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Abstract. We study the existence of homoclinic solutions for a class of

non-homogeneous difference equation with periodic coefficients. Our proofs

rely on the critical point theory combined with adequate variational tech-
niques, which are mainly based on the mountain-pass lemma.

1. Introduction

Partial difference equations usually describe the evolution of certain phe-
nomena over the course of time. Elementary but relevant examples of partial
difference equations are concerned with heat diffusion, heat control, temper-
ature distribution, population growth, cellular neural networks, etc. We are
concerned in this paper with a class of partial difference equations involving
a nonhomogeneous operator. Our interest for problems of this type is motivated
by major applications of differential and difference operators to various applied
fields, such as electrorheological (smart) fluids, space technology, robotics, image
processing, etc.

Let T > 0 be a given natural number and let p( · ), q( · ): Z → (1,∞),
V ( · ): Z → R be three T -periodic functions and f(k, t): Z× R → R be a contin-
uous function in t ∈ R and T -periodic in k. This paper is devoted to the study
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of the difference non-homogeneous equations of type

(1.1)

{
∆2

p(k−1)u(k − 1)− V (k)|u(k)|q(k)−2u(k) + f(k, u(k)) = 0 for k ∈ Z,

u(k) → 0 as |k| → ∞,

where ∆2
p( · ) stands for the p( · )-Laplace difference operator, that is,

(1.2) ∆2
p(k−1)u(k − 1) = |∆u(k)|p(k)−2∆u(k)− |∆u(k − 1)|p(k−1)−2∆u(k − 1),

for each k ∈ Z. We have denoted by ∆ the difference operator, which is defined
by

∆u(k) = u(k + 1)− u(k), for each k ∈ Z.

The goal of the present paper is to establish the existence of nontrivial ho-
moclinic solutions for problem (1.1). In order to explain the notion of homoclinic
solution we go back to the definition of homoclinic orbit, which was introduced by
H. Poincaré [14] in the context of Hamiltonian systems. More exactly, Poincaré
called a trajectory x(t) a homoclinic orbit (or doubly asymptotic trajectory) if it
is asymptotic to a constant as |t| → ∞. Since we are seeking solutions u(k) for
problem (1.1) satisfying lim|k|→∞ u(k) = 0, in accord with the above discussion,
we are interested in finding nontrivial homoclinic solutions for problem (1.1).

Throughout the years the study of existence of homoclinic orbits by means
of variational methods has captured a special attention (see e.g. [5], [13], [8],
[15]–[17] and the references therein). Particularly, we point out the very recent
advances in this field obtained by C. Li [10] and A. Cabada, C. Li and S. Ter-
sian [4]. More exactly, in [10] a unified approach to the existence of homoclinic
orbits for some classes of ODE’s with periodic potentials is established while
in [4] the authors extend the ideas from [10] to the case of homoclinic orbits for
discrete p-Laplacian type equations. Motivated by the studies in [10] and [4], we
focus in the present paper on the case of non-homogeneous difference equations.

An important feature of this paper is the presence of the nonconstant poten-
tial p( · ). The study of difference equations involving non-homogeneous differ-
ence operators of type (1.2) was initiated by M. Mihăilescu, V. Rădulescu and
S. Tersian in [12], where some eigenvalue problems were investigated. After our
best knowledge the present paper represents a first attempt in finding homoclinic
solutions for non-homogeneous difference equations.

Finally, we remember that boundary value problems involving difference op-
erators have been intensively studied in the last decade. In this context we
point out the results obtained in the papers of R. P. Agarwal, K. Perera and
D. O’Regan [1], A. Cabada, A. Iannizzotto and S. Tersian [3], H. Fang and
D. Zhao [7], M. Ma and Z. Guo [11], A. Kristály, M. Mihăilescu, V. Rădulescu
and S. Tersian [9].
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2. Main result

Throughout this paper we denote

p+ := sup
k∈Z

p(k), p− := inf
k∈Z

p(k), q+ := sup
k∈Z

q(k), q− := inf
k∈Z

q(k),

and we assume that

(2.1) 1 < q− ≤ q+ < p− ≤ p+.

We also assume that the T -periodic function V satisfies the supplementary con-
ditions:

(V1) 0 < V0 := min{V (0), . . . , V (T − 1)};
(V2) V0 < q+,

while the continuous function f = f(k, t): Z × R → R which is assumed to be
T -periodic in k verifies

(F1) there exist α > p+ and r > 0 such that

αF (k, t) := α

∫ t

0

f(k, s) ds ≤ tf(k, t), for all k ∈ Z, t 6= 0,

and F (k, t) > 0 for all k ∈ Z, t ≥ r;
(F2) f(k, t) = o(|t|q+−1) as |t| → 0.

In order to present our main result, we introduce for each p( · ): Z → (1,∞)
the space

`p( · ) :=
{

u: Z → R; ρp( · )(u) :=
∑
k∈Z

|u(k)|p(k) < ∞
}

.

On `p( · ) we introduce the Luxemburg norm

|u|p( · ) := inf
{

µ > 0;
∑
k∈Z

∣∣∣∣u(k)
µ

∣∣∣∣p(k)

≤ 1
}

.

It is easy to check that the following relations hold true

|u|p( · ) < 1 ⇒ |u|p
+

p( · ) ≤ ρp( · )(u) ≤ |u|p
−

p( · ),(2.2)

|u|p( · ) > 1 ⇒ |u|p
−

p( · ) ≤ ρp( · )(u) ≤ |u|p
+

p( · ),(2.3)

|u|p( · ) → 0 ⇔ ρp( · )(u) → 0.(2.4)

We also consider the space

`∞ =
{

u: Z → R; |u|∞ := sup
k∈Z

|u(k)| < ∞
}

.

We start with the following embedding property.
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Proposition 2.1. Assume condition (2.1) is fulfilled. Then `q( · ) ⊂ `p( · ).

Proof. Indeed, if
∑

k∈Z |u(k)|p(k) < ∞ then there exists S > 0 such that

|u(k)|q(k) ≤ 1, for all |k| > S.

It follows that
|u(k)| ≤ 1, for all |k| > S.

By relation (2.1) we infer that q(k) < p(k) for all k ∈ Z. That fact and the above
inequality assure that

|u(k)|p(k) ≤ |u(k)|q(k), for all |k| > S,

and the conclusion of Proposition 2.1 is obvious now. �

By Proposition 2.1, relation (2.1) and the hypotheses on functions V and f

we infer that the natural space where we should seek homoclinic solutions for
(1.1) is `q( · ). Thus, we say that u ∈ `q( · ) is a homoclinic solution for (1.1) if∑

k∈Z
|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1)

+
∑
k∈Z

V (k)|u(k)|q(k)−2u(k)v(k)−
∑
k∈Z

f(k, u(k))v(k) = 0,

for all v ∈ `q( · ) and lim|k|→∞ u(k) = 0.
The main result of this paper is given by the following theorem.

Theorem 2.2. Assume hypotheses (2.1), (V1), (V2), (F1) and (F2) are
fulfilled. Then problem (1.1) possesses at least a nontrivial homoclinic solution.
Moreover, given a nontrivial homoclinic solution u of problem (1.1), there exist
two integers S1 and S2 with S1 ≤ S2 such that for all k > S2 and all k < S1 the
sequence u(k) is strictly monotone.

3. Auxiliary results

The basic idea in proving Theorem 2.2 is to consider the associate energetic
functional of problem (1.1) and to show that it possesses a nontrivial critical
point by using the mountain-pass lemma, see [2]. In order to do that we first
introduce the following notations:

ϕp(t)(t) := |t|p(t)−2t, Φp(t)(t) :=
|t|p(t)

p(t)
.

Note that
∆2

p(k−1)u(k − 1) = ∆(ϕp(k−1)(∆u(k − 1))).

Next, we introduce the functional A: `q( · ) → R defined by

A(u) :=
∑
k∈Z

Φp(k−1)(∆u(k − 1)) +
∑
k∈Z

V (k)Φq(k)(u(k)).
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Now we define the energetic functional associate to problem (1.1) as J : `q( · ) → R
defined by

J(u) := A(u)−
∑
k∈Z

F (k, u(k)).

Standard arguments show that J ∈ C1(`q( · ), R) with the derivative given by

〈J ′(u), v〉 =
∑
k∈Z

[|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1)

+ V (k)|u(k)|q(k)−2u(k)v(k)− f(k, u(k))v(k)],

for all u, v ∈ `q( · ). Thus, we found that the critical points of J correspond to
the weak solutions of equation (1.1).

In order to facilitate further computations we point out that on `q( · ) we can
introduce an equivalent norm with | · |q( · ), namely

‖u‖q( · ) := inf
{

µ > 0;
∑
k∈Z

V (k)
q(k)

∣∣∣∣u(k)
µ

∣∣∣∣q(k)

≤ 1
}

.

It is easy to check the following properties of the above norm

‖u‖q( · ) < 1 ⇒ ‖u‖q+

q( · ) ≤
∑
k∈Z

V (k)
q(k)

|u(k)|q(k) ≤ ‖u‖q−

q( · ),(3.1)

‖u‖q( · ) > 1 ⇒ ‖u‖q−

q( · ) ≤
∑
k∈Z

V (k)
q(k)

|u(k)|q(k) ≤ ‖u‖q+

q( · ),(3.2)

‖u‖q( · ) → 0 ⇔
∑
k∈Z

V (k)
q(k)

|u(k)|q(k) → 0.(3.3)

The next lemma assures that J has a mountain-pass geometry.

Lemma 3.1. Assume the hypotheses of Theorem 2.2 are fulfilled. Then there
exists % > 0 and ν > 0 and e ∈ `q( · ) with ‖e‖q( · ) > % such that

(a) J(u) ≥ ν for all u ∈ `q( · ) with ‖u‖q( · ) > %;
(b) J(e) < 0.

Proof. (a) Condition (F2) implies that there exists δ ∈ (0, 1) such that

(3.4) F (k, t) ≤ V0

2q+
|t|q

+
≤ V0

2q+
|t|q(k),

for all |t| ≤ δ and all k ∈ Z. Define

% :=
(

V0

q+

)1/q−

δq+/q− .
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By condition (V2) we deduce that % ∈ (0, 1). Then for any ‖u‖q( · ) = % relation
(3.1) yields

%q− =
V0

q+
δq+

= ‖u‖q−

q( · ) ≥
∑
i∈Z

V (i)
q(i)

|u(i)|q(i) ≥ V0

q+
|u(k)|q(k),

for all k ∈ Z. It follows that

1 > δq+
≥ |u(k)|q(k),

for all k ∈ Z. Consequently, |u(k)| < 1 for every k ∈ Z and thus

|u(k)|q(k) ≥ |u(k)|q
+
,

for all k ∈ Z. The above inequalities show that actually δ ≥ |u(k)|, for all k ∈ Z.
Next, by (3.4) we deduce∑

k∈Z
F (k, u(k)) ≤ V0

2q+

∑
k∈Z

|u(k)|q(k) ≤ 1
2

∑
k∈Z

V (k)
q(k)

|u(k)|q(k),

provided ‖u‖q( · ) = %. Defining ν := %q+
/2, we get by (3.1) that for each u with

‖u‖q( · ) = % it holds true the following estimates

J(u) = A(u)−
∑
k∈Z

F (k, u(k)) ≥
∑
k∈Z

V (k)
q(k)

|u(k)|q(k) − 1
2

∑
k∈Z

V (k)
q(k)

|u(k)|q(k)

≥ 1
2

∑
k∈Z

V (k)
q(k)

|u(k)|q(k) ≥ 1
2
‖u‖q+

q( · ) = ν.

Thus, the first part of the lemma is verified.
(b) We infer by condition (F1) that there exist two constants c1 > 0 and

c2 > 0 such that

F (k, t) ≥ c1|t|α − c2,

for all k ∈ Z and all t ∈ R. Define v ∈ `q( · ) by v(0) = a > 0 and v(k) = 0 if
k 6= 0. We find

J(ηv) = A(ηv)−
∑
k∈Z

F (k, ηv(k)) =
2

p(0)
ηp(0)ap(0)+V (0)

ηq(0)aq(0)

q(0)
−c1η

αaα +c2,

for each η > 0. Since by relation (2.1) we have α > p+ ≥ p(0) ≥ p− > q+ ≥ q(0)
the above relation shows that for any η > 0 sufficiently large we have J(ηv) < 0.�

In order to prove the next result, we recall that given c ∈ R, we say that
a sequence un ⊂ `q( · ) is said to satisfy the (PS)c condition if

J(un) → c and J ′(un) → 0.
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Lemma 3.2. Assume the hypotheses of Theorem 2.2 are fulfilled. Then, there
exists c > 0 and a bounded (P)c sequence for J in `q( · ).

Proof. Lemma 3.1 and the mountain-pass lemma imply that there exists
a sequence {un} ⊂ `q( · ) such that

(3.5) J(un) → c, J ′(un) → 0,

where c := infγ∈Γ maxt∈[0,1] J(γ(t)) and

Γ := {γ ∈ C([0, 1], `q( · )); γ(0) = 0, γ(1) = e}

with e given in Lemma 3.1(b). We verify that {un} is bounded in `q( · ). Indeed,
assuming that ‖un‖q( · ) > 1 for each n we deduce by condition (F1) and relation
(3.2) that

αJ(un) − 〈J ′(un), un〉

=
∑
k∈Z

(
α

p(k)
− 1

)
|∆un(k − 1)|p(k−1) +

∑
k∈Z

(
α

q(k)
− 1

)
V (k)|un(k)|q(k)

−
∑
k∈Z

[αF (k, un(k))− f(k, un(k))un(k)] ≥ (α− q+)‖un‖q−

q( · ),

for all n. The above estimates and condition (3.5) show that {un} is bounded
in `q( · ). �

Proof of Theorem 2.2. Assume {un} is the sequence given by Lemma 3.2.
Then for each n ∈ N the sequence {|un(k)|; k ∈ Z} ⊂ `q( · ) is bounded and
|un(k)| → 0 as |k| → ∞.

Assume that {|un(k)|}k∈Z achieves its maximum in kn ∈ Z. Undoubtedly,
there exists jn ∈ Z such that

jnT ≤ kn < (jn + 1)T,

and define wn(k) := un(k − jnT ). Then {|wn(k)|}k∈Z attains its maximum in
in := kn − jnT ∈ [0, T ].

The T -periodicity of p( · ), q( · ) and V ( · ) implies∑
k∈Z

V (k)
q(k)

|un(k)|q(k) =
∑
k∈Z

V (k)
q(k)

|wn(k)|q(k) and J(un) = J(wn).

Since {un}n∈N is bounded in `q( · ) the above estimates and relations (3.1) and
(3.2) yield that {wn}n∈N is bounded in `q( · ), too. Then there exists w ∈ `q( · )

such that wn converges weakly to w in `q( · ) as n →∞.
We claim that wn(k) → w(k) as n →∞ for each k ∈ Z. Indeed, defining the

test function vm ∈ `q( · ) by

vm(j) :=

{
1 if j = m,

0 if j 6= m,
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and taking into account the weak convergence of wn to w in `q( · ) we find

lim
n→∞

wn(k) = lim
n→∞

〈wn, vk〉 = 〈w, vk〉 = w(k),

for all k ∈ Z. The claim is clear now.
Next, we point out that for each v ∈ `q( · ) we have

|〈J ′(wn), v〉| = |〈J ′(un), v(·+ jnT )〉| ≤ ‖J ′(un)‖?‖v‖q( · ),

which in view of relation (3.5) from Lemma 3.2 implies J ′(wn) → 0 as n → ∞.
It follows that, for each v ∈ `q( · ), we have

(3.6)
∑
k∈Z

[ϕp(k−1)(∆wn(k − 1))∆v(k − 1)

+ V (k)ϕq(k)(wn(k))v(k)− f(k,wn(k))v(k) → 0] → 0,

as n →∞.
Consider v ∈ `q( · ) has compact support, hence there exist a, b ∈ Z, a < b

such that v (k) = 0 if k ∈ Z \ [a, b] and v(k) 6= 0 if k ∈ {a + 1, b− 1}. The set of
compact support functions, denoted by `

q( · )
0 is dense in `q( · ). That fact can be

easily explained since for each v ∈ `q( · ) we can define vn ∈ `
q( · )
0 by vn(j) = 0 if

|j| ≥ n + 1 and vn(j) = v(j) if |j| 6= n and we have∑
j∈Z

V (j)
q(j)

|v(j)− vn(j)| → 0 as n →∞,

or, by relation (3.3), ‖v − vn‖q( · ) → 0 as n →∞.

Now, for each v ∈ `
q( · )
0 in (3.6) taking into account the finite sums and the

continuity of f(k, · ) we obtain by passing to the limit as n →∞ that∑
k∈Z

[ϕp(k−1)(∆w(k − 1))∆v(k − 1)

+ V (k)ϕq(k)(w(k))v(k)− f(k,w(k))v(k) → 0] → 0.

We found that w is a critical point of J and consequently a solution of (1.1).
We show that w 6= 0. Assume by contradiction the contrary, that means

w = 0. Then we have

|un|∞ = |wn|∞ = max{|wn(k)|; k ∈ Z} → 0,

as n → ∞. On the other hand, condition (F2) implies that for a given ε > 0
there exists δ ∈ (0, 1) such that

(3.7)

{
|F (k, t)| ≤ ε|t|q+

,

|f(x, t)t| ≤ ε|t|q+
,
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for all k ∈ {0, . . . , T − 1} and all |t| < δ. The above inequalities show that
for every k ∈ {0, . . . , T − 1} there exists Mk such that for n > Mk we have
|wn(k)| < δ.

Since in ∈ {0, . . . , T − 1} it follows that, for n > M := max{Mn; k ∈
{0, . . . , T − 1}} and every k ∈ Z, we have

|wn(k)| ≤ |wn(in)| < δ < 1.

That fact and relation (3.7) imply

|F (k,wn(k))| ≤ ε|wn(k)|q
+
≤ ε|wn(k)|q(k),

and

|f(k, wn(k))wn(k)| ≤ ε|wn(k)|q
+
≤ ε|wn(k)|q(k).

We infer that for each n > M and every k ∈ Z the following estimates hold true

0 <q−J(wn) = q−
∑
k∈Z

1
p(k)

|∆wn(k − 1)|p(k−1)

+ q−
∑
k∈Z

V (k)
q(k)

|wn(k)|q(k) − q−
∑
k∈Z

F (k, wn(k))

≤
∑
k∈Z

|∆wn(k − 1)|p(k−1) +
∑
k∈Z

V (k)|wn(k)|q(k)

−
∑
k∈Z

f(k,wn(k))wn(k)−
∑
k∈Z

(q−F (k,wn(k))− f(k, wn(k))wn(k))

≤〈J ′(wn), wn〉+ q−
∑
k∈Z

F (k,wn(k)) +
∑
k∈Z

|f(k,wn(k))wn(k)|

≤ 〈J ′(wn), wn〉+ q−ε
∑
k∈Z

|wn(k)|q(k) + ε
∑
k∈Z

|wn(k)|q(k)

≤〈J ′(wn), wn〉+
(

q−ε
q+

V0
+ ε

q+

V0

) ∑
k∈Z

V (k)
q(k)

|wn(k)|q(k)

≤‖J ′(wn)‖∗‖wn‖q( · ) + ε
q+(q− + 1)

V0

[
‖wn‖q+

q( · ) + ‖wn‖q−

q( · )

]
.

Taking into account that ‖un‖q( · ) is bounded, J ′(un) → 0 as n →∞ and ε > 0
is arbitrary we find by the above estimates a contradiction with J(wn) → c > 0
as n →∞. Thus, we have that w is a nontrivial solution of problem (1.1).

Next, let u be a nonzero homoclinic solution of problem (1.1). Assume that
it attains positive local maximums and negative local minimums at infinitely
many points kn. In particular we can assume that {|kn|} → ∞. Consequently,

∆2
p(kn−1)u(kn − 1) u(kn) ≤ 0 and u(kn) → 0,
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as n → ∞. Using that facts and multiplying in (1.1) by u(kn)/|u(kn)|q(kn), we
have

(3.8)
f(kn, u(kn))u(kn)

|u(kn)|q(kn)
≥

∆2
p(kn−1)u(kn − 1) u(kn)

|u(kn)|q(kn)
+

f(kn, u(kn))u(kn)
|u(kn)|q(kn)

= V (kn) ≥ V0 > 0.

Using (3.8) and condition (F2) we deduce

0 = lim
n→∞

f(kn, u(kn))u(kn)
|u(kn)|q(kn)

≥ V0 > 0,

which represents a contradiction. Consequently u does not attain positive local
maximums and negative local minimums at infinitely many points.

Assume now that function u vanishes at infinitely many points ln. By condi-
tion (F2) we find that ∆2

p(ln−1)u(ln − 1) = 0 and, consequently, u(ln − 1) u(ln +
1) < 0. Therefore it has an unbounded sequence of positive local maximums and
negative local minimums, in contradiction with the previous assertion.

We proved that, for |k| large enough, function u has constant sign and it is
strictly monotone. �

Remark 3.3. Note, that the “homogeneous” problem{
∆2

p(k−1)u(k − 1)− V (k)|u(k)|q(k)−2u(k) = 0 for k ∈ Z,

u(k) → 0 as |k| → ∞,

has only the trivial solution. Indeed, if u is positive or negative, let k0 be the point
of his positive maximum or negative minimum. Then ∆2

p(k0−1)u(k0−1)u(k0) ≤ 0
and

0 = ∆2
p(k0−1)u(k0 − 1)u(k0)− V (k0)|u(k0)|q(k0) < 0,

which is a contradiction. The same conclusion can be made if u is sign-changing.

Note that under assumptions of Theorem 2.2, for every λ > 0 one can prove,
following the same approach, the existence of a nontrivial solution for the eigen-
value problem

(3.9)

{
∆2

p(k−1)u(k − 1)−V (k)|u(k)|q(k)−2u(k)+λf(k, u(k))=0 for k∈Z,

u(k) → 0 as |k| → ∞,

Above remark shows that λ = 0 is a bifurcation point of problem (3.9).

Remark 3.4. We can prove that if in addition to conditions (F1) and (F2)
the following condition holds:

(F3) f(k, t) ≥ 0 for any t < 0 and all k ∈ Z,

the homoclinic solution of the problem (1.1) is positive.

Indeed, let u be a homoclinic solution of the problem and assume that (F3)
holds. Suppose that there exists k0 such that u(k0) < 0 and let k1 be such that
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u(k1) = min {u(k), k ∈ Z} < 0. In consequence ∆2
p(k1−1)u(k1 − 1) ≥ 0, which

implies that

f(k1, u(k1)) = −∆2
p(k1−1)u(k1 − 1) + V (k1)|u(k1)|q(k1)−2u(k1) < 0,

in contradiction with (F3). Then u(k) ≥ 0 for every k ∈ Z.
Suppose that u(k2) = 0 for some k2 ∈ Z. Note, that if u(k2 + 1) = 0 or

u(k2 − 1) = 0, the solution is identically zero by a recursion and f(k, 0) = 0.
Hence ∆2

p(k2−1)u(k2 − 1) > 0 and we arrive to a contradiction. Hence, the
solution u is positive.

We summarize in what follows the above remark.

Theorem 3.5. Suppose that the functions V : Z → R and f : Z → R sat-
isfy assumptions of Theorem 2.2 and (F3). Then, problem (1.1) has a positive
homoclinic solution.

Remark 3.6. In the case q(k) = 2 we can estimate the maximum of the
positive solution u, provided the additional assumption:

(F4) Let f(k, t) has the form f(k, t) = tg(k, t), where g(k, t) is T -periodic in
k, g(k, 0) = 0 and for each k, g(k, t) is increasing in t for t > 0.

Let g−1(k, t) be the inverse function of g(k, t) for t > 0. We have that
g−1(k, t) is increasing in t for t > 0. Let u be a positive homoclinic solution
of the problem (1.1) and u(k0) > 0 is its maximum. Note that, in view of the
periodicity of coefficients, if u( · ) is a solution of problem (1.1), then u( · + jT ),
j ∈ Z is also a solution of (1.1). Hence, we may assume that k0 ∈ [0, T − 1]. We
have ∆2

p(k0−1)u(k0 − 1) ≤ 0 and

u(k0)g(k0, u(k0))− V (k0)u(k0) ≥ 0,

and, by properties of g and V ,

u(k0) ≥ g−1(k0, V0).

Thus

(3.10) max{u(k) : k ∈ [0, T − 1]} ≥ min{g−1(k, V0) : k ∈ [0, T − 1]}.

Thus, we have obtained the following result.

Corllary 3.7. Suppose that the functions V : Z → R and f : Z → R satisfy
assumptions of Theorem 3.5 and (F4). Then the positive homoclinic solution of
the equation

∆2
p(k−1)u(k − 1)− V (k)u(k) + u(k)g(k, u(k)) = 0

satisfies relation (3.10).
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Example 3.8. Consider the equations

(3.11) ∆2
p(k−1)u(k − 1)− V (k)u(k) + au2(k) + bu3(k) = 0, k ∈ Z,

and

(3.12) ∆2
p(k−1)u(k − 1)− V (k)u(k) + au2(k) + bu3

+(k) = 0, k ∈ Z,

where u+(k) = max{u(k), 0}, 1 < p(k) < 3, p(k) and V (k) are T -periodic,
V0 < 2, a > 0 and b > 0. All assumptions of Theorem 3.5 are satisfied for
f(k, t) = at2 + bt3+ and there exists a positive homoclinic solution u of equation
(3.12), which is a homoclinic solution of problem (3.11). Moreover, we can
estimate max{u(k) : k ∈ Z}. Let u(k0) > 0 be the maximum of u. Then
∆2

p(k0−1)u(k0 − 1) ≤ 0 and by equation (3.11) we have

−V (k0)u(k0) + au2(k0) + bu3(k0) ≥ 0,

which implies
au(k0) + bu2(k0)− V0 ≥ 0.

Hence

max{u(k) : k ∈ Z} ≥
√

a2 + 4bV0 − a

2b
.
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