < λ, we have

0 ≺ (λ − µ)uq(z)−1
λ . (47)

Then from (46), (47) and Proposition 2.4, we can conclude that

uλ − uµ ∈ int C+.

he proof is now complete. □

Next, we show that for every λ ∈ L, the solution set Sλ has a smallest element (minimal positive solution).
To this end, first we consider the following auxiliary problem{

−∆p(z)u(z) + |ξ(z)||u(z)|p(z)−2
u(z) = λ|u(z)|q(z)−2

u(z) in Ω ,

u
⏐⏐⏐
∂Ω

= 0, λ > 0, u > 0.
(48)

roposition 3.6. If hypotheses H0 hold and λ > 0, then problem (48) admits a unique positive solution
uλ ∈ int C+.

Proof. We consider the C1-functional γλ : W
1,p(z)
0 (Ω) → R defined by

γλ(u) =
∫
Ω

1
p(z) |Du|p(z)

dz +
∫
Ω

|ξ(z)|
p(z) |u|p(z)

dz − λ

∫
Ω

1
q(z) (u+)q(z)dz

for all u ∈ W
1,p(z)
0 (Ω).

Evidently, γλ(·) is coercive (since q+ < p−) and sequentially weakly lower semicontinuous. So, we can find
uλ ∈ W

1,p(z)
0 (Ω) such that

γλ(uλ) = min
{

γλ(u) : u ∈ W
1,p(z)
0 (Ω)

}
< 0 = γλ(0) (since q+ < p−),

⇒ uλ ̸= 0.

We have
γ′

λ(uλ) = 0,

⇒ ⟨A(uλ), h⟩ +
∫
Ω

|ξ(z)||uλ|p(z)−2
uλhdz = λ

∫
Ω

(u+
λ )q(z)−1hdz (49)

for all h ∈ W
1,p(z)(Ω).
0
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fi

f

In (49) we choose h = −u−
λ ∈ W

1,p(z)
0 (Ω). Then

ρ̂(Du−
λ ) +

∫
Ω

|ξ(z)|(u−
λ )p(z)dz = 0,

⇒ uλ ≥ 0, uλ ̸= 0,

⇒ uλ is a positive solution of (48) (see (49)),
⇒ uλ ∈ C+ \ {0} (anisotropic regularity theory).

Therefore

∆p(z)uλ(z) ≤ ∥ξ∥∞uλ(z)p(z)−1 for a.a. z ∈ Ω ,

⇒ uλ ∈ int C+ (see Zhang [26]).

Next, we show that this positive solution of (48) is unique.
Suppose that vλ is another positive solution of (48). Again we have vλ ∈ int C+. On account of Proposition

4.1.22 of Papageorgiou, Rădulescu and Repovš [20, p. 274], we have uλ
vλ

, vλ
uλ

∈ L∞(Ω). So, we can apply
Theorem 2.5 of Takač and Giacomoni [24] and get

0 ≤
∫
Ω

[
−∆p(z)uλ

u
p−−1
λ

+
−∆p(z)vλ

v
p−−1
λ

]
(up−

λ − v
p−
λ )dz

=
∫
Ω

[
λ
(

u
q(z)−p−
λ − v

q(z)−p−
λ

)
− |ξ(z)|

(
u

p(z)−p−
λ − v

p(z)−p−
λ

)]
(up−

λ − v
p−
λ )dz,

⇒ uλ = vλ (since q+ < p− ≤ p(z)).

Therefore the positive solution uλ ∈ int C+ of problem (48) is unique. □

This solution uλ ∈ int C+ provides a lower bound for the solution set Sλ.

Proposition 3.7. If hypotheses H0, H1 hold and λ ∈ L, then uλ ≤ u for all u ∈ Sλ.

Proof. Let u ∈ Sλ ⊆ int C+ and consider the Carathéodory function βλ(z, x) defined by

βλ(z, x) =
{

λ(x+)q(z)−1, if x ≤ u(z)
λu(z)q(z)−1, if u(z) < x.

(50)

We set Bλ(z, x) =
∫ x

0 βλ(z, s)ds and consider the C1-functional τλ : W
1,p(z)
0 (Ω) → R defined by

τλ(u) =
∫
Ω

1
p(z) |Du|p(z)

dz +
∫
Ω

|ξ(z)|
p(z) |u|p(z)

dz −
∫
Ω

Bλ(z, u)dz

for all u ∈ W
1,p(z)
0 (Ω).

From (50) we see that τλ(·) is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
nd ũλ ∈ W

1,p(z)
0 (Ω) such that

τλ(ũλ) = min
{

τλ(u) : u ∈ W
1,p(z)
0 (Ω)

}
< 0 = τλ(0) (since q+ < p−),

⇒ ũλ ̸= 0.

We have
τ ′

λ(ũ) = 0,

⇒ ⟨A(ũλ), h⟩ +
∫
Ω

|ξ(z)||ũλ|p(z)−2
ũλhdz =

∫
Ω

βλ(z, ũλ)hdz (51)

or all h ∈ W
1,p(z)(Ω).
0
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In (51) we first choose h = −ũ−
λ ∈ W

1,p(z)
0 (Ω) and infer that

ũλ ≥ 0, ũλ ̸= 0.

Next, in (51) we choose h = (ũλ − u)+ ∈ W
1,p(z)
0 (Ω). We have

⟨A(ũλ), (ũλ − u)+⟩ +
∫
Ω

|ξ(z)|ũp(z)−1
λ (ũλ − u)+dz

=
∫
Ω

λuq(z)−1(ũλ − u)+dz (see (50))

≤
∫
Ω

[
λuq(z)−1 + f(z, u)

]
(ũλ − u)+dz (since f ≥ 0)

≤ ⟨A(u), (ũλ − u)+⟩ +
∫
Ω

|ξ(z)|up(z)−1(ũλ − u)+dz (since u ∈ Sλ),

⇒ ũλ ≤ u.

So, we have proved that
ũλ ∈ [0, u] \ {0}. (52)

Then it follows from (51), (52) and (50) that

ũλ is a positive solution of (48),
⇒ ũλ = uλ ∈ int C+ (see Proposition 3.6),
⇒ uλ ≤ u for all u ∈ Sλ.

The proof is now complete. □

Remark 3.8. Reasoning as in the above proof, we show that λ ↦→ uλ is increasing that is, if 0 < µ < λ,
then uλ − uµ ∈ C+ \ {0}.

We know that Sλ is downward directed (see Filippakis and Papageorgiou [9] and Papageorgiou, Rădulescu
and Repovš [18] and recall that A(·) is monotone, see Proposition 2.3).

Proposition 3.9. If hypotheses H0, H1 hold and λ ∈ L, then there exists u∗
λ ∈ Sλ ⊆ int C+ such that

u∗
λ ≤ u for all u ∈ Sλ

(minimal positive solution of (Pλ)).

Proof. By Lemma 3.10 of Hu and Papageorgiou [14, p. 178], we know that we can find {un}n≥1 ⊆ Sλ ⊆
int C+ decreasing (recall that Sλ is downward directed) such that

inf
n≥1

un = inf Sλ.

Since uλ ≤ un ≤ u1 for all n ∈ N (see Proposition 3.7), from hypothesis H1(i) it follows that

{un}n≥1 ⊆ W
1,p(z)
0 (Ω) is bounded.

So, we may assume that

w ∗ 1,p(z) ∗ r(z)
un → uλ in W0 (Ω) and un → uλ in L (Ω) as n → ∞. (53)
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We have

⟨A(un), un − u∗
λ⟩ +

∫
Ω

ξ(z)up(z)−1
n (un − u∗

λ)dz

= λ

∫
Ω

uq(z)−1
n (un − u∗

λ)dz +
∫
Ω

f(z, un)(un − u∗
λ)dz,

⇒ lim
n→∞

⟨A(un), un − u∗
λ⟩ = 0,

⇒ un → u∗
λ in W

1,p(z)
0 (Ω) (see Proposition 2.3). (54)

Note that
uλ ≤ u∗

λ and so u∗
λ ̸= 0,

⟨A(u∗
λ), h⟩ +

∫
Ω

ξ(z)(u∗
λ)p(z)−1hdz = λ

∫
Ω

(u∗
λ)q(z)−1hdz +

∫
Ω

f(z, u∗
λ)hdz

for all h ∈ W
1,p(z)
0 (Ω) (see (54)).

It follows that
u∗

λ ∈ Sλ ⊆ int C+ and u∗
λ = inf Sλ.

The proof is now complete. □

We set λ∗ = sup L.

Proposition 3.10. If hypotheses H0, H2 hold, then λ∗ < ∞.

Proof. On account of hypotheses H0, H2(iv) and since q+ < p−, we see that we can find λ̂ > 0 such that

λ̂xq(z)−1 + f(z, x) − ξ(z)xp(z)−1 ≥ 0 for a.a. z ∈ Ω , all x ≥ 0. (55)

Let λ > λ̂ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ int C+. Let Ω0 ⊂⊂ Ω (that is,
Ω0 ⊆ Ω0 ⊆ Ω) and assume that ∂Ω0 is a C2-manifold. We set m0 = minΩ0

uλ > 0 (recall that uλ ∈ int C+).
Also, let ξ̂ρ > ∥ξ∥∞. Let mδ

0 = m0 + δ for δ > 0 small enough. We have

−∆p(z)m
δ
0 + [ξ(z) + ξ̂ρ](mδ

0)p(z)−1

≤ [ξ(z) + ξ̂ρ]mp(z)−1
0 + χ(δ) with χ(δ) → 0+ as δ → 0+

≤ λ̂m
q(z)−1
0 + f(z, m0) + ξ̂ρm

p(z)−1
0 + χ(δ) (see (55))

≤ λ̂u
q(z)−1
λ + f(z, uλ) + ξ̂ρu

p(z)−1
λ + χ(δ) (see hypothesis H2(iv))

≤ λu
q(z)−1
λ + f(z, uλ) + ξ̂ρu

p(z)−1
λ − [λ − λ̂]mp(z)−1

0 + χ(δ)
≤ −∆p(z)uλ + [ξ(z) + ξ̂ρ]up(z)−1

λ in Ω0 for all δ ∈ (0, 1) small enough. (56)

Note that for δ ∈ (0, 1) small enough, we have

(λ − λ̂)mp(z)−1
0 − χ(δ) ≥ η > 0.

Then from (56) and Proposition 2.5, we have

uλ − mδ
0 ∈ D+ for all δ ∈ (0, 1) small enough,

a contradiction. This means that 0 < λ∗ ≤ λ̂ < ∞. □
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According to this proposition, we have

(0, λ∗) ⊆ L ⊆ (0, λ∗]. (57)

We will show that for all λ ∈ (0, λ∗), we have at least two positive smooth solutions for problem (Pλ).
o do this we need to strengthen a little the hypotheses on f(z, ·). The new conditions on f(z, x) are the

ollowing:
H3 : f : Ω × R → R is a function measurable in z ∈ Ω , for a.a. z ∈ Ωf(z, ·) ∈ C1(R), hypotheses

3(i) → (v) are the same as the corresponding hypotheses H2(i) → (v) = H1(i) → (v) and

vi) for every m > 0, there exists ηm > 0 such that

f(z, x) ≥ ηm > 0 for a.a. z ∈ Ω , all x ≥ m.

Proposition 3.11. If hypotheses H0, H3 hold and λ ∈ (0, λ∗), then problem (Pλ) admits at least two positive
solutions

u0, û ∈ int C+, u0 ̸= û.

Proof. Let η ∈ (λ, λ∗). We have η ∈ L (see (57)) and so we can find uη ∈ Sη ⊆ int C+. Then according to
roposition 3.5, we can find u0 ∈ Sλ ⊆ int C+ such that

uη − u0 ∈ int C+. (58)

Recall that uλ ≤ u0 (see Proposition 3.7). Let ρ = ∥u0∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis
H3(v) = H2(v). We can assume that ξ̂ρ > ∥ξ∥∞. Then we have

−∆p(z)uλ + [ξ(z) + ξ̂ρ]up(z)−1
λ

≤ −∆p(z)uλ + [|ξ(z)| + ξ̂ρ]up(z)−1
λ

= λu
q(z)−1
λ + ξ̂ρu

p(z)−1
λ (see Proposition 3.6)

≤ λu
q(z)−1
0 + f(z, uλ) + ξ̂ρu

p(z)−1
λ (recall that f ≥ 0)

≤ λu
q(z)−1
0 + f(z, u0) + ξ̂u

p(z)−1
0

(see Proposition 3.7 and hypothesis H3(v) = H2(v))
= −∆p(z)u0 + [ξ(z) + ξ̂ρ]up(z)−1

0 (since u0 ∈ Sλ). (59)

On account of hypothesis H3(vi) and since uλ ∈ int C+, we see that

0 ≺ f(·, uλ(·)).

Then (59) and Proposition 2.4 imply that

u0 − uλ ∈ int C+. (60)

It follows from (58) and (60) that
u0 ∈ intC1

0 (Ω)[uλ, uη]. (61)

As before, let ϑ > ∥ξ∥∞ and consider the Carathéodory function kλ(z, x) defined by

kλ(z, x) =

⎧⎨⎩
λuλ(z)q(z)−1 + f(z, uλ(z)) + ϑuλ(z)p(z)−1, if x < uλ(z)
λxq(z)−1 + f(z, x) + ϑxp(z)−1, if uλ(z) ≤ x ≤ uη(z)

q(z)−1 p(z)−1
(62)
λuη(z) + f(z, uη(z)) + ϑuη(z) , if uη(z) < x.
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We set Kλ(z, x) =
∫ x

0 kλ(z, s)ds and consider the C1-functional τλ : W
1,p(z)
0 (Ω) → R defined by

τλ(u) =
∫
Ω

1
p(z) |Du|p(z)

dz +
∫
Ω

ϑ + ξ(z)
p(z) |u|p(z)

dz −
∫
Ω

Kλ(z, u)dz

or all u ∈ W
1,p(z)
0 (Ω).

From (62) and since ϑ > ∥ξ∥∞, we infer that τλ(·) is coercive. Also it is sequentially weakly lower
emicontinuous. So, we can find ũ0 ∈ W

1,p(z)
0 (Ω) such that

τλ(ũ0) = min{τλ(u) : u ∈ W
1,p(z)
0 (Ω)},

⇒ τ ′
λ(ũ0) = 0,

⇒ ⟨τ ′
λ(ũ0), h⟩ = 0 for all h ∈ W

1,p(z)
0 (Ω).

Choosing h = (uλ − ũ0)+ and h = (ũ0 − uη)+ and using (62), we show as before that

ũ0 ∈ [uλ, uη] ∩ int C+.

Therefore we may assume that ũ0 = u0 or otherwise we already have a second positive smooth solution
and so we are done.

Next, we consider the Carathéodory function

k̂λ(z, x) =
{

λuλ(z)q(z)−1 + f(z, uλ(z)) + ϑuλ(z)p(z)−1, if x ≤ uλ(z)
λxq(z)−1 + f(z, x) + ϑxp(z)−1, if uλ(z) < x.

(63)

We define K̂λ(z, x) =
∫ x

0 k̂λ(z, s)ds and introduce the C1-functional τ̂λ : W
1,p(z)
0 (Ω) → R defined by

τ̂λ(u) =
∫
Ω

1
p(z) |Du|p(z)

dz +
∫
Ω

ϑ + ξ(z)
p(z) |u|p(z)

dz −
∫
Ω

K̂λ(z, u)dz

for all u ∈ W
1,p(z)
0 (Ω).

From (62) and (63) it is clear that
τλ

⏐⏐⏐
[uλ,uη ]

= τ̂λ

⏐⏐⏐
[uλ,uη ]

.

On account of (61), we have that

u0 is a local C1
0 (Ω)-minimizer of τ̂λ,

⇒ u0 is a local W
1,p(z)
0 (Ω)-minimizer of τ̂λ. (64)

(see Gasinski and Papageorgiou [11, Proposition 3.3]).

Using (63), we can easily see that
Kτ̂λ

⊆ [uλ) ∩ int C+. (65)

Then from (63) and (65) we can infer that we may assume that Kτ̂λ
is finite or otherwise we already have

n infinity of positive smooth solutions all distinct from u0 and so, we are done. According to Theorem 5.7.6
f Papageorgiou, Rădulescu and Repovš [20, p. 449], we can find ρ ∈ (0, 1) small such that

τ̂λ(u0) < inf {τ̂λ(u) : ∥u − u0∥ = ρ} = m̂ρ. (66)

On account of hypothesis H3(ii) = H1(ii), for u ∈ int C+, we have

τ̂ (tu) → −∞ as t → +∞. (67)
λ
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Finally, from (63) it follows that

φ̂λ

⏐⏐⏐
[uλ)

= τ̂λ

⏐⏐⏐
[uλ)

+ η̂ with η̂ ∈ R,

⇒ τ̂λ(·) satisfies the C-condition (see Proposition 3.1). (68)

Then (66), (67), (68) permit the use of the mountain pass theorem. So, we can find û ∈ W
1,p(z)
0 (Ω) such

that
û ∈ Kτ̂λ

⊆ [uλ) ∩ int C+ and m̂ρ ≤ τ̂λ(û). (69)

From (69) and (63) we see that û ∈ Sλ ⊆ int C+, while from (69) and (66) we have that û ̸= u0. □

Finally, we show that the critical parameter value λ∗ is admissible, that is, λ∗ ∈ L.

roposition 3.12. If hypotheses H0, H1 hold, then λ∗ ∈ L.

roof. Let {λn}n≥1 ⊆ L such that λn ↑ λ∗ as n → ∞. From the proof of Proposition 3.3, we know that
e can find un ∈ Sλn ⊆ int C+ such that

φ̂λn(un) < 0 for all n ∈ N.

Also, we have
φ̂′

λn
(un) = 0, for all n ∈ N.

Then as in the proof of Proposition 3.1, we show that

{un}n≥1 ⊆ W
1,p(z)
0 (Ω) is bounded.

We may assume that

un
w→ u∗ in W

1,p(z)
0 (Ω) and un → u∗ in Lr(z)(Ω) as n → ∞. (70)

We have
⟨A(un), h⟩ +

∫
Ω

ξ(z)up(z)−1
n hdz = λn

∫
Ω

uq(z)−1
n hdz +

∫
Ω

f(z, un)hdz

or all h ∈ W
1,p(z)
0 (Ω), all n ∈ N.

Choosing h = un − u∗, passing to the limit as n → ∞ and using (70) and Proposition 2.3, we obtain

un → u∗ in W
1,p(z)
0 (Ω).

So, in the limit as n → ∞, we have

⟨A(u∗), h⟩ +
∫
Ω

ξ(z)up(z)−1
∗ hdz = λ∗

∫
Ω

u
q(z)−1
∗ hdz +

∫
Ω

f(z, u∗)hdz

or all h ∈ W
1,p(z)
0 (Ω).

We have

uλ1 ≤ un for all n ∈ N
(see the Remark after Proposition 3.7),

⇒ uλ1 ≤ u∗,

⇒ u∗ ∈ Sλ∗ ⊆ int C+ and so λ∗ ∈ L.

The proof is now complete. □
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According to this proposition, we have
L = (0, λ∗].

Summarizing, we can state the following bifurcation-type result describing in a precise way the set of the
ositive solutions of problem (Pλ) as the parameter λ > 0 varies.

Theorem 3.13. If hypotheses H0, H3 hold, then there exists λ∗ > 0 such that

(a) for all λ ∈ (0, λ∗), problem (Pλ) has at least two positive solutions

u0, û ∈ int C+, u0 ̸= û;

b) for λ = λ∗, problem (Pλ) has at least one positive solution

u∗ ∈ int C+;

(c) for λ > λ∗, problem (Pλ) has no positive solutions;
d) for every λ ∈ L = (0, λ∗], problem (Pλ) has a smallest positive solution u∗

λ ∈ int C+ and the map λ ↦→ u∗
λ

from L = (0, λ∗] into C+ \ {0} is increasing, that is,

0 < µ ≤ λ ∈ L ⇒ u∗
λ − u∗

µ ∈ C+ \ {0}.
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[5] A. Bahrouni, V.D. Rădulescu, D.D. Repovš, Double phase transonic flow problems with variable growth: nonlinear
patterns and stationary waves, Nonlinearity 32 (7) (2019) 2481–2495.
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[21] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Double-phase problems and a discontinuity property of the spectrum,
Proc. Amer. Math. Soc. 147 (7) (2019) 2899–2910.
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