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Abstract We study the nonlinear degenerate anisotropic problem

⎧
⎨

⎩

−∑N
i=1 ∂xi ai (x, ∂xi u) + b(x)|u|pM (x)−2u = λ|u|q(x)−2u in �,

u(x) = constant on ∂�
∑N

i=1

∫

∂�
ai (x, ∂xi u)νi dσ = 0,

where � ⊂ R
N is a bounded domain with smooth boundary. The constant value of the

boundary data is not specified, whereas the zero integral term corresponds to a no-flux
boundary condition. In the case when |u|q(x)−2u “dominates” the left-hand side, we show
that a nontrivial solution exists for all positive values of λ. If the term |u|q(x)−2u is dominated
by the left-hand side, we prove that a solution exists either for small or for large values of
λ > 0. The proofs combine variational arguments with energy estimates.
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1 Introduction

In this paper we are concerned with the existence of weak nontrivial solutions for a class of
anisotropic equations in bounded domains of the Euclidean space. Our main results in the
present paper continue and extend the work by Boureanu and Udrea [10].

Anisotropic operators appear in several places in the literature. Recent relevant applica-
tions include models in physics [8,11,12,16,17], biology [3,4], and image processing (see,
for instance, the monograph by Weickert [30]). By definition, anisotropic operators involve
directional derivatives with distinct weights. Relevant references on the theory of anisotropic
Sobolev spaces are Besov [7], Kruzhkov and Kolodii [22], Kruzhkov and Korolev [23],
Nikolskii [24], Rakosnik [25,26], Troisi [28], and Ven-tuan [29]. We also refer to Fragala,
Gazzola, Kawohl [18] and El Hamidi, Vétois [19] as basic references in the treatment of
nonlinear anisotropic problems and to the book by Antontsev, Diaz, Shmarev [2] as a source
of valuable energy methods in the qualitative analysis of nonlinear boundary value problems.

No-flux problems were studied for the first time by Berestycki and Brezis [5], in rela-
tionship with models arising in plasma physics. As stated in [5], these problems stem “from
a model describing the equilibrium of a plasma confined in a toroidal cavity (a Tokamak
machine)”; see also [6].

2 Statement of the problem

The purpose of this work is to analyze the existence of weak solutions of the anisotropic
problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∑N
i=1 ∂xi ai (x, ∂xi u) + b(x)|u|pM (x)−2u = λ|u|q(x)−2u in �,

u(x) = constant on ∂�
N∑

i=1

∫

∂�

ai (x, ∂xi u)νi dσ = 0,
(2.1)

where � ⊂ R
N (N ≥ 2) is a bounded domain with smooth boundary, b ∈ L∞(�) and

ai : � × R → R are Carathéodory functions fulfilling some adequate hypotheses.
We notice that the constant value of the boundary data in problem (2.1) is not specified

and corresponds to the one-dimensional case u(0) = u(1), whereas the requirement in one-
dimension that u′(0) = u′(1), corresponds to the no-flux boundary integral term, in the case
that ai (x, ξ) = ξ for all i = 1, . . . , N . We also point out that Zou, Li, Liu and Lv [31,32]
studied the existence of solutions for the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�u = f (x, u) in {u > 0},
−�u = 0 in {u ≤ 0},
u = c (a negative constant) on ∂�

−
∫

∂�

∂u

∂n
dσ = I (a given positive constant),

where� is bounded, open and connected subset ofR2 with regular boundarywith the outward
unit normal n. Problems of this type are related to plasma fusion and plasma confinement in
Tokamak devices. The set {u > 0} represents the region filled by the plasma, the set {u < 0}
represents the vacuum region, and the set {u = 0} corresponds to to the free boundary
that separate the plasma and the vacuum. The case studied in problem (2.1) corresponds to
nonresonant surfaces, namely no-flux surfaces onwhich the wave number of the perturbation
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A nonlinear anisotropic problem with no-flux boundary condition 583

parallel to the equilibrium magnetic field is zero. Unfortunately, we are not able to give some
a posteriori information on the constant value of the solution on the boundary in problem
(2.1).

The differential operator
∑N

i=1 ∂xi ai (x, ∂xi u) is a −→p (·)-Laplace type operator, −→p (x) =
(p1(x), p2(x), . . . , pN (x)). For i = 1, . . . , N , pi (x) and q(x) are continuous functions on
�, while ai (x, η) is the continuous derivativewith respect toη of themapping Ai : �×R

N →
R
N , Ai = Ai (x, η), that is, ai (x, η) = ∂

∂η
Ai (x, η).

Throughout this paper we assume that the following hypotheses are fulfilled:

(A0) Ai (x, 0) = 0 for a.e. x ∈ �.
(A1) There exists a positive constant ci such that ai satisfies the growth condition

|ai (x, η)| ≤ ci (1 + |η|pi (x)−1),

for all x ∈ � and η ∈ R
N .

(A2) The inequalities

|η|pi (x) ≤ ai (x, η)η ≤ pi (x)Ai (x, η),

hold for all x ∈ � and η ∈ R
N .

(A3) There exists ki > 0 such that

Ai

(

x,
η + ξ

2

)

≤ 1

2
Ai (x, η) + 1

2
Ai (x, ξ) − ki |η − ξ |pi (x),

for all x ∈ � and η, ξ ∈ R
N , with equality if and only if η = ξ .

(A4) ai (x, 0) = 0 for all x ∈ ∂�.
(B) b ∈ L∞(�) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ �.

The operator presented above is the anisotropic −→p (x)-Laplace operator because when we
take

ai (x, η) = |η|pi (x)−2η,

for all i ∈ {1, . . . , N }, we have Ai (x, η) = 1
pi (x)

|η|pi (x) for all i ∈ {1, . . . , N }. Therefore

�−→p (x)(u) =
N∑

i=1

∂xi (|∂xi u|pi (x)−2∂xi u).

There are many other operators deriving from
∑N

i=1 ∂xi ai (x, ∂xi u). Indeed, if we take

ai (x, η) = (1 + |η|2) (pi (x)−2)
2 η,

for all i ∈ {1, . . . , N }, we have Ai (x, η) = 1
pi (x)

[(1 + |η|2) pi (x)
2 − 1] for all i ∈ {1, . . . , N }

and we obtain the anisotropic variable mean curvature operator

N∑

i=1

∂xi

[
(1 + |∂xi u|2) (pi (x)−2)

2 ∂xi u
]
.

A feature of the present paper is that we do not assume a zeroDirichlet boundary condition,
but we work in the anisotropic variable exponent space of functions that are constant on the
boundary and fulfill a no-flux boundary integral condition.
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584 G. A. Afrouzi et al.

3 Abstract setting

In this section, we recall some definitions and basic properties of the spaces with variable
exponent together with some results that are needed in the sequel.

For any � ⊂ R
N , we set

C+(�) =
{

h ∈ C(�); 1 < min
x∈�

h(x)

}

.

Define

h+ = max{h(x); x ∈ �}, h− = min{h(x); x ∈ �}.
For any p ∈ C+(�), we define the variable exponent Lebesgue space

L p(x)(�)=
{
u; u is a measurable real − valued function such that

∫

�

|u(x)|p(x) dx < ∞
}
,

endowed with the Luxemburg norm

‖u‖L p(x)(�) = inf
{
μ > 0;

∫

�

|u(x)

μ
|p(x)dx ≤ 1

}
.

Then (L p(x)(�), ‖ · ‖L p(x)(�)) is a separable and reflexive Banach space [21, Theorem 2.5,
Corollary 2.7]. Also, by Theorem 2.8 in [21], the embedding L p2(x)(�) ↪→ L p1(x)(�) is
continuous, provided that � is bounded and p1, p2 ∈ C+(�) are such that p1 ≤ p2 in �.

The isotropic Sobolev space W 1,p(x)(�) is defined by

W 1,p(x)(�) = {u ∈ L p(x)(�); ∂xi u ∈ L p(x)(�), i ∈ {1, . . . , N }}.
If equipped with the norm

‖u‖W 1,p(x)(�) = ‖u‖L p(x)(�) +
N∑

i=1

‖∂xi u‖L p(x)(�),

then (W 1,p(x)(�), ‖·‖W 1,p(x)(�)) is a separable and reflexive Banach space (see [21, Theorem
1.3]).

The application ρp(x)(u) = ∫

�
|u|p(x)dx called the p(x)-modular of L p(x)(�) space, is

useful in handling the Lebesgue space with variable exponent. Indeed, cf. [15, Theorems 1.3
and 1.4], if u ∈ L p(x)(�) then

‖u‖L p(x)(�) < 1 (=1; > 1) ⇔ ρp(x)(u) < 1 (=1; > 1); (3.1)

‖u‖L p(x)(�) > 1 ⇒ ‖u‖p−
L p(x)(�)

≤ ρp(x)(u) ≤ ‖u‖p+
L p(x)(�)

; (3.2)

‖u‖L p(x)(�) < 1 ⇒ ‖u‖p+
L p(x)(�)

≤ ρp(x)(u) ≤ ‖u‖p−
L p(x)(�)

; (3.3)

‖u‖L p(x)(�) → 0 (→ ∞) ⇔ ρp(x)(u) → 0 (→ ∞). (3.4)

In addition, if (un) ⊂ L p(x)(�), then

lim
n→∞ ‖un − u‖L p(x)(�) = 0 ⇔ lim

n→∞ ρp(x)(un − u) = 0

⇔ un converges to u in measure and lim
n→∞ ρp(x)(un) = ρp(x)(u).

Finally, we introduce a natural generalization of the function space W 1,p(x)(�) that will
enable us to study with sufficient accuracy problem (2.1). For this purpose, let us denote
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A nonlinear anisotropic problem with no-flux boundary condition 585

by −→p : � → R
N the vectorial function −→p (x) = (p1(x), p2(x), ..., pN (x)) with pi (x) ∈

C+(�), i ∈ {1, . . . , N } and we put
pM (x) = max{p1(x), . . . , pN (x)}, pm(x) = min{p1(x), . . . , pN (x)}.

The anisotropic Sobolev space with variable exponent is

W 1,−→p (x)(�) = {u ∈ L pM (x)(�) : ∂xi u ∈ L pi (x)(�) for all i ∈ {1, . . . , N }}.
This space is endowed with the norm

‖u‖W 1,−→p (x)(�)
= ‖u‖L pM (x)(�) +

N∑

i=1

‖∂xi u‖L pi (x)(�).

The space (W 1,−→p (x)(�), ‖ · ‖W 1,−→p (x)(�)
) is a reflexive Banach space (see [14, Theorems 2.1

and 2.2]). Set

X =
{
u ∈ W 1,−→p (x)(�) : u|∂� ≡ constant

}
.

Since X is a closed subset of W 1,−→p (x)(�), it follows that X is a reflexive Banach space.
We also recall (see [20, Theorem 2.2]) that if � ⊂ R

N is a bounded domain with smooth

boundary and q ∈ C+(�) satisfies q(x) <
Np−

m

N−p−
m

for all x ∈ �, then the embedding

W 1,−→p (x)(�) ↪→ Lq(x)(�) is compact.
In the sequel, we use ci and c̃i to denote general nonnegative or positive constants (the

exact value may change from line to line).

4 The first domination case

We start by giving the definition of weak solution of problem (2.1).

Definition 4.1 A function u ∈ X that verifies
∫

�

{ N∑

i=1

ai (x, ∂xi u)∂xi ϕ + b(x)|u|pM (x)−2uϕ − λ|u|q(x)−2uϕ
}
dx = 0,

for all ϕ ∈ X is called a weak solution of problem (2.1).

We associate to problem (2.1) the energy functional Iλ : X → R defined by

Iλ(u) =
∫

�

{ N∑

i=1

Ai (x, ∂xi u) + b(x)

pM (x)
|u|pM (x) − λ

q(x)
|u|q(x)

}
dx .

Then Iλ is well-defined and Iλ ∈ C1(X,R) with

〈I ′
λ(u), ϕ〉 =

∫

�

{ N∑

i=1

ai (x, ∂xi u)∂xi ϕ + b(x)|u|pM (x)−2uϕ − λ|u|q(x)−2uϕ
}
dx,

for all u, ϕ ∈ X . Hence any critical point u ∈ X of Iλ is a weak solution of problem (2.1).
The next result shows that if the variable exponentq( · ) “dominates” p( · ) then the solution

exists for all positive values of the parameter λ. In other words, the right-hand side of problem
(2.1) is “stronger” than the other side, even if λ > 0 is small.
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586 G. A. Afrouzi et al.

Theorem 4.2 Assume that the function q ∈ C+(�) verifies the hypothesis

p+
M < q− ≤ q+ <

Np−
m

N − p−
m

.

Then for any λ > 0 problem (2.1) possesses a nontrivial weak solution.

We first prove two auxiliary results.

Lemma 4.3 There exist η > 0 and α > 0 such that Iλ(u) ≥ α > 0 for any u ∈ X with
‖u‖W 1,−→p (x)(�)

= η.

Proof First, we point out that

|u(x)|q(x) ≤ |u(x)|q− + |u(x)|q+
, for all x ∈ �.

By the above inequality, (A2) and (B), we find

Iλ(u) =
∫

�

{ N∑

i=1

Ai (x, ∂xi u) + b(x)

pM (x)
|u|pM (x) − λ

q(x)
|u|q(x)

}
dx

≥ 1

p+
M

N∑

i=1

∫

�

|∂xi u|pi (x) dx + b0
p+
M

∫

�

|u|pM (x) dx − λ

q−
(
‖u‖q−

Lq−
(�)

+ ‖u‖q+
Lq+

(�)

)
.

(4.1)

From the hypotheses of Theorem 4.2, W 1,−→p (x)(�) is continuously embedded in Lq−
(�)

and Lq+
(�). Then, there exist two positive constants c1 and c2 such that for all u ∈ X

|u(x)|Lq−
(�)

≤ c1‖u‖W 1,−→p (x)(�)
and |u(x)|Lq+

(�)
≤ c2‖u‖W 1,−→p (x)(�)

. (4.2)

Here, we let ‖u‖W 1,−→p (x)(�)
< 1, so ‖u‖L pM (x)(�) < 1 and ‖∂xi u‖L pi (x)(�) < 1, i ∈

{1, . . . , N }.
Taking into account relations (3.3) and (4.2), the inequality (4.1) reduces to

Iλ(u) ≥ min{1, b0}
p+
M (N + 1)p

+
M−1

‖u‖p+
M

W 1,−→p (x)(�)

− λ

q−
[
(c1‖u‖W 1,−→p (x)(�)

)q
− + (c2‖u‖W 1,−→p (x)(�)

)q
+]

=
(
c3 − c4‖u‖q−−p+

M

W 1,−→p (x)(�)
− c5‖u‖q+−p+

M

W 1,−→p (x)(�)

)
‖u‖p+

M

W 1,−→p (x)(�)
,

for any u ∈ X with ‖u‖W 1,−→p (x)(�)
< 1. Since the function g : [0, 1] → R defined by

g(t) = c3 − c4t
q−−p+

M − c5t
q+−p+

M

is positive in a neighborhood of the origin, the conclusion of the lemma follows. ��
Lemma 4.4 There exists e ∈ X with ‖e‖W 1,−→p (x)(�)

> η (where η is given in Lemma 4.3)
such that Iλ(e) < 0.

Proof From (A0) and (A1), we have

Ai (x, η) =
∫ 1

0
ai (x, tη)ηdt ≤ c6

(

|η| + 1

pi (x)
|η|pi (x)

)

,

Author's personal copy



A nonlinear anisotropic problem with no-flux boundary condition 587

for all x ∈ � and η ∈ R
N , where c6 = maxi∈{1,...,N } ci . Therefore

∫

�

N∑

i=1

Ai (x, ∂xi u)dx ≤ c6

N∑

i=1

∫

�

(
|∂xi u| + |∂xi u|pi (x)

pi (x)

)
dx . (4.3)

Let ϕ ∈ X , ϕ �= 0. For any t > 1, we find

Iλ(tϕ) =
∫

�

{ N∑

i=1

Ai (x, ∂xi (tϕ)) + b(x)

pM (x)
|tϕ|pM (x) − λ

q(x)
|tϕ|q(x)

}
dx

≤ c6

N∑

i=1

∫

�

(
|∂xi (tϕ)| + |∂xi (tϕ)|pi (x)

pi (x)

)
dx + 1

p+
M

∫

�

b(x)|tϕ|pM (x) dx

− λ

∫

�

1

q(x)
|tϕ|q(x) dx

≤ c6t
p+
M

N∑

i=1

∫

�

(
|∂xi ϕ| + 1

p−
m

|∂xi ϕ|pi (x)
)
dx + t p

+
M

p+
M

∫

�

b(x)|ϕ|pM (x) dx

− λtq
−

q+

∫

�

|ϕ|q(x) dx .

Since p+
M < q−, we infer that limt→∞ Iλ(tϕ) = −∞. Then for t > 1 large enough, we can

take e = tϕ such that ‖e‖W 1,−→p (x)(�)
> η and Iλ(e) < 0. ��

Now, we prove the following useful property.

Lemma 4.5 Let � ⊂ R
N (N ≥ 2) be a bounded domain with smooth boundary. Assume

that the sequence (un) converges weakly to u in W 1,−→p (x)(�) and

lim sup
n→∞

∫

�

N∑

i=1

ai (x, ∂xi un)(∂xi un − ∂xi u) dx ≤ 0.

Then (un) converges strongly to u in W 1,−→p (x)(�).

Proof We use the fact that W 1,−→p (x)(�) ↪→ L pM (x)(�) compactly. Since un ⇀ u in
W 1,−→p (x)(�), we deduce that

un → u in L pM (x)(�). (4.4)

Then, combining (4.4) and (3.4) we conclude that un → u in W 1,−→p (x)(�). ��

Proof of Theorem 4.2 By Lemmas 4.3–4.4 and the mountain pass theorem of Ambrosetti
and Rabinowitz [1], we deduce the existence of a sequence (un) ⊂ X such that

Iλ(un) → c7 > 0 and I ′
λ(un) → 0 as n → ∞. (4.5)

We claim that (un) is bounded.Arguing by contradiction,we assume that, up to a subsequence
still denoted by (un), we have ‖un‖W 1,−→p (x)(�)

→ ∞ as n → ∞.
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588 G. A. Afrouzi et al.

Using relation (4.5), for n large enough, we have

1 + c7 + ‖un‖W 1,−→p (x)(�)
≥ Iλ(un) − 1

q− 〈I ′
λ(un), un〉

≥
N∑

i=1

∫

�

[
Ai (x, ∂xi un) + 1

pM (x)
b(x)|un |pM (x) − λ

q(x)
|un |q(x)

]
dx

− 1

q−
N∑

i=1

∫

�

[
ai (x, ∂xi un)∂xi un + b(x)|un |pM (x) − λ|un |q(x)

]
dx

≥
N∑

i=1

∫

�

[
Ai (x, ∂xi un) − 1

q− ai (x, ∂xi un)∂xi un
]
dx

+
( 1

p+
M

− 1

q−
) ∫

�

b(x)|un |pM (x) dx + λ

∫

�

( 1

q− − 1

q(x)

)
|un |q(x) dx . (4.6)

From (A2), for all x ∈ � and i ∈ {1, . . . , N } we have
ai (x, ∂xi un)∂xi un ≤ pi (x)Ai (x, ∂xi un) ≤ p+

M Ai (x, ∂xi un),

which implies

− 1

q− ai (x, ∂xi un)∂xi un ≥ − p+
M

q− Ai (x, ∂xi un).

Inserting this inequality into relation (4.6) we obtain

1 + c7 + ‖un‖W 1,−→p (x)(�)
≥

(
1 − p+

M

q−
) N∑

i=1

∫

�

Ai (x, ∂xi un) dx

+ b0
( 1

p+
M

− 1

q−
) ∫

�

|un |pM (x) dx .

Again from (A2) we have

Ai (x, ∂xi un) ≥ 1

pi (x)
|∂xi un |pi (x) ≥ 1

p+
M

|∂xi un |pi (x),

for all x ∈ � and i ∈ {1, . . . , N }, thus

1 + c7 + ‖un‖W 1,−→p (x)(�)
≥

( 1

p+
M

− 1

q−
) N∑

i=1

∫

�

|∂xi un |pi (x) dx

+ b0
( 1

p+
M

− 1

q−
) ∫

�

|un |pM (x) dx . (4.7)

We denote

�1 = {i ∈ {1, . . . , N } : ‖∂xi un‖L pi (x)(�) ≤ 1}
and

�2 = {i ∈ {1, . . . , N } : ‖∂xi un‖L pi (x)(�) > 1}.
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By (3.1), (3.2), (3.3) and Jensen’s inequality (applied to the convex function h : R+ → R
+,

h(t) = t p
−
m , p−

m > 1), for n large enough we have

N∑

i=1

∫

�

|∂xi un |pi (x) dx =
∑

i∈�1

∫

�

|∂xi un |pi (x) dx +
∑

i∈�2

∫

�

|∂xi un |pi (x) dx

≥
∑

i∈�1

‖∂xi un‖p+
M

L pi (x)(�)
+

∑

i∈�2

‖∂xi un‖p−
m

L pi (x)(�)

≥
N∑

i=1

‖∂xi un‖p−
m

L pi (x)(�)
−

∑

i∈�1

‖∂xi un‖p−
m

L pi (x)(�)

≥ N
(

∑N
i=1 ‖∂xi un‖L pi (x)(�)

N

)p−
m − N . (4.8)

We analyze now the two cases corresponding to the value of ‖u‖L pM (x)(�).

Case 1: ‖u‖L pM (x)(�) ≥ 1. By (4.7) and (4.8) we have

1 + c7 + ‖un‖W 1,−→p (x)(�)
≥

( 1

p+
M

− 1

q−
)[ 1

N p−
m−1

( N∑

i=1

‖∂xi un‖L pi (x)(�)

)p−
m − N

]

+ b0
( 1

p+
M

− 1

q−
)
‖u‖p−

m

L pM (x)(�)
.

and thus

1 + c7 + ‖un‖W 1,−→p (x)(�)
≥ 1

2p
−
m

( 1

p+
M

− 1

q−
)
min

{ 1

N p−
m−1

, b0
}
‖un‖p−

m

W 1,−→p (x)(�)

− N
( 1

p+
M

− 1

q−
)
. (4.9)

Case 2: ‖u‖L pM (x)(�) < 1. Then

1 + c7 + ‖un‖W 1,−→p (x)(�)
≥

( 1

p+
M

− 1

q−
)[ 1

N p−
m−1

( N∑

i=1

‖∂xi un‖L pi (x)(�)

)p−
m − N

]

≥
( 1

p+
M

− 1

q−
)[ 1

N p−
m−1

( N∑

i=1

‖∂xi un‖L pi (x)(�)

)p−
m

+ ‖un‖p−
m

L pM (x)(�)
− N − 1

]
.

We obtain

1 + c7 + ‖un‖W 1,−→p (x)(�)
≥ 1

2p
−
m

( 1

p+
M

− 1

q−
)
min

{ 1

N p−
m−1

, 1
}
‖un‖p−

m

W 1,−→p (x)(�)
− N + 1

p+
M
(4.10)

By (4.9) and (4.10), we deduce that there exist c̃1, c̃2 > 0 such that

1 + c7 + ‖un‖W 1,−→p (x)(�)
≥ c̃1‖un‖p−

m

W 1,−→p (x)(�)
− c̃2.
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Dividing the above inequality by ‖un‖p−
m

W 1,−→p (x)(�)
and passing to the limit as n → ∞ we

obtain a contradiction.
It follows that (un) is bounded in W 1,−→p (x)(�). This information combined with the fact

that W 1,−→p (x)(�) is reflexive implies that there exists a subsequence, still denoted by (un),
and u0 ∈ W 1,−→p (x)(�) such that (un) converges weakly to u0 in W 1,−→p (x)(�).

Using (4.5), we infer that

lim
n→∞〈I ′

λ(un), un − u0〉 = 0,

more precisely,

lim
n→∞

∫

�

[ N∑

i=1

ai (x, ∂xi un)(∂xi un − ∂xi u0) + b(x)|un |pM (x)−2un(un − u0)

− λ|un |q(x)−2un(un − u0)
]
dx = 0. (4.11)

Since the space W 1,−→p (x)(�) is compactly embedded in L pM (x)(�) and Lq(x)(�), it follows
that (un) converges strongly to u0 in L pM (x)(�) and also in Lq(x)(�). Therefore

∣
∣
∣

∫

�

b(x)|un |pM (x)−2un(un − u0) dx
∣
∣
∣

≤ 2‖b‖L∞(�)

∥
∥
∥|un |pM (x)−1

∥
∥
∥
L

pM (x)
pM (x)−1 (�)

‖un − u0‖L pM (x)(�), (4.12)

and
∣
∣
∣

∫

�

|un |q(x)−2un(un − u0) dx
∣
∣
∣ ≤ 2

∥
∥
∥|un |q(x)−1

∥
∥
∥
L

q(x)
q(x)−1 (�)

‖un − u0‖Lq(x)(�). (4.13)

By (4.12), (4.13) and (3.4), using the strong convergence of (un) to u0 in L pM (x)(�) and
Lq(x)(�) we deduce

lim
n→∞

∫

�

b(x)|un |pM (x)−2un(un − u0) dx = 0,

and

lim
n→∞

∫

�

|un |q(x)−2un(un − u0) dx = 0.

By the above relations, (4.11) reduces to

lim
n→∞

∫

�

N∑

i=1

ai (x, ∂xi un)(∂xi un − ∂xi u0) dx = 0.

Using Lemma 4.5, we deduce that (un) converges strongly to u0 in W 1,−→p (x)(�). Since X is
a closed subspace of W 1,−→p (x)(�) and (un) ⊂ X we obtain that u0 ∈ X . Then by relation
(4.5)

Iλ(u0) = c7 > 0 and I ′
λ(u0) = 0,

that is, u0 is a nontrivial weak solution for problem (2.1). ��
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5 The second domination case

The next result establishes an interesting concentration property in neighborhoods of the
origin and of the infinity. More precisely, under an additional assumption, we show that there
are positive numbers λ∗ and λ∗∗ such that problem (2.1) has a solution provided that either
λ ∈ (0, λ∗) or λ ∈ (λ∗∗,∞). The existence of a “gap” between λ∗ and λ∗∗ still remains an
interesting open problem.

Theorem 5.1 In addition, we assume that q ∈ C+(�) satisfies the hypothesis

1 < q− ≤ q+ < p−
m .

Then the following properties hold.

(i) There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) problem (2.1) possesses a nontrivial
weak solution.

(ii) There exists λ∗∗ > 0 such that for any λ > λ∗∗ problem (2.1) possesses a nontrivial
weak solution.

The assumptions in Theorem 5.1 show that the weight p( · ) is dominating with respect to
the variable exponent q( · ) that controls the right-hand side. The above results asserts that,
in such a case, a solution exists either if λ > 0 is sufficiently small or for large values of λ.

First, applying Ekeland’s variational principle [13], we show that there exists λ∗ > 0 such
that for any λ ∈ (0, λ∗) the functional Iλ has a nontrivial critical point. We start with two
auxiliary results.

Lemma 5.2 There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) there are ρ, a > 0 such that
Iλ(u) ≥ a > 0 for any u ∈ X with ‖u‖W 1,−→p (x)(�)

= ρ.

Proof Under the conditions of Theorem 5.1, W 1,−→p (x)(�) is continuously embedded in
Lq(x)(�). Thus, there exists a positive constant c8 such that

‖u‖Lq(x)(�) ≤ c8‖u‖W 1,−→p (x)(�)
for all u ∈ X. (5.1)

Now, let us assume that ‖u‖W 1,−→p (x)(�)
< min{1, 1

c8
}, where c8 is the positive constant from

above. Then we have ‖u‖Lq(x)(�) < 1. Using (3.3) we get

∫

�

|u|q(x)dx ≤ ‖u‖q−
Lq(x)(�)

for all u ∈ X with ‖u‖W 1,−→p (x)(�)
= ρ ∈ (0, 1).

(5.2)

Relations (5.1) and (5.2) imply
∫

�

|u|q(x)dx ≤ cq
−

8 ‖u‖q−
W 1,−→p (x)(�)

for all u ∈ X with ‖u‖W 1,−→p (x)(�)
= ρ.

(5.3)

Using the hypothesis (A2), (B) and relation (5.3), we deduce that for any u ∈ X with
‖u‖W 1,−→p (x)(�)

= ρ, the following hold:
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Iλ(u) =
∫

�

{ N∑

i=1

Ai (x, ∂xi u) + b(x)

pM (x)
|u|pM (x) − λ

q(x)
|u|q(x)

}
dx

≥ 1

p+
M

N∑

i=1

∫

�

|∂xi u|pi (x)dx + b0
p+
M

∫

�

|u|pM (x) dx − λ

q− cq
−

8 ‖u‖q−
W 1,−→p (x)(�)

≥ min{1, b0}
p+
M (N + 1)p

+
M−1

‖u‖p+
M

W 1,−→p (x)(�)
− λ

q− cq
−

8 ‖u‖q−
W 1,−→p (x)(�)

= min{1, b0}
p+
M (N + 1)p

+
M−1

ρ p+
M − λ

q− cq
−

8 ρq−

= ρq−( min{1, b0}
p+
M (N + 1)p

+
M−1

ρ p+
M−q− − λ

q− cq
−

8

)
. (5.4)

If we define

λ∗ = min{1, b0}q−

2p+
M (N + 1)p

+
M−1cq

−
8

ρ p+
M−q−

, (5.5)

then for any λ ∈ (0, λ∗) and u ∈ X with ‖u‖W 1,−→p (x)(�)
= ρ, there exists a = min{1,b0}ρ p+M

2p+
M (N+1)p

+
M−1

such that Iλ(u) ≥ a > 0. ��
Lemma 5.3 Assume that λ ∈ (0, λ∗), where λ∗ is given by (5.5). Then there exists ψ ∈ X
such that ψ ≥ 0, ψ �= 0 and Iλ(tψ) < 0 for all t > 0 small enough.

Proof By the conditions of Theorem 5.1, q− < p−
m . Let ε0 > 0 be such that q− + ε0 < p−

m .
Since q ∈ C(�), there exists an open set �0 ⊂ � such that |q(x)−q−| < ε0 for all x ∈ �0.
It follows that q(x) < q− + ε0 < p−

m for all x ∈ �0.
Let ψ ∈ X be such that supp (ψ) ⊃ �0, ψ(x) = 1 for all x ∈ �0 and 0 ≤ ψ ≤ 1 in �.

Then by (4.3) for any t ∈ (0, 1), we have

Iλ(tψ) =
∫

�

{ N∑

i=1

Ai (x, ∂xi (tψ)) + b(x)

pM (x)
|tψ |pM (x) − λ

q(x)
|tψ |q(x)

}
dx

≤ c6

N∑

i=1

∫

�

(
|∂xi (tψ)| + |∂xi (tψ)|pi (x)

pi (x)

)
dx + 1

p−
M

∫

�

b(x)|tψ |pM (x)dx

− λ

∫

�

1

q(x)
|tψ |q(x)dx

≤ c6t
p−
m

N∑

i=1

∫

�

(
|∂xi ψ | + 1

p−
m

|∂xi ψ |pi (x)
)
dx + t p

−
M

p−
M

∫

�

b(x)|ψ |pM (x)dx

− λ

q+

∫

�0

tq(x)|ψ |q(x)dx

≤ c6t
p−
m

N∑

i=1

∫

�

(
|∂xi ψ | + 1

p−
m

|∂xi ψ |pi (x)
)
dx + t p

−
m

p−
M

∫

�

b(x)|ψ |pM (x)dx

− λtq
−+ε0

q+

∫

�0

|ψ |q(x)dx .
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So, Iλ(tψ) < 0 for t < δ
1

P−
m −q−−ε0 , with

0 < δ < min

{

1,
λ

q+

∫

�0
|ψ |q(x)dx

c6
∑N

i=1

∫

�

(
|∂xi ψ | + 1

p−
m

|∂xi ψ |pi (x)
)
dx + 1

p−
M

∫

�
b(x)|ψ |pM (x)dx

}

.

��

Proof of Theorem 5.1 (i). Let λ∗ be defined as in (5.3) and λ ∈ (0, λ∗). By Lemma 5.2, it
follows that on the boundary of the ball centered at the origin and of radius ρ in X , we have

inf
∂Bρ(0)

Iλ(u) > 0.

On the other hand, by Lemma 5.3, there exists ψ ∈ X such that

Iλ(tψ) < 0 for t > 0 small enough.

Moreover, for u ∈ Bρ(0),

Iλ(u) ≥ min{1, b0}
p+
M (N + 1)p

+
M−1

‖u‖p+
M

W 1,−→p (x)(�)
− λ

q− cq
−

8 ‖u‖q−
W 1,−→p (x)(�)

.

It follows that

−∞ < c9 = inf
Bρ(0)

Iλ(u) < 0.

We let now 0 < ε < inf∂Bρ(0) Iλ − infBρ(0) Iλ. Applying Ekeland’s variational principle [13]

to the functional Iλ : Bρ(0) → R, we find uε ∈ Bρ(0) such that

Iλ(uε) < inf
Bρ(0)

Iλ + ε,

Iλ(uε) < Iλ(u) + ε‖u − uε‖W 1,−→p (x)(�)
, u �= uε.

Since

Iλ(uε) ≤ inf
Bρ(0)

Iλ + ε ≤ inf
Bρ(0)

Iλ + ε < inf
∂Bρ(0)

Iλ,

we deduce that uε ∈ Bρ(0). Now, we define Kλ : Bρ(0) → R by Kλ(u) = Iλ(u) + ε‖u −
uε‖W 1,−→p (x)(�)

. It is clear that uε is a minimum point of Kλ and thus

Kλ(uε + tv) − Kλ(uε)

t
≥ 0,

for small t > 0 and v ∈ Bρ(0). The above relation yields

Iλ(uε + tv) − Iλ(uε)

t
+ ε‖v‖W 1,−→p (x)(�)

≥ 0.

Letting t → 0 it follows that 〈I ′
λ(uε), v〉 + ε‖v‖W 1,−→p (x)(�)

> 0, hence ‖I ′
λ(uε)‖W 1,−→p (x)(�)

≤
ε. We deduce that there exists a sequence (vn) ⊂ B1(0) such that
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Iλ(vn) → c9 and I ′
λ(vn) → 0. (5.6)

It is clear that (vn) is bounded in X . Actually, with similar arguments as those used in the
end of Theorem 4.2, we can show that (vn) converges strongly to u1 in X . So, by (5.6)

Iλ(u1) = c9 < 0 and I ′
λ(u1) = 0,

that is, u1 is a nontrivial weak solution for the problem (2.1). This completes the proof. ��

Next, we want to construct a global minimizer of the functional Iλ. We start with the
following auxiliary result.

Lemma 5.4 The functional Iλ is coercive on X.

Proof Using the hypothesis (A2), relation (4.2) we deduce for all u ∈ X ,

Iλ(u) ≥ 1

p+
M

N∑

i=1

∫

�

|∂xi u|pi (x) dx + b0
p+
M

∫

�

|u|pM (x) dx

− λ

q−
[
(c1‖u‖W 1,−→p (x)(�)

)q
− + (c2‖u‖W 1,−→p (x)(�)

)q
+]

. (5.7)

Now we set ‖u‖W 1,−→p (x)(�)
> 1. Using the same techniques as in the proof of (4.7) combined

with (5.7) we find that

Iλ(u) ≥ c̃1‖u‖p−
m

W 1,−→p (x)(�)
− c̃2 − λ

q−
[
(c1‖u‖W 1,−→p (x)(�)

)q
− + (c2‖u‖W 1,−→p (x)(�)

)q
+]

,

for any u ∈ X with ‖u‖W 1,−→p (x)(�)
> 1. Since q− ≤ q+ < p−

m , we infer that Iλ(u) → ∞ as
‖u‖W 1,−→p (x)(�)

→ ∞, that is, Iλ is coercive. ��

Proof of Theorem 5.1 (ii). The same arguments as in the proof of Lemma 3 of [9] can be
used in order to show that Iλ is weakly lower semicontinuous on X . By Lemma 5.4, the
functional Iλ is also coercive on X . We know from [27] that there exists uλ ∈ X , a global
minimizer of Iλ and thus weak solution of problem (2.1).

We show that uλ is nontrivial if λ is large enough. Letting t0 > 1 be a constant and �1 be
an open subset of � with |�1| > 0, we assume that v0 ∈ X is such that v0(x) = t0 for any
x ∈ �1 and 0 ≤ v0(x) ≤ t0 in �\�1. We have

Iλ(v0) =
∫

�

{ N∑

i=1

Ai (x, ∂xi (v0)) + b(x)

pM (x)
|v0|pM (x) − λ

q(x)
|v0|q(x)

}
dx

≤ c6

N∑

i=1

∫

�

(
|∂xi (v0)| + |∂xi (v0)|pi (x)

pi (x)

)
dx + 1

p−
M

∫

�

b(x)|v0|pM (x) dx

− λ

∫

�

1

q(x)
|v0|q(x)dx ≤ c10 − λ

q+ tq
−

0 |�1|.

So there exists λ∗ > 0 such that Jλ(v0) < 0 for any λ ∈ (λ∗,+∞). It follows that for any
λ ≥ λ∗, uλ is a nontrivial weak solution of problem (2.1) for λ large enough. ��
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