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a b s t r a c t

We are concerned with the Lane–Emden–Fowler equation −1u = λk(x)uq
± h(x)up inΩ ,

subject to the Dirichlet boundary condition u = 0 on ∂Ω , where Ω is a smooth bounded
domain in RN , k and h are variable potential functions, and 0 < q < 1 < p. Our analysis
combines monotonicity methods with variational arguments.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and the main results

In this paper we are concerned with the study of combined effects in a class of nonlinear bifurcation problems that arise
in anisotropic continuous media. Bifurcation problems have a long history and their treatment goes back to the XVIIIth
century. To the best of our knowledge, the first bifurcation problem is related to the buckling of a thin rod under thrust and
was investigated by Daniel Bernoulli and Euler around 1744. In the case in which the rod is free to rotate at both end points,
this yields the one-dimensional bifurcation problemu′′

+ λ sin u = 0 in (0, L)
0 ≤ u ≤ π
u′(0) = u′(L) = 0.

Consider the bifurcation problem
−1u = λf (u) inΩ
u = 0 on ∂Ω, (1)

∗ Corresponding author at: Institute of Mathematics ‘‘Simion Stoilow’’ of the Romanian Academy, Bucharest, Romania. Tel.: +40 723049852.
E-mail addresses: vicentiu.radulescu@imar.ro (V. Rădulescu), dusan.repovs@guest.arnes.si (D. Repovš).

0362-546X/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2011.01.037



Author's personal copy

V. Rădulescu, D. Repovš / Nonlinear Analysis 75 (2012) 1524–1530 1525

where Ω ⊂ RN is a bounded domain with a smooth boundary. Problems of this type have been studied starting with the
pioneering paper [1] by Gelfand, who considered the case f (u) = eu. We also refer to the important contributions due to
Amann [2] and Keller and Cohen [3], who assumed that f is a function of class C1 which is convex and positive, such that
f ′(0) > 0. They proved the following basic facts:

(i) there exists λ∗
∈ (0,∞) such that problem (1) has (resp., has no) classical solution if λ ∈ (0, λ∗) (resp., λ > λ∗);

(ii) for λ ∈ (0, λ∗), among the solutions of (1) there exists a minimal one, say u(λ);
(iii) the mapping λ −→ u(λ) is convex, increasing and of class C1;
(iv) u(λ) is the only solution of problem (1) such that the operator −∆− λf ′(u) is coercive.

Motivated by a problem raised by Brezis, Mironescu and Rădulescu studied in [4,5] the case where f fulfills the above
hypotheses and has a linear growth at infinity, that is, there exists limt→∞ f (t)/t =: a ∈ (0,∞). The results in this
framework are strongly related with the sign of b := limt→∞(f (t)− at). For instance, if b ≥ 0 then the following properties
hold: (i) λ∗

= λ1/a; (ii) u(λ) is the unique solution of problem (1) for all λ ∈ (0, λ∗); (iii) limλ→λ∗− u(λ) = +∞ uniformly
on compact subsets ofΩ; and (iv) problem (1) has no solution if λ = λ∗. A different behavior holds if b ∈ [−∞, 0).

The perturbed nonlinear problem
−1u = λf (u)+ a(x)g(u) inΩ
u > 0 inΩ
u = 0 on ∂Ω,

(2)

was studied in [6], where f has either a sublinear or a linear growth at infinity, g is a singular nonlinearity, and a is a non-
negative potential. The framework discussed in [6] includes the case f (t) = tp and g(t) = t−γ , where 0 < p ≤ 1 and
0 < γ < 1. For instance, if f is sublinear and infx∈Ω a(x) > 0 then problem (2) has a unique solution for all λ ∈ R.
From a physical point of view, problem (2) arises in the context of chemical heterogeneous catalysis, in the theory of heat
conduction in electrically conductingmaterials, as well as in the study of non-Newtonian fluids, boundary-layer phenomena
for viscous fluids. Such equations are also encountered in glacial advance (see [7]), in transport of coal slurries downconveyor
belts (see [8]), and in several other geophysical and industrial contents (see [9] for the case of the incompressible flow of a
uniform stream past a semi-infinite flat plate at zero incidence).

The above results are summarized and completed in the recent works [10–13].
In this paper we are concernedwith the competition between convex and concave nonlinearities and variable potentials.

Such problems arise in the study of anisotropic continuous media. We point out that nonlinear elliptic equations with
convex–concave nonlinearities have been studied starting with the seminal paper by Ambrosetti et al. [14]. They considered
the Dirichlet problem

−1u = λuq
+ up, inΩ

u > 0, inΩ
u = 0, on ∂Ω,

(3)

where λ is a positive parameter, Ω ⊂ RN is a bounded domain with smooth boundary, and 0 < q < 1 < p < 2⋆ − 1
(2⋆ = 2N/(N − 2) if N ≥ 3, 2⋆ = +∞ if N = 1, 2). Ambrosetti et al. proved that there exists λ∗ > 0 such that problem (3)
admits at least two solutions for all λ ∈ (0, λ∗), has one solution for λ = λ∗, and no solution exists provided that λ > λ∗.
In [15], Alama and Tarantello studied the related Dirichlet problem with indefinite weights

−1u − λu = k(x)uq
− h(x)up, if x ∈ Ω

u > 0, if x ∈ Ω

u = 0, if x ∈ ∂Ω,
(4)

where h, k are non-negative and 1 < p < q. We refer to [16] for a related problem with lack of compactness.
In the present paper we are concerned with the nonlinear elliptic problem

−1u = λk(x)uq
± h(x)up, if x ∈ Ω

u > 0, if x ∈ Ω

u = 0, if x ∈ ∂Ω,
((Pλ)±)

under the basic assumption 0 < q < 1 < p.
If λ = 0, Eq. (Pλ)± is called the Lane–Emden–Fowler equation and arises in the boundary-layer theory of viscous fluids

(see [17]). This equation goes back to the paper by Lane [18] in 1869 and is originally motivated by Lane’s interest in
computing both the temperature and the density of mass on the surface of the sun. Eq. (Pλ)± describes the behavior of
the density of a gas sphere in hydrostatic equilibrium and the index p, which is called the polytropic index in astrophysics,
is related to the ratio of the specific heats of the gas. Problem (Pλ)± may be also viewed as a prototype of pattern
formation in biology and is related to the steady-state problem for a chemotactic aggregation model introduced by Keller
and Segel [19]. Problem (Pλ)± also plays an important role in the study of activator–inhibitor systems modeling biological
pattern formation, as proposed by Gierer and Meinhardt [20]. Problems of this type, as well as the associated evolution
equations, describe super-diffusivities phenomena. Such models have been proposed by de Gennes [21] to describe long
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range van der Waals interactions in thin films spread on solid surfaces. This equation also appears in the study of cellular
automata and interacting particle systems with self-organized criticality (see [22]), as well as to describe the flow over an
impermeable plate (see [9]). Problems of this type are obtained from evolution equations of the form

utt = div(um−1
∇u)+ h(x, u) inΩ × (0, T )

through the implicit discretization in time arising in nonlinear semigroup theory (see [23]).
Throughout this paper we assume that the variable weight functions k, h ∈ L∞(Ω) satisfy

ess infx∈Ωk(x) > 0 and ess infx∈Ωh(x) > 0.

We are concerned with the existence of weak solutions of problems (Pλ)+ and (Pλ)−, that is, functions u ∈ H1
0 (Ω) such

that

(i) u ≥ 0 a.e. onΩ and u > 0 on a subset ofΩ with positive measure;
(ii) for all ϕ ∈ H1

0 (Ω) the following identity holds∫
Ω

∇u∇ϕ dx =

∫
Ω


λk(x)uq

± h(x)upϕ dx.

The main results of this paper give a complete description of both cases arising in problem (Pλ)±. The first theorem is
concernedwith problem (Pλ)+ and establishes the existence of aminimal solution, provided thatλ > 0 is small enough. This
result gives a complete qualitative analysis of the problem and the proof combinesmonotonicity argumentswith variational
techniques. We refer to Bartsch and Willem [24] for a related problem that is treated by means of a new critical point
theorem, which guarantees the existence of infinitely many critical values of an even functional in a bounded range. In
this framework, Bartsch and Willem proved that there exists a sequence (un) of solutions (not necessarily positive!) with
corresponding energy E(un) < 0 and such that E(un) → 0 as n → ∞.

Theorem 1.1. Assume 0 < q < 1 < p < 2⋆ − 1. Then there exists a positive number λ∗ such that the following properties hold:

(a) for all λ ∈ (0, λ∗) problem (Pλ)+ has a minimal solution u(λ). Moreover, the mapping λ −→ u(λ) is increasing.
(b) Problem (Pλ)+ has a solution if λ = λ∗;
(c) problem (Pλ)+ does not have any solution if λ > λ∗.

The next result is concerned with problem (Pλ)− and asserts that there is some λ∗ > 0 such that (Pλ)− has a nontrivial
solution if λ > λ∗ and no solution exists provided that λ < λ∗.

Theorem 1.2. Assume 0 < q < 1 < p < 2⋆ − 1. Then there exists a positive number λ∗ the following properties hold:

(a) if λ > λ∗, then problem (Pλ)− has at least one solution;
(b) if λ < λ∗, then problem (Pλ)− does not have any solution.

We point out that related results have been established by Il’yasov [25] and Lubyshev [26,27]. However, the proof
techniques of [25–27] are completely different from the arguments in the present paper and they rely on the global fibering
method introduced by Pohozaev [28], which is among themost powerful tools for studying nonlinear differential equations.
The fibering scheme allows Il’yasov and Lubyshev to find constructively constrained minimization problems which have
the property of ground among all constrained minimization problems corresponding to the given energy functional. We
also refer to Bozhkov and Mitidieri [29,30] for relatively closed ‘‘convex–concave’’ settings, both for nonlinear differential
equations and for quasilinear elliptic systems with Dirichlet boundary condition. Garcia Azorero and Peral Alonso [31] used
the mountain pass theorem to obtain the existence of a sign-changing solution in a related quasilinear setting.

2. Proof of Theorem 1.1

We first prove that if λ > 0 is sufficiently small then problem (Pλ)+ has a solution. For this purpose we use the method
of sub- and super-solutions.

Consider the problem
−1w = λk(x)wq, inΩ
w > 0, inΩ
w = 0, on ∂Ω.

(5)

Then, by [32], problem (5) has a unique solutionw. We prove that the function u := εw is a sub-solution of problem (Pλ)+
provided that ε > 0 is small enough. For this purpose it suffices to show that

ελk(x)wq
≤ λk(x)εqwq

+ h(x)εpwp inΩ,

which is true for all ε ∈ (0, 1).
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Let v be the unique solution of the linear problem
−1v = 1, inΩ
v = 0, on ∂Ω.

We prove that if λ > 0 is small enough then there is M > 0 such that u := Mv is a super-solution of (Pλ)+. Therefore it
suffices to show that

M ≥ λk(x)(Mv)q + h(x)(Mu)p inΩ. (6)

Set

A := ‖k‖L∞‖ · ‖v ‖
q
L∞ and B := ‖h ‖L∞ ‖ · ‖v‖

p
L∞ .

Thus, by (6), it is enough to show that there isM > 0 such that

M ≥ λAMq
+ BMp

or, equivalently,

1 ≥ λAMq−1
+ BMp−1. (7)

Consider the mapping (0,∞) ∋ t −→ λAtq−1
+ Btp−1. A straightforward computation shows that this function attains its

minimum for t = Cλ1/(p−q), where C = [AB−1(1 − q)(p − 1)−1
]
(q−1)/(p−q). Moreover, the global minimum of this mapping

is

(ACq−1
+ BCp−1)λ(p−1)/(p−q).

This shows that condition (7) is fulfilled for all λ ∈ (0, λ0] andM = Cλ1/(p−q), where λ0 > 0 satisfies

(ACq−1
+ BCp−1)λ

(p−1)/(p−q)
0 = 1.

It remain to argue that εw ≤ Mv. This is a consequence of the maximum principle (see [33]), provided that ε > 0 is
small enough. Thus, problem (Pλ)+ has at least one solution u(λ) for all λ < λ∗.

Set

λ∗
:= sup{λ > 0; problem (Pλ)+ has a solution}.

By the definition of λ∗, problem (Pλ)+ does not have any solution if λ > λ∗. In what followswe claim that λ∗ is finite. Denote

m := min {ess infx∈Ωk(x), ess infx∈Ωh(x)} > 0.

Let λ′ > 0 be such that m(λ′
+ tp−q) > λ1t1−q for all t ≥ 0, where λ1 stands for the first eigenvalue of (−∆) in H1

0 (Ω).
Denote by ϕ1 > 0 an eigenfunction of the Laplace operator corresponding to λ1. Since u(λ) solves (Pλ)+ we have for all
λ > λ′,

λ1

∫
Ω

u(λ)ϕ1dx =

∫
Ω


λk(x)u(λ)q + h(x)u(λ)p


ϕ1dx

≥

∫
Ω

m(λu(λ)q + u(λ)p)ϕ1dx > λ1

∫
Ω

u(λ)ϕ1dx.

This implies that λ∗
≤ λ′ < +∞, which proves our claim.

Let us now prove that u(λ) is a minimal solution of (Pλ)+. Consider the sequence (un)n≥0 defined by u0 = w (w is the
unique solution of (5)) and un is the unique solution of the problem−1un = λk(x)uq

n−1 + h(x)up
n−1, inΩ

un > 0, inΩ
un = 0, on ∂Ω.

Then, by the maximum principle, un ≤ un+1 ≤ u(λ). Moreover, by the same argument as in [14], the sequence (un)n≥0
converges to u(λ). In order to show that u(λ) is a minimal solution, let U be an arbitrary solution of problem (Pλ)+. Thus, by
the maximum principle, w = u0 ≤ U and, by recurrence, un ≤ U for all n ≥ 1. It follows that u(λ) ≤ U . At this stage it is
easy to deduce that the mapping λ −→ u(λ) is increasing. Fix 0 < λ1 < λ2 < λ∗. Then u(λ2) is a super-solution of problem
(Pλ1)+, hence, by minimality, u(λ1) ≤ u(λ2). The fact that λ1 < λ2, combined with the maximum principle implies that
u(λ1) < u(λ2).

It remains to show that problem (Pλ)+ has a solution if λ = λ∗. For this purpose it is enough to prove that (u(λ)) is
bounded in H1

0 (Ω) as λ → λ∗. Thus, up to a subsequence, u(λ) ⇀ u∗ in H1
0 (Ω) as λ → λ∗, which implies that u∗ is a weak

solution of (Pλ)+ provided that λ = λ∗. Moreover, since the mapping λ −→ u(λ) is increasing, it follows that u∗
≥ 0 a.e. on
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Ω and u∗ > 0 on a subset ofΩ with positive measure. A key ingredient of the proof is that all solutions u(λ) have negative
energy. More precisely, if E : H1

0 (Ω) → R is defined by

E(u) :=
1
2

∫
Ω

|∇u|2dx −
λ

q + 1

∫
Ω

k(x)|u|q+1dx −
1

p + 1

∫
Ω

h(x)|u|p+1dx

then

E(u(λ)) < 0 for all λ ∈ (0, λ∗). (8)

To deduce (8) we split the proof into the following steps:
(i) the solution u(λ) is semi-stable, that is, the linearized operator −∆− λqk(x)u(λ)q−1

− ph(x)u(λ)p−1 is coercive:∫
Ω


|∇ψ |

2
− (λqk(x)u(λ)q−1

+ ph(x)u(λ)p−1)ψ2 dx ≥ 0 for all ψ ∈ H1
0 (Ω).

Therefore∫
Ω


|∇u(λ)|2 − (λqk(x)u(λ)q+1

+ ph(x)u(λ)p+1)

dx ≥ 0. (9)

This follows by the same proof as in [13, Theorem 1.9].
(ii) Since u(λ) is a solution of (Pλ)+ we have∫

Ω

|∇u(λ)|2dx = λ

∫
Ω

k(x)u(λ)q+1dx +

∫
Ω

h(x)u(λ)p+1dx. (10)

Combining relations (9) and (10) we deduce that

λ(1 − q)
∫
Ω

k(x)u(λ)q+1dx ≥ (p − 1)
∫
Ω

h(x)u(λ)p+1dx. (11)

Next, we observe that relation (10) implies

E(u(λ)) = λ


1
2

−
1

q + 1

 ∫
Ω

k(x)u(λ)q+1dx +


1
2

−
1

p + 1

 ∫
Ω

h(x)u(λ)p+1dx

= −λ
1 − q

2(q + 1)

∫
Ω

k(x)u(λ)q+1dx +
p − 1

2(p + 1)

∫
Ω

h(x)u(λ)p+1dx

≤ −λ
1 − q

2(q + 1)

∫
Ω

k(x)u(λ)q+1dx + λ
1 − q

2(p + 1)

∫
Ω

k(x)u(λ)p+1dx ≤ 0,

by (11).
To complete the proof, it remains to argue that supλ<λ∗ ‖u(λ)‖H1

0
< +∞. This follows after combining relations (8) and

(9), Sobolev embeddings, and using the fact that k, h ∈ L∞(Ω). This completes the proof. �

3. Proof of Theorem 1.2

The energy functional associated to problem (Pλ)− is Fλ : H1
0 (Ω) → R and it is defined by

Fλ(u) :=
1
2

∫
Ω

|∇u|2dx −
λ

q + 1

∫
Ω

k(x)|u|q+1dx +
1

p + 1

∫
Ω

h(x)|u|p+1dx.

Set

‖u‖ :=

∫
Ω

|∇u|2dx
1/2

; ‖u‖q+1 :=

∫
Ω

|u|q+1dx
1/(q+1)

; ‖u‖p+1 :=

∫
Ω

|u|p+1dx
1/(p+1)

.

We first prove that Fλ is coercive. Indeed,

Fλ(u) ≥
1
2

‖u‖2
− C1‖u‖

q+1
q+1 + C2‖u‖

p+1
p+1,

where C1 = λ(q + 1)−1
‖k‖L∞ and C2 = (p + 1)−1ess infx∈Ωh(x) are positive constants. Since q < p, a straightforward

computation shows that the mapping (0,+∞) ∋ t −→ Atp+1
− Btq+1 attains its global minimumm < 0 at

t =

[
B(q + 1)
A(p + 1)

]1/(p−q)

.
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Therefore

Fλ(u) ≥
1
2
‖u‖2

+ m,

hence Fλ(u) → +∞ as ‖u‖ → ∞.
Let (un) be a minimizing sequence of Fλ in H1

0 (Ω). Since Fλ is coercive, it follows that (un) is bounded. Without loss of
generality, wemay assume that un is non-negative and that (un) converges weakly to some u inH1

0 (Ω). Standard arguments
based on the lower semi-continuity of the energy functional show that u is a global minimizer of Fλ, hence a non-negative
solution of problem (Pλ)−.

In what followswe prove that theweak limit u is a non-negativeweak solution of problem (Pλ)− if λ > 0 is large enough.
We first observe that Fλ(0) = 0. So, in order to prove that the non-negative solution is nontrivial, it suffices to prove that
there existsΛ > 0 such that

inf
u∈H1

0 (Ω)
Fλ(u) < 0 for all λ > Λ.

For this purpose we consider the constrained minimization problem

Λ := inf

1
2

∫
Ω

|∇v|2dx +
1

p + 1

∫
Ω

h(x)|v|p+1dx; v ∈ H1
0 (Ω) and

1
q + 1

∫
Ω

k(x)|v|q+1dx = 1

. (12)

Let (vn) be an arbitrary minimizing sequence for this problem. Then (vn) is bounded, hence we can assume that it weakly
converges to some v ∈ H1

0 (Ω)with

1
q + 1

∫
Ω

k(x)|v|q+1dx = 1 and Λ :=
1
2

∫
Ω

|∇v|2dx +
1

p + 1

∫
Ω

h(x)|v|p+1dx.

Thus, Fλ(v) = Λ− λ < 0 for all λ > Λ.
Set

λ∗
:= inf{λ > 0; problem (Pλ)− admits a nontrivial weak solution} ≥ 0.

The above remarks show thatΛ ≥ λ∗ and that problem (Pλ)− has a solution for all λ > Λ. We now argue that problem
(Pλ)− has a solution for all λ > λ∗. Fix λ > λ∗. By the definition of λ∗, there existsµ ∈ (λ∗, λ) such that Fµ has a nontrivial
critical point uµ ∈ H1

0 (Ω). Since µ < λ, it follows that uµ is a sub-solution of problem (Pλ)−. We now want to construct a
super-solution that dominates uµ. For this purpose we consider the constrained minimization problem

inf

Fλ(v); v ∈ H1

0 (Ω) and v ≥ uµ

. (13)

The same arguments as those used to treat (12) show that problem (13) has a solution uλ ≥ uµ. Moreover, uλ is a solution
of problem (Pλ)−, for all λ > λ∗. With the arguments developed in [34, p. 712] we deduce that problem (Pλ)− has a solution
if λ = λ∗. The same monotonicity arguments as above show that (Pλ)− does not have any solution if λ < λ∗.

Fix λ > λ∗. It remains to argue that the non-negative weak solution u is, in fact, positive. Indeed, using similar arguments
as in [35], which are based on the Moser iteration, we obtain that u ∈ L∞(Ω). Next, by bootstrap regularity, u is a classical
solution of problem (Pλ)−. Since u is a non-negative smooth weak solution of the differential inequality 1u − h(x)up

≤ 0
inΩ , with p > 1, we deduce that u > 0 inΩ . This follows by applying the methods developed in Section 4.8 of Pucci and
Serrin [36] and the comments therein. This completes the proof. �
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