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The solutions of many problems are found to be stationary points of some associated
“energy” functionals. Often such a functional is unbounded from above and below, so
that it has no maximum or minimum. This forces one to look for saddle points, which
are obtained by mini-max arguments. One specifies a functional 𝐼𝐼 on a Banach space 𝑋𝑋 ,
and two points 0 and 𝑒𝑒 of 𝑋𝑋 , where 0 is the origin. For each smooth path 𝑔𝑔(𝑡𝑡) which
connects 0 with 𝑒𝑒, one defines the functional max𝑡𝑡 𝐼𝐼(𝑔𝑔(𝑡𝑡)). One then tries to minimize
this functional with respect to the choice of 𝑔𝑔(𝑡𝑡) in the collection 𝐺𝐺 of all such paths.
Thus, it is natural to define

𝑏𝑏 = inf
𝑔𝑔(𝑡𝑡)∈𝐺𝐺

sup
𝑢𝑢∈𝑔𝑔(𝑡𝑡)

𝐼𝐼(𝑢𝑢) (1)

and to prove, under various hypotheses, that 𝑏𝑏 is a critical value of 𝐼𝐼. Indeed, it seems
intuitively obvious that 𝑏𝑏 defined in relation (1) is a critical value of 𝐼𝐼. However, this
is not true in general, as showed by the following example in the plane: let 𝐼𝐼(𝑥𝑥𝑥 𝑥𝑥) =
𝑥𝑥2−(𝑥𝑥−1)3𝑥𝑥2. Because 𝐼𝐼 has a proper local minimum at the origin, then 𝑏𝑏 𝑏 0 whenever
𝑒𝑒 ∕= 0. Moreover, choosing 𝑒𝑒 = (2𝑥 2), we observe that 𝐼𝐼 = 1 along the line 𝑥𝑥 = 1, which
separates 0 from 𝑒𝑒, so that 𝑏𝑏 ≥ 1, hence it is not a critical value. In fact, 𝑏𝑏 = 1, but there
is no path 𝑔𝑔(𝑡𝑡) in 𝐺𝐺 such that 𝐼𝐼(𝑔𝑔(𝑡𝑡)) ≤ 1.

One of the most important mini-max properties is the so-called mountain pass
theorem, which is a deep result in modern nonlinear analysis. It marks the beginning of
a new approach to critical point theory. The mountain pass theorem was established by
Ambrosetti and Rabinowitz in [1]. Their original proof relies on some deep deformation
techniques developed by Palais and Smale [8, 9], who put the main ideas of the Morse
theory into the framework of differential topology on infinite-dimensional manifolds.

In the statement of the mountain pass theorem, the strict inequality in the geometric
condition

inf
𝑆𝑆(0,𝑅𝑅)

𝐼𝐼 𝑏 max{𝐼𝐼(0)𝑥 𝐼𝐼(𝑒𝑒)} 𝑥 (2)

which means that the mountain ridge separating the points 0 and 𝑒𝑒 has an altitude which
is strictly higher than those of 0 and 𝑒𝑒, plays an essential role in the proof.

In paper [ii] below P. Pucci and J. Serrin studied what happens when the equality
holds in relation (2). In such a case, Pucci and Serrin located a critical point of level 𝑏𝑏
on the sphere 𝑆𝑆(0𝑥 𝑅𝑅). Their argument is based on the observation that there is a critical
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point in the closure of an open ring 𝐴𝐴 around the sphere such that the distance between
the boundary of 𝐴𝐴 and 𝑆𝑆(0, 𝑅𝑅) can be taken arbitrarily small. However, in the infinite-
dimensional case, they established that the mountain pass theorem still holds true when
the strict inequality in (2) is replaced a non-strict inequality. Their result in this case is
the following.

Theorem (P. Pucci & J. Serrin [ii]). Let 𝑋𝑋 be a real Banach space and let 𝐼𝐼 : 𝑋𝑋 → ℝ be
a 𝐶𝐶1-functional satisfying the following conditions:

(i) there exist numbers 𝑎𝑎, 𝑟𝑟, 𝑅𝑅 such that 0 < 𝑟𝑟 < 𝑅𝑅 and 𝐼𝐼(𝑢𝑢) ≥ 𝑎𝑎 for all 𝑢𝑢 ∈ 𝐴𝐴 := {𝑢𝑢 ∈
𝑋𝑋 : 𝑟𝑟 < ∥𝑢𝑢∥ < 𝑅𝑅};

(ii) 𝐼𝐼(0) ≤ 𝑎𝑎 and 𝐼𝐼(𝑒𝑒) ≤ 𝑎𝑎 for some 𝑒𝑒 ∈ 𝑋𝑋 with ∥𝑒𝑒∥ ≥ 𝑅𝑅.

Then 𝐼𝐼 has a critical point 𝑥𝑥0 in 𝑋𝑋, different from 0 and 𝑒𝑒, with critical value 𝑏𝑏 ≥ 𝑎𝑎; in
addition, 𝑥𝑥0 ∈ 𝐴𝐴 when 𝑏𝑏 = 𝑎𝑎.

We point out that the restriction of the mountain ridge to an annulus centered at
0 is not necessary and the above result remains true when the annulus is replaced by a
topological annulus.

This theorem implies the existence of an infinite number of critical points in the
ring 𝐴𝐴, since the preceding theorem applies in any of its sub-rings.

We point out that another extension of the mountain pass theorem is due to Ghous-
soub and Preiss [4]. We refer to the monographs [5] and [6] for applications to nonlinear
PDEs and to the survey [10] for an historical development of the mountain pass theory.

P. Pucci and J. Serrin [i] have also established two interesting corollaries of their
mountain pass theorem in the limiting case. The first one is the three critical point
theorem, which asserts that a 𝐶𝐶1 functional with the Palais-Smale property that has two
local minimum points has a third critical point. We refer to Ricceri [11] and Bonanno
[2] for results concerning the stability, resp. the location of the critical points in the
three critical point theorem. The second relevant application of the limiting case of the
mountain pass theorem found in [i,ii] states that a 𝑣𝑣-periodic 𝐶𝐶1 functional with a local
minimum 𝑒𝑒 has a critical point 𝑥𝑥0 ∕= 𝑒𝑒+ 𝑘𝑘𝑣𝑣, 𝑘𝑘 = 0, ±1, ±2, . . .. This critical point yields
a second independent solution of the forced pendulum equation studied by Mawhin and
Willem [7].

Brezis and Nirenberg [3] also proved a version of the mountain pass theorem that in-
cludes the limiting case corresponding to mountains of zero altitude. Their proof combines
a pseudo-gradient lemma, an original perturbation argument and Ekeland’s variational
principle.
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