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SOLUTIONS WITH SIGN INFORMATION

FOR NONLINEAR NONHOMOGENEOUS ELLIPTIC

EQUATIONS

Nikolaos S. Papageorgiou — Vicenţiu D. Rădulescu

Abstract. We consider a class of nonlinear, coercive elliptic equations

driven by a nonhomogeneous differential operator. Using variational meth-

ods together with truncation and comparison techniques, we show that the
problem has at least three nontrivial solutions, all with sign information.

In the special case of (p, 2)-equations, using tools from Morse theory, we

show the existence of four nontrivial solutions, all with sign information.
Finally, for a special class of parametric equations, we obtain multiplicity

theorems that substantially extend earlier results on the subject.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we

study the existence of multiple nontrivial solutions for the following nonlinear

Dirichlet problem:

(1.1) −div a(Du(z)) = f(z, u(z)) in Ω, u |∂Ω = 0.

The map a : RN → RN involved in the differential operator of (1.1) is strictly

monotone and satisfies certain other regularity conditions listed in hypotheses

H(a) below.
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Special cases of the differential operator in (1.1), are the p-Laplacian, the

(p, q)-Laplace operator (the sum of a p-Laplacian and of a q-Laplacian), and the

generalized p-mean curvature differential operator. It is important to notice that

the differential operator in (1.1) is not necessarily homogeneous. The reaction

term f(z, x) is a Carathéodory function (that is, for all x ∈ R, the mapping

z 7→ f(z, x) is measurable and for almost all z ∈ Ω, the map x 7→ f(z, x) is

continuous). Our hypotheses on the growth of f(z, · ) ensure that the energy

functional of the problem is coercive.

We prove a “three solutions theorem” providing sign information for all the

solutions produced. In the particular case where a(y) = ||y||p−2y + y with

2 ≤ p <∞ (the differential operator is the sum of a p-Laplacian and the Laplace

operator), we show that we can have four nontrivial solutions, all with sign

information (one positive, one negative, and two nodal (that is, sign changing)).

Multiplicity results for coercive elliptic problems were proved for semilinear

equations driven by the Laplace operator by Ambrosetti and Lupo [1], Am-

brosetti and Mancini [2], and Struwe [29], [30]. For equations driven by the

p-Laplacian, we refer to the works by Liu [19], Liu and Liu [20], and Papageor-

giou and Papageorgiou [24]. None of the aforementioned works produces nodal

solutions.

Our approach is variational and it is based on the critical point theory in

combination with suitable truncation and comparison techniques and Morse the-

ory. We show that problem (1.1) has at least three nontrivial smooth solutions,

one positive, one negative, and a third nodal. In the particular case when the

differential operator is the sum of a p-Laplacian (p ≥ 2) and a Laplacian, we

show that we can have a second nodal solution for a total of four nontrivial

smooth solutions, all with sign information. Finally, we show that for a special

case of parametric nonlinear equations driven by the p-Laplacian, our multiplic-

ity theorems lead to a substantial improvement of the results of Ambrosetti and

Lupo [1], Ambrosetti and Mancini [2], Struwe [29], [30], and Papageorgiou and

Papageorgiou [24].

2. Mathematical background and auxiliary results

Let X be a Banach space and X∗ be its topological dual. By 〈 · , · 〉 we

denote the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X), we say that

ϕ satisfies the “Palais–Smale” condition (the “PS-condition” for short), if the

following is true:

“Every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded and

ϕ′(xn)→ 0 in X∗ as n→∞, admits a strongly convergent subsequence”.

This compactness-type condition which compensates for the fact that the

ambient space X need not be locally compact, leads to a deformation theorem
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for the functional ϕ, from which we can derive the minimax theory of certain

critical values of ϕ. One such minimax theorem is the so-called “mountain pass

theorem”, which we recall here for future use. For details we refer to Gasinski

and Papageorgiou [13], Kristaly, Rădulescu and Varga [16], and Rădulescu [28].

Theorem 2.1. Assume that ϕ ∈ C1(X) satisfies the PS-condition, x0, x1 ∈
X, ||x1 − x0|| > ρ > 0,

max {ϕ(x0), ϕ(x1)} < inf {ϕ(x) : ||x− x0|| = ρ} = ηρ

and c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)), where Γ = {γ ∈ C([0, 1], X) : ϕ(0) = x0, ϕ(1) = x1}.

Then c ≥ ηρ and c is a critical value of ϕ.

The analysis of problem (1.1) will use the Sobolev space W 1,p
0 (Ω) and the

Banach space

C1
0 (Ω) = {u ∈ C1(Ω) : u = 0 on ∂Ω}.

The latter is an ordered Banach space with positive cone given by

C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
,

where n( · ) is the outward unit normal on ∂Ω.

Let ϑ ∈ C1(0,∞) and assume that

(2.1)

0 < ĉ ≤ tϑ
′
(t)

ϑ(t)
≤ c0 for all t > 0 and some c0, ĉ > 0;

c1t
p−1 ≤ ϑ(t) ≤ c2(1 + tp−1) for all t > 0

and some c1, c2 > 0, 1 < p <∞.

Our hypotheses on the map y 7→ a(y) are the following:

H(a) a(y) = a0(||y||)y for all y ∈ RN , with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t 7→ ta0(t) is strictly increasing in (0,∞), ta0(t)→ 0

as t→ 0+ and

lim
t→0+

ta
′

0(t)

a0(t)
= c > −1;

(ii) for every y ∈ RN \ {0}, we have

||∇a(y)|| ≤ c3
ϑ(||y||)
||y||

for some c3 > 0;

(iii) for every y ∈ RN \ {0}, we have

(∇a(y)ξ, ξ)RN ≥
ϑ(||y||)
||y||

||ξ||2 for all ξ ∈ RN ;



578 N.S. Papageorgiou — V.D. Rădulescu

(iv) if G0(t) =
∫ t

0
sa0(s) ds for all t > 0,then there exists τ ∈ (1, p] such

that t 7→ G0(t1/τ ) is convex in (0,+∞) and lim
t→0+

τG0(t)/tτ = c̃ > 0.

Remark 2.2. The above assumptions show that the functionG0( · ) is strictly

convex and strictly increasing. We set G(y) = G0(||y||) for all y ∈ RN . Then

G( · ) is convex, G(0) = 0 and

∇G(y) = G′0(||y||) y

||y||
= a0(||y||)y = a(y) for all y ∈ RN \ {0} .

Therefore G( · ) is the primitive of a( · ). The convexity of G( · ) and the fact that

G(0) = 0 imply that

(2.2) G(y) ≤ (a(y), y)RN for all y ∈ RN .

Using hypotheses H(a) and (2.1), (2.2), we deduce the following lemma sum-

marizing the properties of a( · ).

Lemma 2.3. Assume that hypotheses H(a) hold. Then the following proper-

ties hold:

(a) the operator y 7→ a(y) is maximal monotone and strictly monotone;

(b) ||a(y)|| ≤ c4(1 + ||y||p−1) for all y ∈ RN and some c4 > 0;

(c) (a(y), y)RN ≥ c1||y||p/(p− 1) for all y ∈ RN .

Using this lemma and the integral form of the mean value theorem, we obtain

the following growth conditions for the primitive G( · ).

Corollary 2.4. Assume that hypotheses H(a) hold. Then

c1
p(p− 1)

||y||p ≤ G(y) ≤ c5(1 + ||y||p) for all y ∈ RN and some c5 > 0.

Examples 2.5. The following maps satisfy hypotheses H(a):

(a) a(y) = ||y||p−2y with 1 < p < ∞. Then the corresponding differential

operator is the p-Laplacian ∆pu = div (||Du||p−2Du) for all u ∈ W 1,p
0 (Ω). This

quasilinear operator arises in many applications such as non-Newtonian fluid

flows and turbulent filtration in porous media.

(b) a(y) = ||y||p−2y + µ||y||q−2y with 1 < q < p, p ≥ 2 and µ ≥ 0. Then the

corresponding differential operator is the (p, q)-differential operator

u 7→ ∆pu+ µ∆qu for all u ∈W 1,p
0 (Ω).

Equations driven by such differential operators are important in mathemati-

cal physics. We refer to Benci, D’Avenia, Fortunato and Pisani [5] (existence of

solitons for problems of quantum physics) and Cherfils and Ilyasov [7] (problems

in plasma physics). Recently, multiplicity results for resonant equations of this

type were proved by Papageorgiou and Rădulescu [25].
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(c) a(y) = (1 + ||y||2)(p−2)/2y with 1 < p < ∞. Then the corresponding

differential operator is the generalized p-mean curvature differential operator

u 7→ div ((1 + ||Du||2)(p−2)/2Du) for all u ∈W 1,p
0 (Ω).

(d) a(y) = ||y||p−2y + ||y||p−2y/(1 + ||y||p) with 1 < p <∞.

Let A : W 1,p
0 (Ω)→W−1,p′(Ω) = W 1,p

0 (Ω)∗ (1/p+ 1/p
′

= 1) be the nonlinear

map defined by

(2.3) 〈A(u), y〉 =

∫
Ω

(a(Du(z)), Dy(z))RN dz for all u, y ∈W 1,p
0 (Ω).

According to Gasinski and Papageorgiou [14], we have:

Proposition 2.6. Assume that hypotheses H(a) hold. Then the operator

A : W 1,p
0 (Ω) → W−1,p′(Ω) defined by (2.3) is bounded (that is, maps bounded

sets to bounded sets), continuous, maximal monotone, and of type (S)+, that is,

if un
w−→ u in W 1,p

0 (Ω) and lim
n→∞

〈A(un), un−u〉 ≤ 0, then un → u in W 1,p
0 (Ω).

Let f0 : Ω × R → R be a Carathéodory function with subcritical growth in

the x ∈ R variable, that is,

|f0(z, x)| ≤ a(z)(1 + |x|r−1) for a.a. z ∈ Ω and all x ∈ R,

with a ∈ L∞(Ω)+ and

1 < r < p∗ =


Np

N − p
if p < N,

+∞ if p ≥ N.

We set F0(z, x) =
∫ x

0
f0(z, s) ds and consider the C1-functional ϕ0 : W 1,p

0 (Ω)

→ R defined by

ϕ0(u) =

∫
Ω

G(Du(z)) dz −
∫

Ω

F0(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

The next result is concerned with C1
0 (Ω) and W 1,p

0 (Ω) local minimizers of

ϕ0. The first such property was proved by Brezis and Nirenberg [6] when G(y) =

||y||2/2 and it was extended by Garcia Azorero, Manfredi and Peral Alonso [12]

to the case G(y) = ||y||p/p, 1 < p <∞ (see also Guo and Zhang [15] where 2 ≤
p < ∞). The following result can be found in Gasinski and Papageorgiou [14].

In the sequel we denote by || · || the norm in the Sobolev space W 1,p
0 (Ω). By

virtue of the Poincaré inequality, ||u|| = ||Du||p for all u ∈W 1,p
0 (Ω).

Proposition 2.7. Let hypotheses H(a)(i)–(iii) hold and u0 ∈ W 1,p
0 (Ω) is

a local C1
0 (Ω)-minimizer of ϕ0, that is, there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1
0 (Ω) with ||h||C1

0 (Ω) ≤ ρ0.
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Then u0 ∈ C1,β
0 (Ω) with β ∈ (0, 1) and u0 is a local W 1,p

0 (Ω)-minimizer of ϕ0,

that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p
0 (Ω) with ||h|| ≤ ρ1.

For h1, h2 ∈ L∞(Ω), we write h1 ≺ h2 if for every compact set K ⊆ Ω there

exists ε = ε(K) > 0 such that

h1(z) + ε ≤ h2(z) for a.a. z ∈ K.

Evidently, if h1, h2 ∈ C(Ω) and h1(z) < h2(z) for all z ∈ Ω, then h1 ≺ h2.

From Papageorgiou and Rădulescu [25], we recall the following strong com-

parison principle (see also Arcoya and Ruiz [3, Proposition 2.6]).

Proposition 2.8. Assume ξ ≥ 0, h1, h2 ∈ L∞(Ω), h1 ≺ h2, and u1, u2 ∈
C1

0 (Ω) with u2 ∈ intC+ are solutions of

−∆pu1(z)−∆u1(z) + ξ |u1(z)|p−2u1(z) = h1(z) in Ω,

−∆pu2(z)−∆u2(z) + ξ u2(z)p−1 = h2(z) in Ω.

Then u2 − u1 ∈ intC+.

Next, for q ∈ (1,∞), we recall some basic facts concerning the spectrum of

(−∆q,W
1,q
0 (Ω)). So, we consider the following nonlinear eigenvalue problem

−∆qu(z) = λ̂|u(z)|q−2u(z) in Ω, u|∂Ω = 0.

A number λ̂ ∈ R is an eigenvalue of (−∆q,W
1,q
0 (Ω)) if the above equation admits

a nontrivial solution û ∈ W 1,q
0 (Ω), which is an eigenfunction corresponding to

the eigenvalue λ̂. We know that (−∆q,W
1,q
0 (Ω)) admits a smallest eigenvalue

λ̂1(q), which has the following properties:

(i) λ̂1(q) > 0;

(ii) λ̂1(q) is isolated, that is there exists ε > 0 such that [λ̂1(q), λ̂1(q) + ε)

does not contain any other eigenvalue of (−∆q,W
1,q
0 (Ω));

(iii) λ̂1(q) is simple, that is, if u, v are eigenfunctions corresponding to the

eigenvalue λ̂1(q) > 0, then u = ξv for some ξ 6= 0;

(iv) λ̂1(q) admits the following variational characterization

(2.4) λ̂1(q) = inf

{ ||Du||qq
||u||qq

: u ∈W 1,q
0 (Ω), u 6= 0

}
.

In relation (2.4) the infimum is attained on the one-dimensional eigenspace

of λ̂1(q). It is clear from (2.4) that the elements of this eigenspace do not

change sign. By û1(q) we denote the Lq-normalized (that is, ||û1(q)||q = 1)

positive eigenfunction corresponding to λ̂1(q). In fact, λ̂1(q) > 0 is the only

eigenvalue with eigenfunctions of constant sign. All the other eigenvalues have

nodal eigenfunctions. The nonlinear regularity theory (see for example, Gasinski
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and Papageorgiou [13, pp. 737–738]) implies that û1(q) ∈ C+\{0}. The nonlinear

maximum principle of Vazquez [31] implies that û1(q) ∈ intC+.

Let σ̂(q) denote the spectrum (i.e. the set of eigenvalues) of (−∆q,W
1,q
0 (Ω)).

We can easily check that σ̂(q) is closed. Since σ̂(q) is closed and λ̂1(q) > 0 is

isolated, the second eigenvalue λ̂2(q) of (−∆q,W
1,q
0 (Ω)) is well defined by

λ̂2(q) = inf{λ̂ ∈ σ̂(q) : λ̂ > λ̂1(q)}.

The Lusternik–Schnirelmann minimax scheme gives a whole sequence {λ̂k(q)}k≥1

of distinct eigenvalues such that λ̂k(q) → +∞ as k → +∞. If p = 2 or N = 1

these are all the elements of σ̂(q). Otherwise we do not know if this is the

complete list of eigenvalues.

The Lusternik–Schnirelmann scheme provides a minimax characterization of

λ̂2(q). For our purposes, this characterization is not convenient. Instead we will

use an alternative one due to Cuesta, de Figueiredo and Gossez [8]. So, let

∂BL
q

1 = {u ∈ Lq(Ω) : ||u||q = 1}, M = W 1,q
0 (Ω) ∩ ∂BL

q

1

Γ̂ = {γ̂ ∈ C([−1, 1],M) : γ̂(−1) = −û1(q), γ̂(1) = û1(q)}.

Proposition 2.9. We have λ̂2(q) = inf
λ̂∈Γ̂

max
−1≤t≤1

||Dγ̂(t)||qq.

As we already mentioned, in the particular case of (p, 2)-equations, using also

tools from Morse theory (critical groups), we will be able to generate two nodal

solutions, for a total of four nontrivial solutions. So, let us briefly recall some

basic relevant definitions and facts from Morse theory.

Let X be a Banach space and Y2 ⊆ Y1 ⊆ X. For any integer k ≥ 0, we denote

by Hk(Y1, Y2) the kth relative singular homology group for the pair (Y1, Y2) with

integer coefficients. Recall that Hk(Y1, Y2) = 0 for all integers k < 0.

Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc = {x ∈ X : ϕ(x) ≤ c},

Kϕ = {x ∈ X : ϕ′(x) = 0}, Kc
ϕ = {x ∈ Kϕ : ϕ(x) = c}.

The critical groups of ϕ at an isolated critical point x0 ∈ X with ϕ(x0) = c (that

is, x0 ∈ Kc
ϕ) are defined by

Ck(ϕ, x0) = Hk(ϕc ∩ U,ϕc ∩ U \ {x0}) for all k ≥ 0,

where U is a neighbourhood of x0 such that ϕc ∩Kϕ ∩ U = {x0}. The excision

property of singular homology theory implies that the above definition of critical

groups is independent of the particular choice of the neighbourhood U .

Suppose that ϕ ∈ C1(X) satisfies the PS-condition and inf ϕ(Kϕ) > −∞.

Let c < inf ϕ(Kϕ). Then the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0.
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The second deformation theorem (see, for example, Gasinski and Papageor-

giou [14, p. 628]) implies that the above definition of critical groups at infinity

is independent of the choice of the level c < inf ϕ(Kϕ).

Assume that Kϕ is finite. We introduce the following polynomials in t ∈ R:

M(t, x) =
∑
k≥0

rankCk(ϕ, x)tk, P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk.

Then the Morse relation says that

(2.5)
∑
x∈Kϕ

M(t, x) = P (t,∞) + (1 + t)Q(t),

where Q(t) =
∑
K≥0

βkt
k is a formal series with nonnegative integer coefficients βk.

For every x ∈ R, we set x± = max{±x, 0}. Then for u ∈ W 1,p
0 (Ω) we define

u±( · ) = u( · )±. We know that

u = u+ − u−, |u| = u+ + u− and u± ∈W 1,p
0 (Ω).

Given a measurable function h : Ω × R → R (for example, a Carathéodory

function), we define

Nh(u)( · ) = h( · , u( · )) for all u ∈W 1,p
0 (Ω).

Recall that || · || denotes the norm of the Sobolev space W 1,p
0 (Ω), hence

||u|| = ||Du||p for all u ∈ W 1,p
0 (Ω). The same notation will also be used to

denote the norm of RN . However, no confusion is possible, since it will always

be clear from the context what norm we mean. Finally, we denote by | · |N the

Lebesgue measure on RN .

3. Three Nontrivial Solutions

In this section we prove the existence of three nontrivial solutions for problem

(1.1) and provide sign information for all of them.

We assume that the reaction term f(z, x) is a Carathéodory function f : Ω×
R → R such that f(z, 0) = 0 for almost all z ∈ Ω and the following hypotheses

are fulfilled:

(H1) (i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that |f(z, x)| ≤
aρ(z) for almost all z ∈ Ω and all |x| ≤ ρ;

(ii) lim
x→±∞

f(z, x)/|x|p−2x = −∞ uniformly for almost all z ∈ Ω;

(iii) if τ ∈ (1, p] and c̃ > 0 are as in hypothesis H(a)(iv), then there exist

δ0 > 0 and c6 > c̃λ̂1(τ) such that f(z, x)x ≥ c6|x|τ for almost all

z ∈ Ω and all|x| ≤ δ0.

Remark 3.1. Note that the growth restriction on f(z, · ) (see (H1)(i)) is

only local. In fact, the only growth restriction on f(z, · ) is hypothesis (H1)(ii)

and the growth to −∞ as x → +∞ and to +∞ as x → −∞ can be arbitrary.
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When τ < p, hypothesis (H1)(iii) reveals the presence of a concave term near

zero.

Example 3.2. The following function satisfies hypotheses (H1) (for the sake

of simplicity, we drop the z-dependence):

f(x) = |x|τ−2x− |x|r−2x with 1 < τ ≤ p < r <∞.

First, we produce two nontrivial constant sign smooth solutions. To this end,

note that we can find M1 > δ0 (see hypothesis (H1)(iii)) such that

f(z, x)x ≤ −1 < 0 for a.a. z ∈ Ω and all |x| ≥M1.

Let ξ > M1. Then

0 = A(ξ) ≥ Nf (ξ) in W−1,p′(Ω),

0 = A(−ξ) ≤ Nf (−ξ) in W−1,p′(Ω).

We define the following order intervals in the Sobolev space W 1,p
0 (Ω):

[0, ξ] = {u ∈W 1,p
0 (Ω) : 0 ≤ u(z) ≤ ξ for a.a. z ∈ Ω},

[−ξ, 0] = {u ∈W 1,p
0 (Ω) : −ξ ≤ u(z) ≤ 0 for a.a. z ∈ Ω}.

We introduce the following truncations of the reaction f(z, · ):

k+(z, x) =


0 if x < 0,

f(z, x) if 0 ≤ x ≤ ξ,
f(z, ξ) if ξ < x,

(3.1)

k−(z, x) =


f(z,−ξ) if x < −ξ,
f(z, x) if − ξ ≤ x ≤ 0,

0 if 0 < x.

(3.2)

Both k+ and k− are Carathéodory functions. We set

K±(z, x) =

∫ x

0

k±(z, s) ds

and consider the C1-functions ψ± : W 1,p
0 (Ω)→ R defined by

ψ±(u) =

∫
Ω

G(Du(z)) dz −
∫

Ω

K±(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

Let ϕ : W 1,p
0 (Ω)→ R be the energy functional for problem (1.1) defined by

ϕ(u) =

∫
Ω

G(Du(z)) dz −
∫

Ω

F (z, u(z)) dz for all u ∈W 1,p
0 (Ω),

where F (z, x) =
∫ x

0
f(z, s) ds.
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Proposition 3.3. Assume that hypotheses H(a) and (H1) hold. Then prob-

lem (1.1) has at least two nontrivial solutions of constant sign u0 ∈ [0, ξ]∩ intC+

and v0 ∈ [−ξ, 0] ∩ (−intC+).

Proof. First we produce the nontrivial positive solution. To this end, we

consider the functional ψ+. It is clear from (3.1)–(3.2) that ψ+ is coercive. Also,

using the Sobolev embedding theorem, we see that ψ+ is sequentially weakly

lower semi-continuous. So, by the Weierstrass theorem, we can find u0 ∈W 1,p
0 (Ω)

such that

(3.3) ψ+(u0) = inf[ψ+(u) : u ∈W 1,p
0 (Ω)].

Fix ε > 0. By virtue of hypothesis H(a)(iv), there exists δ = δ(ε) ≤ δ0 (see

hypothesis (H1)(iii)) such that

G0(t) ≤ c̃+ ε

τ
tτ for all t ∈ [0, δ].

Therefore

(3.4) G(y) ≤ c̃+ ε

τ
||y||τ for all ||y|| ≤ δ, y ∈ RN .

Let t ∈ (0, 1) be small such that tû1(τ)(z), t||Dû1(τ)(z)|| ≤ δ for all z ∈ Ω

(recall that û1(τ) ∈ intC+). Then

ψ+(tû1(τ)) =

∫
Ω

G(tDû1(τ)) dz −
∫

Ω

K+(z, tû1(τ)) dz(3.5)

≤ c̃+ ε

τ
tτ ||Dû1||ττ −

∫
Ω

F (z, tû1(τ)) dz

(see (3.4) and recall that δ ≤ δ0 < ξ)

≤ c̃+ ε

τ
tτ λ̂1(τ)− c6

τ
tτ

(see (2.4), hypothesis (H1)(iii) and recall that ||û1(τ)||τ = 1)

=
tτ

τ
[(c̃+ ε)λ̂1(τ)− c6].

Since c6 > c̃λ̂1(τ) (see hypothesis (H1)(iii)), by choosing ε ∈ (0, 1) small, from

(3.5) we infer that

ψ+(tû1(τ)) < 0⇒ ψ+(u0) < 0 = ψ+(0)

(see (3.3)), hence u0 6= 0. Relation (3.3) yields

ψ′+(u0) = 0⇒ A(u0) = Nk+(u0).(3.6)

On (3.6) first we act with −u−0 ∈W
1,p
0 (Ω) and obtain

c1
p− 1

||Du−0 ||pp ≤ 0
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(see Lemma 2.3(c) and (3.1)–(3.2)), hence u0 ≥ 0, u0 6= 0.

Next, we act on (3.6) with (u0 − ξ)+ ∈ W 1,p
0 (Ω). Thus, by (3.1)–(3.2)

and (3.2),

〈A(u0), (u0 − ξ)+〉 =

∫
Ω

k+(z, u0)(u0 − ξ)+ dz =

∫
Ω

f(z, ξ)(u0 − ξ)+ dz ≤ 0.

It follows that∫
{u0>ξ}

(a(Du0), Du0)RN dz ≤ 0⇒ |{u0 > ξ}|N = 0,

hence u0 ≤ ξ. So, we have proved that u0 ∈ [0, ξ]. Relation (3.6) becomes

(3.7) A(u0) = Nf (u0)⇒ −div a(Du0(z)) = f(z, u0(z)) a.e. in Ω, u0|∂Ω = 0

(see (3.1)–(3.2)).

From Ladyzhenskaya and Ural’tseva [17, p. 286], we have u0 ∈ L∞(Ω). Then,

using the regularity results of Lieberman [18, p. 320], we deduce that u0 ∈
C+ \ {0}. Since u0 ∈ [0, ξ], using hypotheses (H1)(i), (iii), for r ∈ (p, p∗) we can

find c7 = c7(r, ξ) > 0 such that

f(z, x)x ≥ c6|x|τ − c7|x|r for a.a. z ∈ Ω and all |x| ≤ ξ.

Therefore from (3.7) and since u0 ∈ C+ \ {0}, we have

−div a(Du0(z)) + c7u0(z)r−1 = f(z, u0(z)) + c6u0(z)τ−1 ≥ c6u0(z)τ−1 ≥ 0

almost everywhere in Ω. It follows that

div a(Du0(z)) ≤ c7||u0||r−p∞ u0(z)p−1 a.e. in Ω.

The nonlinear strong maximum principle of Pucci and Serrin [27, p. 111]

implies that u0(z) > 0 for all z ∈ Ω. Thus, by the boundary point theorem of

Pucci and Serrin [27, p. 120] we conclude that u0 ∈ intC+. Similarly, working

this time with the functional ψ−, we produce a second nontrivial constant sign

solution v0 ∈ [−ξ, 0] ∩ (−intC+). �

If we strengthen a little the conditions on the reaction term f(z, · ), we can

say more about the two constant sign smooth solutions produced in Propo-

sition 3.3. The new stronger hypotheses on the nonlinearity f(z, x) are the

following:

(H2) f : Ω×R→ R is a Carathéodory function such that f(z, 0) = 0 for almost

all z ∈ Ω, hypotheses (H2)(i)–(iii) are the same as the corresponding

hypotheses (H1)(i)–(iii), and

(iv) for every ρ > 0, there exists ξρ > 0 such that for almost all z ∈ Ω

the function x 7→ f(z, x) + ξρ|x|p−2x is nondecreasing on [−ρ, ρ].
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Proposition 3.4. Assume that hypotheses H(a) and (H2) hold. Then prob-

lem (1.1) has at least two nontrivial solutions of constant sign u0 ∈ [0, ξ]∩ intC+

and v0 ∈ [−ξ, 0]∩ (intC+). Moreover, both u0 and v0 are local minimizers of the

energy functional ϕ.

Proof. By virtue of Proposition 3.3, we already have two nontrivial constant

sign solutions u0 ∈ [0, ξ] ∩ intC+ and v0 ∈ [−ξ, 0] ∩ (−int C+).

Hypothesis (H2)(iv) implies that we can find ξ̂ > 0 such that for almost all

z ∈ Ω, the function x 7→ f(z, x) + ξ̂|x|p−2x is nondecreasing on [−ξ, ξ].
Let δ > 0 and set uδ(z) = u0(z) + δ for all z ∈ Ω. Then uδ ∈ C1(Ω) and

−div a(Duδ(z)) + ξ̂uδ(z)
p−1 ≤ −diva(Du0(z)) + ξ̂u0(z)p−1 + γ(δ)

with γ(δ)→ 0+ as δ → 0+

= f(z, u0(z)) + ξ̂u0(z)p−1 + γ(δ) ≤ f(z, ξ) + ξ̂ξp−1 + γ(δ)

(since u0 ∈ [0, ξ])

≤ ξ̂ξp−1

for δ > 0 small (recall that f(z, ξ) ≤ −1/ξ for almost all z ∈ Ω)

= − div a(Dξ) + ξ̂ξp
−1

almost everywhere in Ω.

Thus, uδ(z) ≤ ξ for all z ∈ Ω (by the the weak comparison principle). Hence

we conclude that u0(z) < ξ for all z ∈ Ω. Since u0 ∈ int C+, it follows that

u0 ∈ intC1
0 (Ω)[0, ξ].

Notice that ψ+|[0,ξ] = ϕ|[0,ξ]. So, it follows that u0 is a local C1
0 (Ω)-minimizer

of ϕ. Invoking Proposition 2.7 it follows that u0 is a local W 1,p
0 (Ω)-minimizer

of ϕ−. Similarly, for v0 ∈ [−ξ, 0]∩(−int C+), using this time the functional ψ. �

In fact, we can produce extremal nontrivial constant sign solutions for prob-

lem (1.1), that is, the smallest nontrivial positive solution and the biggest non-

trivial negative solution. We follow the reasoning on Papageorgiou and Rădu-

lescu [25].

From the proof of Proposition 3.3, we know that

(3.8) f(z, x)x ≥ c6|x|τ − c7|x|r for a.a. z ∈ Ω and all |x| ≤ ξ.

This growth estimate leads to the following auxiliary Dirichlet problem:

(3.9) −div a(Du(z)) = c6|u(z)|τ−2u(z)− c7|u(z)|r−2u(z) in Ω, u|∂Ω = 0.
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Proposition 3.5. Assume that hypotheses H(a) hold. Then problem (3.9)

has a unique nontrivial positive solution ũ ∈ intC+ and since problem (3.9) is

odd, ṽ = −ũ ∈ −intC+ is the unique nontrivial negative solution of (3.9).

Proof. First we establish the existence of a nontrivial positive solution for

problem (3.9). To this end, let σ+ : W 1,p
0 (Ω)→ R be the C1-functional defined by

σ+(u) =

∫
Ω

G(Du(z))dz − c6
τ
||u+||ττ +

c7
r
||u+||r for all u ∈W 1,p

0 (Ω).

Since r > p ≥ τ , from Corollary 2.4 we deduce that σ+( · ) is coercive and

sequentially weakly lower semi-continuous. Thus, we can find ũ ∈W 1,p
0 (Ω) such

that

(3.10) σ+(ũ) = inf {σ+(u) : u ∈W 1,p
0 (Ω)}.

As before (see the proof of Proposition 3.3), we choose t ∈ (0, 1) small such that

tû1(τ)(z), t||Dû1(τ)(z)|| ≤ δ for all z ∈ Ω

with δ ∈ (0, δ0] as in (3.4). Then we have

σ+(tû1(τ)) ≤ c̃+ ε

τ
tτ λ̂1(τ)− c6

τ
tτ +

c7
r
tr||û1(τ)||rr(3.11)

=
tτ

τ
[(c̃+ ε)λ̂1(τ)− c6] +

c7
r
tr||û1(τ)||rr.

Since c6 > c̃λ̂1(τ), by choosing ε ∈ (0, 1) small and since r > τ , by choosing

t ∈ (0, 1) even smaller if necessary, from (3.11) we see that σ+(tû1(τ)) < 0.

Taking into account (3.10) and since σ+(0) = 0, we deduce that ũ 6= 0.

From (3.11) we have

(3.12) σ′+(ũ) = 0⇒ A(ũ) = c6(ũ+)τ−1 − c7(ũ+)r−1.

On (3.12) we act with −ũ− ∈W 1,p
0 (Ω). Then using Lemma 2.3(c), we have

c1
p− 1

||Dũ−||pp ≤ 0,

hence ũ ≥ 0, ũ 6= 0. Then relation (3.12) becomes

A(ũ) = c6ũ
τ−1 − c7ũr−1

⇒ −div a(Dũ(z)) = c6ũ(z)τ−1 − c7ũ(z)r−1 a.e. in Ω, ũ|∂Ω = 0.

As before, the nonlinear regularity theory (see [17], [18]), implies that ũ ∈
C+\{0}. We have

div a(Dũ(z)) ≤ c7||ũ||r−p∞ ũ(z)p−1 a.e. in Ω⇒ ũ ∈ intC+

(see Pucci and Serrin [27, pp. 111, 120]).
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Now we show the uniqueness of this positive solution. To this end, we intro-

duce the integral functional γ+ : L1(Ω)→ R = R ∪ {+∞} defined by

(3.13) γ+(u) =


∫

Ω

G(Du1/τ ) dt if u ≥ 0, u1/τ ∈W 1,p
0 (Ω),

+∞ otherwise.

Let u1, u2 ∈ dom γ+ and set v1 = u
1/τ
1 , v2 = u

1/τ
2 . We have v1, v2 ∈W 1,p

0 (Ω),

see (3.13). We set

v = (tu1 + (1− t)u2)1/τ with t ∈ [0, 1].

Invoking Lemma 1 of Diaz and Saa [9], we have

||Dv(z)|| ≤ (t||Dv1(z)||τ + (1− t)||Dv2(z)||τ )1/τ for a.a. z ∈ Ω.

Since G0 is increasing, we have

G0(||Dv(z)||) ≤ G0((t||Dv1(z)||τ + (1− t)||Dv2(z)||τ )1/τ ) for a.a. z ∈ Ω.

From hypothesis H(a)(iv), we know that t 7→ G0(t1/τ ) is convex in (0,+∞).

It follows that

G0((t||Dv1(z)||τ + (1− t)||Dv2(z)||τ )1/τ )

≤ t G0(||Dv1(z))||+ (1− t)G0(||Dv2(z)||) a.e. in Ω

⇒G(Dv(z)) ≤ t G(Dv1(z)) + (1− t)G(Dv2(z)) a.e. in Ω

⇒ γ+ is convex.

Also, by Fatou’s lemma, we see that γ+ is lower semi-continuous.

Let u ∈ W 1,p
0 (Ω) be a nontrivial positive solution of problem (3.9). From

the first part of the proof we know that u exists and u ∈ intC+. We have

uτ ≥ 0, (uτ )1/τ = u ∈ W 1,p
0 (Ω). Hence uτ ∈ dom γ+. Let h ∈ C1

0 (Ω). Then for

t ∈ (−1, 1) with |t| small, we have uτ + th ∈ intC+ and so uτ + th ∈ dom γ+.

Therefore, the Gâteaux derivative of γ+ at uτ in the direction h exists and by

the chain rule,

(3.14) γ′+(uτ )(h) =
1

τ

∫
Ω

−div a(Du)

uτ−1
h dz.

If v ∈W 1,p
0 (Ω) is another nontrivial positive solution of (3.9), then as above we

have v ∈ intC+ and

(3.15) γ′+(vτ )(h) =
1

τ

∫
Ω

−div a(Dv)

vτ−1
h dz.

The convexity of γ+ implies the monotonicity of γ′+. Hence

0 ≤ 1

τ

∫
Ω

(
−div a(Du)

uτ−1
+

div a(Dv)

vτ−1

)
(uτ − vτ ) dz

=
c7
τ

∫
Ω

(vr−τ − ur−τ )(uτ − vτ ) dz ≤ 0,
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hence u = v. It follows that ũ ∈ intC+ is the unique nontrivial positive solution

of (3.9). Since (3.9) is odd, ṽ = −ũ ∈ −intC+ is the unique nontrivial negative

solution of (3.9). �

Using the solutions produced in Proposition 3.5, we can generate extremal

constant sign solutions of problem (1.1).

Proposition 3.6. Assume that hypotheses H(a) and (H1) hold. Then prob-

lem (1.1) has a smallest nontrivial positive solution u∗ ∈ intC+ and a biggest

nontrivial negative solution v∗ ∈ −intC+.

Proof. First we produce u∗ ∈ intC+, the smallest nontrivial positive solu-

tion of (1.1). Let S+ be the set of nontrivial positive solutions of (1.1) in the

order interval [0, ξ]. From Proposition 3.3 and its proof we have S+ 6= Ø and

S+ ⊆ [0, ξ] ∩ intC+. Moreover, as in Filippakis, Kristaly & Papageorgiou [11],

we have that S+ is downward directed, that is, if u1, u2 ∈ S+, then we can find

u ∈ S+ such that u ≤ u1, u ≤ u2.

Claim 1. ũ ≤ u for all u ∈ S+.

Let u ∈ S+ and let

(3.16) η+(z, x) =


0 if x < 0,

c6x
τ−1 − c7xr−1 if 0 ≤ x ≤ u(z),

c6(z)τ−1 − c7u(z)r−1 if u(z) < x.

Then η+ is a Carathéodory function. We set H+(z, x) =
∫ x

0
η+(z, s) ds and

consider the C1-functional β+ : W 1,p
0 (Ω)→ R defined by

β+(y) =

∫
Ω

G(Dy(z)) dz −
∫

Ω

H+(z, y(z)) dz for all y ∈W 1,p
0 (Ω).

It is clear from (3.16) and Corollary 2.4 that β+ is coercive. Also, it is sequentially

weakly lower semi-continuous. So, we can find ũ0 ∈W 1,p
0 (Ω) such that

(3.17) β+(ũ0) = inf {β+(u) : u ∈W 1,p
0 (Ω)}.

As before, via hypothesis H(a)(iv), we show that β+(ũ0) < 0 = β+(0), hence

ũ0 6= 0.

From (3.17) we have

(3.18) β′+(ũ0) = 0⇒ A(ũ0) = Nη+(ũ0).

Acting on (3.18) with −ũ−0 , (ũ0 − u)+ ∈W 1,p
0 (Ω), we show that

ũ0 ∈ [0, u] = {y ∈W 1,p
0 (Ω) : 0 ≤ y(z) ≤ u(z) a.e. in Ω}.
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Therefore (3.18) becomes

A(ũ0) = c6ũ
τ−1
0 − c7ũr−1

0 ⇒ ũ0 is a positive solution of (3.9)

⇒ ũ0 = ũ (see Proposition 3.5)

⇒ ũ ≤ u for all u ∈ S+.

This proves Claim 1.

Let C ⊆ S+ be a chain (that is, a totally ordered subset of S+). From

Dunford & Schwartz [10, p. 336], we know we can find {un}n≥1 ⊆ C such that

inf C = inf
n≥1

un.

We have

(3.19) A(un) = Nf (un), ũ ≤ un ≤ ξ for all n ≥ 1

(see the Claim 1). Evidently, {un}n≥1 ⊆ W 1,p
0 (Ω) is bounded. So, we may

assume that

(3.20) un
w−→ u in W 1,p

0 (Ω) and un → u in Lρ(Ω).

We act with un − u ∈ W 1,p
0 (Ω), pass to the limit as n→∞, and use (3.20).

We obtain

(3.21) lim
n→∞

〈A(un), un − u〉 = 0⇒ un → u in W 1,p
0 (Ω)

(see Proposition 2.6). So, if we pass to the limit in (3.19) as n → ∞ and use

(3.21), we deduce that

A(u) = Nf (u), ũ ≤ u ≤ ξ ⇒ u ∈ S+ and u = inf C.

Since C is an arbitrary chain, from the Kuratowski–Zorn lemma we can

find u∗ ∈ S+ ⊆ int C+ a minimal element. The fact that S+ is downward

directed implies that u∗ ∈ intC+ is the smallest nontrivial positive solution of

problem (1.1).

Similarly, let S− be the set of nontrivial negative solutions of (1.1) in [−ξ, 0].

We have that S− 6= ∅ and S− ⊆ −intC+. Also, S− is upward directed (that is,

if v1, v2 ∈ S− then there exists v ∈ S− such that v1 ≤ v, v2 ≤ v). The previous

argument based on the Kuratowski–Zorn lemma leads to the biggest nontrivial

negative solution v∗ ∈ −intC+ of problem (1.1). �

The extremal nontrivial constant sign solutions of (1.1) lead to the existence

of a nodal solution. For this purpose we need to slightly strengthen hypothe-

ses (H1). The new conditions on f(z, x) are the following:

(H′1) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for al-

most all z ∈ Ω, hypotheses (H′1)(i), (ii) are the same as the corresponding

hypotheses (H1)(i), (ii) and



Solutions for Nonlinear Nonhomogeneous Elliptic Equations 591

(iii) if τ ∈ (1, p] and c̃ > 0 are as in hypothesis H(a)(iv), then there are

δ0 > 0 and c6 > c̃λ̂2(τ) such that

f(z, x)x ≥ c6|x|τ for a.a. z ∈ Ω and all |x| ≤ δ0.

Proposition 3.7. Assume that hypotheses H(a) and (H′1) hold. Then prob-

lem (1.1) admits a nodal solution y0 ∈ [v∗, u∗] ∩ C1
0 (Ω).

Proof. Let u∗ ∈ intC+ and v∗ ∈ −intC+ be the two extremal constant

sign solutions of (1.1) produced in Proposition 3.6. We introduce the following

truncation of f(z, · ):

(3.22) h(z, x) =


f(z, v∗(z)) if x < v∗(z),

f(z, x) if v∗(z) ≤ x ≤ u∗(z),
f(z, u∗(z)) if u∗(z) < x.

Set h±(z, x) = h(z,±x±). Both are Carathéodory functions. We also define

H(z, x) =

∫ x

0

h(z, s) ds and H±(z, x) =

∫ x

0

h±(z, s) ds

and introduce the C1-functionals ϕ̂, ϕ̂± : W 1,p
0 (Ω)→ R defined by

ϕ̂(u) =

∫
Ω

G(Du(z)) dz −
∫

Ω

H(z, u(z)) dz,

ϕ̂±(u) =

∫
Ω

G(Du(z)) dz −
∫

Ω

H±(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

We can easily check as before that

(3.23) Kϕ̂ ⊆ [v∗, u∗], Kϕ̂+
= {0, u∗}, Kϕ̂− = {v∗, 0}

(recall the extremality of u∗ ∈ intC+ and v∗ ∈ −intC+). Note that ϕ̂+ is

coercive (see (3.22)) and sequentially weakly lower semi-continuous. So, there

exists û∗ ∈W 1,p
0 (Ω) such that

ϕ̂+(û∗) = inf {ϕ̂+(u) : u ∈W 1,p
0 (Ω)} < 0 = ϕ̂+(0) (as before, see H(a)(iv))

⇒ û∗ ∈ Kϕ̂+
\ {0},

hence û∗ = u∗ ∈ intC+, see (3.23).

Since ϕ̂|C+
= ϕ̂+|C+

, it follows that u∗ is a local C1
0 (Ω)-minimizer of ϕ̂.

Invoking Proposition 2.7, we infer that u∗ is a local W 1,p
0 (Ω)-minimizer of ϕ̂.

Similarly for v∗ ∈ −intC+.

Without any loss of generality, we may assume that ϕ̂(v∗) ≤ ϕ̂(u∗) (the

analysis is similar if the opposite inequality holds). Since u∗ ∈ intC+ is a local

minimizer of ϕ̂, we can find ρ ∈ (0, 1) small such that

(3.24) ϕ̂(v∗) ≤ ϕ̂(u∗) < inf {ϕ̂(u) : ||u− u∗|| = ρ} = η̂ρ , ||v∗ − u∗|| > ρ.
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Recall that ϕ̂ is coercive (see 3.22)), hence it satisfies the PS-condition. This

fact and (3.23) permit the use of Theorem 2.1 (the mountain pass theorem). So,

we can find y0 ∈W 1,p
0 (Ω) such that

ϕ̂′(y0) = 0 and η̂ρ ≤ ϕ̂(y0),(3.25)

ϕ̂(y0) = inf
γ∈Γ

max
0≤t≤1

ϕ̂(γ(t)),(3.26)

where Γ = {γ ∈ C([0, 1],W 1,p
0 (Ω)) : γ(0) = v∗, γ(1) = u∗}. Since y0 ∈ Kϕ̂ ⊆

[v∗, u∗], it follows from (3.22) that y0 is a solution of (1.1) and y0 ∈ C1
0 (Ω)

(nonlinear regularity, see [17], [18]). If we show that y0 is nontrivial, then the

extremality of u∗, v∗ and (3.25) imply that y0 is nodal. To show the nontriviality

of y0 we use (3.26). According to (3.26), in order to show that y0 is nonzero, it

suffices to produce a path γ∗ ∈ Γ such that ϕ̂|γ∗ < 0. To this end, let

M = W 1,τ
0 (Ω) ∩ ∂BL

τ

1 endowed with the relative W 1,p
0 (Ω)-topology,

Mc = M ∩ C1
0 (Ω) endowed with the relative C1

0 (Ω)-topology.

Recall that ∂BL
τ

1 = {u ∈ Lτ (Ω) : ||u||τ = 1}. Clearly, Mc is dense in M . We

introduce the following two sets of paths

Γ = {γ̂ ∈ C([−1, 1],M) : γ̂(−1) = −û1(τ), γ̂(1) = û1(τ)},

Γc = {γ̂ ∈ C([−1, 1],Mc) : γ̂(−1) = −û1(τ), γ̂(1) = û1(τ)}.

Claim 2. Γ̂c is dense in Γ̂.

Let γ̂ ∈ Γ̂ and ε ∈ (0, 1). We introduce the multi-function Lε : [−1, 1] →
2C

1
0 (Ω) defined by

Lε(t) = {u ∈ C1
0 (Ω) : ||u− γ̂(t)|| < ε} for all t ∈ (−1, 1);

Lε(−1) = {−û1(τ)}, Lε(1) = {û1(τ)}.

Clearly Lε has nonempty and convex values. Note that for t ∈ (−1, 1), Lε(t)

is open, while both Lε(−1) and Lε(1) are finite dimensional. Therefore Lε has

values in the family D(C1
0 (Ω)) of Michael [21]. Moreover, the continuity of γ̂

implies that the multifunction Lε is lower semi-continuous (see Papageorgiou

amd Kyritsi [23, p. 458]). So, we can apply Theorem 3.1′′′ of Michael [21] and

produce a continuous map γ̂ε : [−1, 1] → C1
0 (Ω) such that γ̂ε(t) ∈ Lε(t) for all

t ∈ [−1, 1]. Let εn = 1
n and {γ̂n = γ̂εn}n≥1 ⊆ C([−1, 1], C1

0 (Ω)) be the selectors

produced above. Then

(3.27)
||γ̂n(t)− γ̂(t)|| < 1

n
for all t ∈ (−1, 1),

γ̂n(−1) = −û1(τ) and γ̂n(1) = û1(τ) for all n ≥ 1.



Solutions for Nonlinear Nonhomogeneous Elliptic Equations 593

Recall that γ̂(t) ∈ ∂BLτ1 for all t ∈ [−1, 1]. So from (3.27) we see that we

may assume that ||γ̂n(t)|| 6= 0 for all t ∈ [−1, 1]. Then we set

γ̂n0 (t) =
γ̂n(t)

||γ̂n(t)||τ
for all t ∈ [−1, 1].

Then γ̂n0 ∈ C([−1, 1],Mc) and γ̂0(−1) = −û1(τ), γ̂0(1) = û1(τ). Also, for all

t ∈ [−1, 1] and all n ≥ 1,

||γ̂n0 (t)− γ̂(t)|| ≤ ||γ̂n0 (t)− γ̂n(t)||+ ||γ̂n(t)− γ̂(t)||(3.28)

=
|1− ||γ̂n(t)||τ |
||γ̂n(t)||τ

||γ̂n(t)||+ 1

n

(see (3.27)). Note that

max
−1≤t≤1

|1− ||γ̂n(t)||τ | = max
−1≤t≤1

|||γ̂(t)||τ − ||γ̂n(t)||τ | (recall that γ̂(t)∈∂BL
τ

1 )

≤ max
−1≤t≤1

||γ̂(t)− γ̂n(t)||τ

≤ C8 max
−1≤t≤1

||γ̂(t)− γ̂n(t)|| for some C8 > 0

≤ C8

n
(see (3.19))

⇒ max
−1≤t≤1

||γ̂n0 (t)− γ̂(t)|| → 0 as n→∞

⇒ Γ̂C is dense in Γ̂.

This proves Claim 2.

Using Claim 2 and Proposition 2.9, we see that given δ̂ > 0, we can find

γ̂0 ∈ Γ̂c such that

(3.29) max
−1≤t≤1

||Dγ̂0(t)||ττ ≤ λ̂2(τ) + δ̂.

Also, from hypothesis (H
′

1)(iii) we have

(3.30) F (z, x) ≥ c6
τ
|x|τ for a.a. z ∈ Ω and all |x| ≤ δ0.

Moreover, hypothesis H(a)(iv) implies that given ε > 0, we can find δ = δ(ε) > 0

such that

(3.31) G(y) ≤ c̃+ ε

τ
||y||τ for all ||y|| ≤ δ.

Let δ1 = min{δ̂, δ} (see (3.30) and (3.31)). Since γ̂0 ∈ Γ̂c and u∗ ∈ intC+,

v∗ ∈ −intC+, we can find ϑ ∈ (0, 1) small such that for all t ∈ [−1, 1] we have

(3.32) ϑγ̂0(t) ∈ [v∗, u∗], ϑ|γ̂0(t)(z)|, ϑ||Dγ̂0(t)(z)|| ≤ δ1 for all z ∈ Ω.

Thus, for all t ∈ [−1, 1],

ϕ̂(ϑγ̂0(t)) =

∫
Ω

G(ϑDγ̂0(t)) dz −
∫

Ω

F (z, ϑγ̂0(t)) dz(3.33)
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(see (3.22), (3.32))

≤ c̃+ ε

τ
ϑτ ||Dγ̂0(t)||ττ −

C6

τ
||γ̂0(t)||ττ

(see (3.30), (3.31), (3.32))

≤ ϑτ

τ
[(c̃+ ε)(λ̂2(τ) + δ̂)− C6].

Since c6 > c̃λ̂2(τ) (see (H
′

1)(iii)) by choosing ε > 0 and δ̂ > 0 small, relation

(3.33) yields

ϕ̂(ϑγ̂0)(t) < 0 for all t ∈ [−1, 1].

Therefore, if γ̂ = ϑγ̂0, then γ̂ is a continuous path in the Sobolev space W 1,p
0 (Ω)

which connects −ϑû1(τ) and ϑû1(τ), and

(3.34) ϕ̂|γ̂ < 0.

Next, we produce a continuous path in W 1,p
0 (Ω) connecting ϑû1(r) and u∗

and along this path the functional ϕ̂ is strictly negative. To this end, let

(3.35) a = ϕ̂+(u∗) = inf{ϕ̂+(u) : u ∈W 1,p
0 (Ω)} < 0 = ϕ̂+(0)

(see the first part of the proof).

Applying the second deformation theorem (see, for example, Gasinski and-

Papageorgiou [13, p. 628]), we find a continuous map h : [0, 1]×(ϕ̂0
+\K0

ϕ̂+
)→ ϕ̂0

+

such that

h(0, u) = u for all u ∈ ϕ̂0
+ \K0

ϕ̂+
,(3.36)

h(1, ϕ̂0
+ \K0

ϕ̂+
) ⊆ ϕ̂a+(3.37)

and, for all t, s ∈ [0, 1], s ≤ t and all u ∈ ϕ̂0
+ \K0

ϕ̂+
,

(3.38) ϕ̂+(h(t, u)) ≤ ϕ̂+(h(s, u)),

From (3.23) we have Kϕ̂+
= {0, u∗}. Hence ϕ̂a+ = {u∗} (see (3.35)). We deduce

that

ϕ̂+(ϑû1(τ)) = ϕ̂(ϑû1(τ)) = ϕ̂(γ̂(1)) < 0 (see (3.34))

⇒ ϑû1(τ) ∈ ϕ̂0
+ \K0

ϕ̂+
= ϕ̂0

+ \ {0}.

Hence we can define

γ̂+(t) = h(t, ϑû1(τ))+ for all t ∈ [0, 1].

Clearly, this defines a continuous path in W 1,p
0 (Ω) and we have

γ̂+(0) = h(0, ϑû1(τ))+ = ϑû1(τ) (see (3.36));

γ̂+(1) = h(1, ϑû1(τ))+ = u∗ (see (3.37));

ϕ̂(γ̂+(t)) = ϕ̂+(γ̂+(t)) ≤ ϕ̂+(ϑû1(τ)) = ϕ̂(ϑû1(τ)) < 0 (see (3.38) and (3.34)).
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Therefore γ̂+ is a continuous path in the Sobolev space W 1,p
0 (Ω) which connects

ϑû1(τ) and u∗ and

(3.39) ϕ̂|γ̂+ < 0.

In a similar fashion we produce γ̂− a continuous path in W 1,p
0 (Ω) which

connects −ϑû1(τ) and v∗ such that

(3.40) ϕ̂|γ̂− < 0.

We concatenate the paths γ̂−, γ̂, γ̂+ and produce a path γ∗ ∈ Γ such that

ϕ̂|γ∗ < 0 (see (3.34), (3.39), (3.40))

⇒ y0 ∈ C1
0 (Ω) \ {0} is a nodal solution of (1.1). �

So, we can conclude this section with the following multiplicity theorem for

problem (1.1).

Theorem 3.8. Assume that hypotheses H(a) and (H′1) hold. Then problem

(1.1) admits at least three nontrivial solutions u0 ∈ intC+, v0 ∈ −intC+, and

y0 ∈ [v0, u0] ∩ C1
0 (Ω) nodal.

4. The (p, 2)-problem

In this section we deal with the particular case of problem (1.1) in which

a(y) = ||y||p−2y + y for all y ∈ RN , with 2 ≤ p < ∞. Thus, the nonlinear

nonhomogeneous Dirichlet problem under consideration is the following:

(4.1) −∆pu(z)−∆u(z) = f(z, u(z)) in Ω, u|∂Ω = 0.

We have

(4.2) ∇a(y) = ||y||p−2

[
I + (p− 2)

y ⊗ y
||y||2

]
+ I

for all y ∈ RN \ {0}, ∇a(0) = 0.

For this problem, if on the reaction term f(z, x) we impose the stronger

hypotheses H2, we can localize more precisely the nodal solution y0.

In what follows, u∗ ∈ intC+ and v∗ ∈ − intC+ are the extremal constant

sign solutions from Proposition 3.6.

Proposition 4.1. Assume that hypotheses (H2) hold. Then problem (4.1)

has a nodal solution y0 ∈ C1
0 (Ω) such that y0 ∈ intC1

0 (Ω)[v∗, u∗].

Proof. From Proposition 3.7, we already have the existence of a nodal

solution y0 ∈ [v∗, u∗] ∩ C1
0 (Ω).

From (4.2) we see that ∇a(u∗(z)) and ∇a(v∗(z)) are both positive definite

in Ω. Hence we can apply the tangency principle of Pucci & Serrin [27, p. 35].

Therefore

v∗(z) < y0(z) < u∗(z) for all z ∈ Ω.
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Let ρ = max{||v∗||∞, ||u∗||∞} and let ξρ > 0 be as postulated by hypothe-

sis (H2)(iv). Let ξ̂ρ > ξρ. Then

−∆py0(z) −∆y0(z) + ξ̂ρ|y0(z)|p−2y0(z)

= f(z, y0(z)) + ξ̂ρ|y0(z)|p−2y0(z)

= f(z, y0(z)) + ξρ|y0(z)|p−2y0(z) + (ξ̂ρ − ξρ)|y0(z)|p−2y0(z)

≤ f(z, u∗(z)) + ξρu∗(z)
p−1 + (ξ̂ρ − ξρ)u∗(z)p−1

= −∆pu∗(z)−∆u∗(z) + ξ̂ρu∗(z)
p−1

almost everywhere in Ω, hence u∗ − y0 ∈ intC+ (see Proposition 2.8). In

a similar fashion we show that y0 − v∗ ∈ intC+. Therefore we conclude that

y0 ∈ intC1
0 (Ω)[v∗, u∗]. �

Using this result and improving the regularity of f(z, · ), we can produce

a second nodal solution for problem (4.1) (for a total of four nontrivial smooth

solutions). The new hypotheses on f(z, x) are the following:

(H3) f : Ω × R → R is a measurable function such that for almost all z ∈ Ω,

f(z, 0) = 0, f(z, · ) ∈ C1(R) and

(i) |f ′x(z, x)| ≤ a(z)(1 + |x|r−2) for almost all z ∈ Ω and all x ∈ R with

a ∈ L∞(Ω)+, p ≤ r < p∗;

(ii) lim
x→±∞

f(z, x)/(|x|p−2x) = −∞ uniformly for almost all z ∈ Ω;

(iii) there exists an integer m ≥ 2 such that λ̂m(2) ≤ f ′x(z, 0) ≤ λ̂m+1(2)

almost everywhere in Ω, f ′x( · , 0) 6= λ̂m(2), f ′x( · , 0) 6= λ̂m+1(2),

f ′x(z, 0) = lim
x→0

f(z, x)/x uniformly for almost all z ∈ Ω.

Remark 4.2. Hypotheses (H3)(i), (iii) imply that for every ρ > 0 we can

find ξρ > 0 such that

f
′

x(z, x) + ξρ(p− 1)|x|p−2 ≥ 0 for a.a. z ∈ Ω and all |x| ≤ ρ

⇒ ∂

∂x
[f(z, x) + ξρ|x|p−2x] ≥ 0 for a.a. z ∈ Ω and all |x| ≤ ρ

⇒ x 7→ f(z, x) + ξρ|x|p−2x is nondecreasing on [−ρ, ρ].

Thus, hypotheses H2(iv) is automatically satisfied due to the stronger regularity

of f(z, ·).

Under these stronger conditions on the reaction f(z, x) we can prove the

following multiplicity theorem.

Theorem 4.3. Assume that hypotheses (H3) hold. Then problem (4.1) ad-

mits at least four nontrivial solutions u0 ∈ intC+, v0 ∈ −intC+, and y0, ŷ ∈
intC1

0 (Ω)[v0, u0]nodal.
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Proof. From Theorem 3.8 and Proposition 4.1, we already have three so-

lutions u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ intC1
0 (Ω)[v0, u0] nodal.

Without any loss of generality we may assume that u0, v0 we are extremal

(that is, u0 = u∗, v0 = v∗). Using the notation introduced in Proposition 3.7, we

obtain that u0 ∈ intC+ and v0 ∈ −intC+ are both local minimizer of ϕ̂. Hence

(4.3) Ck(ϕ̂, u0) = Ck(ϕ̂, v0) = δk,0Z for all k ≥ 0.

Since y0 ∈ intC1
0 (Ω)[v0, u0] and ϕ|[v0,u0] = ϕ̂|[v0,u0], we have

(4.4) Ck(ϕ|C1
0 (Ω), y0) = Ck(ϕ̂|C1

0 (Ω), y0) for all k ≥ 0

⇒ Ck(ϕ, y0) = Ck(ϕ̂, y0) for all k ≥ 0

(see Palais [22] and Bartsch [4]). From the proof of Proposition 3.7, we know

that y0 is a critical point of ϕ̂. Hence

(4.5) C1(ϕ̂, y0) 6= 0⇒ C1(ϕ, y0) 6= 0

(see (4.4)). Since ϕ ∈ C2(W 1,p
0 (Ω)), using (4.5) as in Papageorgiou and Smyr-

lis [26] (see the proof of Proposition 13), we obtain for all k ≥ 0

(4.6) Ck(ϕ, y0) = δk,1Z ⇒ Ck(ϕ̂, y0) = δk,1Z .

Also, by virtue of hypothesis (H3)(iii), from Papageorgiou and Smyrlis [26,

Proposition 10] we have

(4.7) Ck(ϕ̂, 0) = δk,dmZ for all k ≥ 0, with dm = dim

m⊕
i=1

E(λ̂i(2)).

Finally, recall that ϕ̂ is coercive (see (3.22)). Hence

(4.8) Ck(ϕ̂,∞) = δk,0Z for all k ≥ 0.

Suppose that Kϕ̂ = {0, u0, v0, y0}. Then from (4.3), (4.6), (4.7), (4.8) and the

Morse relation with t = −1 (see (2.5)), we have (−1)dm+2(−1)0+(−1)1 = (−1)0,

a contradiction. So, we can find ŷ ∈ Kϕ̂, ŷ /∈ {0, u0, v0, y0}. Since ŷ ∈ [v0, u0]

(see (3.23)), we conclude that ŷ ∈ C1
0 (Ω) is nodal. Moreover, as in the proof of

Proposition 4.1, we show that ŷ ∈ intC1
0 (Ω)[v0, u0]. �

5. Parametric equations

In this section we deal with the following parametric p-Laplacian Dirichlet

equation

(5.1) −∆pu(z) = λ|u(z)|p−2u(z)− f(z, u(z)) in Ω, u|∂Ω = 0, 1 < p <∞.

Here, λ > 0 is a parameter. The hypotheses on the perturbation term f(z, x)

are the following:

(H4) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for

almost all z ∈ Ω and
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(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that |f(z, x)| ≤
aρ(z) for almost all z ∈ Ω and all |x| ≤ ρ;

(ii) lim
x→±∞

f(z, x)/(|x|p−2x) = +∞ uniformly for almost all z ∈ Ω;

(iii) lim
x→0

f(z, x)/(|x|p−2x) = 0 uniformly for almost all z ∈ Ω.

For problem (5.1), a(y) = ||y||p−2y for all y ∈ RN , τ = p and c̃ = 1 (see

hypothesis H(a)(iv)). By virtue of hypothesis (H4)(iii), we see that given ε > 0,

we can find δ0 = δ0(ε) > 0 such that

(5.2) f(z, x)x ≤ ε|x|p for a.a. z ∈ Ω and all |x| ≤ δ0.

Hence we have

λ|x|p − f(z, x)x ≥ (λ− ε)|x|p for a.a. z ∈ Ω and all |x| ≤ δ0.

If λ > λ̂2(p), then we choose ε ∈ (0, λ − λ̂2(p)) and we can apply Theorem 2.7.

Thus, we obtain

Theorem 5.1. Assume that hypotheses (H3) hold and λ > λ̂2(p). Then

problem (5.1) has at least three nontrivial solutions u0 ∈ intC+, v0 ∈ −intC+,

and y0 ∈ [v0, u0] ∩ C1
0 (Ω) nodal.

Remark 5.2. Such a multiplicity result was first proved by Ambrosetti and

Mancini [2], with subsequent improvements by Ambrosetti and Lupo [1] and

Struwe [29], [30, p. 132], when p = 2 and f(z, · ) = f( · ) ∈ C1(R) or even

Lipschitz continuous. In their multiplicity theorems, they do not show that

the third solution is nodal. This result was extended to p-Laplacian equations

by Papageorgiou and Papageorgiou [24]. Again, it is not shown that the third

solution is nodal.

In the semilinear case (p = 2), with a more regular reaction f(z, · ) and with

additional restrictions on the parameter λ > 0, we can improve Theorem 5.1

and produce a second nodal solution. So, we consider the following semilinear

parametric problem:

(5.3) −∆u(z) = λu(z)− f(z, u(z)) in Ω, u|∂Ω = 0.

The hypotheses on the perturbation f(z, x) are the following:

(H4) f : Ω × R → R is a measurablefunction such that for almost all z ∈ Ω,

f(z, 0) = 0, f(z, · ) ∈ C1(R) and

(i) |f ′x(z, x)| ≤ a(z)(1+ |x|r−2) for almost all z ∈ Ω and all x ∈ R, with

a ∈ L∞(Ω)+, 2 ≤ r < 2∗;

(ii) lim
x→±∞

f(z, x)/x = +∞ uniformly for almost all z ∈ Ω;

(iii) lim
x→0

f(z, x)/x = 0 uniformly for almost all z ∈ Ω.
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In what follows, σ̂(2) denotes the spectrum of (−∆, H1
0 (Ω)), that is, σ̂(2) =

{λ̂k(2)}k≥1 (see Section 2). Using Theorem 4.3, we obtain the following multi-

plicity property.

Theorem 5.3. Assume that hypotheses (H4) hold and λ > λ̂2(2), λ /∈ σ̂(2).

Then problem (5.3) has at least four nontrivial solutions u0 ∈ intC+, v0 ∈
−intC+, and y0, ŷ ∈ intC1

0 (Ω)[v0, u0] nodal.

References

[1] A. Ambrosetti and D. Lupo, One class of nonlinear Dirichlet problems with multiple

solutions, Nonlinear Anal. 8 (1984), 1145–1150.

[2] A. Ambrosetti and G. Mancini, Sharp nonuniqueness results for some nonlinear prob-

lems, Nonlinear Anal. 3 (1979), 635–645.

[3] D. Arcoya and D. Ruiz, The Ambrosetti–Prodi problem for the p-Laplacian operator,

Comm. Partial Differential Equations 31 (2006), 849–865.

[4] T. Bartsch, Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186

(2001), 117–152.

[5] V. Benci, P. D’Avenia, D. Fortunato and L. Pisani, Solutions in several space dimen-

sions: Derrick’s problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154

(2000), 297–324.

[6] H. Brezis and L. Nirenberg, H1 versus C1 local minimizers, CRAS Paris 317 (1993),

465–472.

[7] L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction diffusion

equations with p&q-Laplacian, Comm. Pure Appl. Anal 4 (2005), 9–22.

[8] M. Cuesta, G. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum
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équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521–

524.

[10] N. Dunford and J. Schwartz, Linear Operators, Vol. I, Wiley–Interscience, New York,

1958.

[11] M. Filippakis, A. Kristaly and N.S. Papageorgiou, Existence of five nonzero solutions

with exact sign for a p-Laplacian equation, Discrete Cont. Dynam. Systems 24 (2009),

405–440.

[12] J.P. Garcia Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local
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