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Dušan D. Repovš e

a National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
b Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia

c Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland
d Department of Mathematics, University of Craiova, 200585 Craiova, Romania

e Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana & Institute of Mathematics, 
Physics and Mechanics, 1000 Ljubljana, Slovenia

Received 5 March 2019; accepted 1 July 2019
Available online 19 July 2019

Abstract
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1. Introduction

Let � ⊆ RN(N � 2) be a bounded domain with a C2-boundary ∂�. In this paper we study 
the following parametric singular Dirichlet problem

−�u(z) + u(z)−γ = λf (z,u(z)) in �, u|∂� = 0, u > 0, 0 < γ < 1. (Pλ)

In this problem, λ is a positive parameter and f : � ×R → R is a Carathéodory function (that 
is, for all x ∈ R, the mapping z �→ f (z, x) is measurable and for almost all z ∈ �, the mapping 
x �→ f (z, x) is continuous). We assume that for almost all z ∈ �, f (z, ·) exhibits superlinear 
growth near +∞, but it need not satisfy the usual in such cases Ambrosetti-Robinowitz condition 
(the AR-condition for short).

The distinguishing feature of our work is that the singular term u−γ appears on the left-hand 
side of the equation. This is in contrast with almost all previous works on singular elliptic equa-
tions driven by the Laplacian, where the forcing term (the right-hand side of the equation) is 
u �→ u−γ + λf (z, u), so the singular term u−γ appears on the right-hand side of the equation. 
We mention the works of Coclite & Palmieri [2], Sun, Wu & Long [13], and Haitao [7], which 
also deal with equations that have the competing effects of singular and superlinear terms. A 
comprehensive bibliography on semilinear singular Dirichlet problems can be found in the book 
by Ghergu & Rădulescu [5]. The present class of singular equations was first considered by Diaz, 
Morel & Oswald [3], for the case when the perturbation f is independent of u. They produced a 
necessary and sufficient condition for the existence of positive solutions in terms of the integral ∫
�

f û1dz, with û1 being the positive L2-normalized principal eigenfunction of (−�, H 1
0 (�)). 

More recently, Papageorgiou & Rădulescu [9] considered problem (Pλ) with f (z, ·) being sub-
linear.

Our aim is to study the precise dependence of the set of positive solutions of problem (Pλ) with 
respect to the parameter λ > 0. In this direction, we show that there exists a critical parameter 
value λ∗ > 0 such that

• for all λ > λ∗, problem (Pλ) has at least two positive smooth solutions;
• for all λ ∈ (0, λ∗), problem (Pλ) has no positive solutions.

It is an open problem what happens in the critical case λ = λ∗. We describe the difficulties one 
encounters when treating the critical case λ = λ∗ and why we think that λ∗ > 0 is not admissible.

2. Preliminaries and hypotheses

Let X be a Banach space and ϕ ∈ C1(X, R). We say that ϕ(·) satisfies the “C-condition”, if 
the following property holds

“Every sequence {un}n�1 ⊆ X such that

{ϕ(un)}n�1 ⊆R is bounded and (1 + ||un||X)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ϕ and it leads to the minimax theory 
of the critical values of ϕ (see, for example, Papageorgiou, Rădulescu & Repovš [12]).
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The main spaces used in the analysis of problem (Pλ) are the Sobolev space H 1
0 (�) and the 

Banach space C1
0(�) = {u ∈ C1(�) : u|∂� = 0}. By || · || we denote the norm of H 1

0 (�). On 
account of the Poincaré inequality we have

||u|| = ||Du||2 for all u ∈ H 1
0 (�).

The Banach space C1
0(�) is an ordered Banach space with positive cone

C+ = {u ∈ C1
0(�) : u(z) � 0 for all z ∈ �}.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ �,

∂u

∂n
|∂� < 0

}
,

with n(·) being the outward unit normal on ∂�.
We will also use two other ordered Banach spaces, namely C1(�) and

C0(�) = {u ∈ C(�) : u|∂� = 0}.

The order cones are

Ĉ+ = {u ∈ C1(�) : u(z) � 0 for all z ∈ �}

and

K+ = {u ∈ C0(�) : u(z) � 0 for all z ∈ �},

respectively. Both have nonempty interiors given by

D+ = {u ∈ Ĉ+ : u(z) > 0 for all z ∈ �},
K̊+ = {u ∈ K+ : cud̂ � u for some cu > 0},

with d̂(z) = d(z, ∂�) for all z ∈ �.
Concerning ordered Banach spaces, the following result is helpful (see Papageorgiou, Răd-

ulescu & Repovš [12, Proposition 4.1.22, p. 226]).

Proposition 1. If X is an ordered Banach space with order (positive) cone K , intK 	= ∅, and 
e ∈ intK , then for every u ∈ X, we can find λu > 0 such that λue − u ∈ K .

Next, we introduce the main notation which we will use in the sequel. Given ϕ ∈ C1(H 1
0 (�)), 

we denote by Kϕ the critical set of ϕ, that is,

Kϕ = {u ∈ H 1(�) : ϕ′(u) = 0}.
0
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For x ∈ R, we set x± = max{±x, 0}. Given u ∈ H 1
0 (�), we set u±(z) = u(z)± for all z ∈ �. 

We know that

u± ∈ H 1
0 (�), u = u+ − u−, |u| = u+ + u−.

Given u, y ∈ H 1
0 (�) with u � y, we define

[u,y] = {h ∈ H 1
0 (�) : u(z) � h(z) � y(z) for almost all z ∈ �},

[u) = {h ∈ H 1
0 (�) : u(z) � h(z) for almost all z ∈ �}.

Also, by

intC1
0 (�)[u,y]

we denote the interior of [u, y] ∩ C1
0(�) in the C1

0(�)-norm topology.
By λ̂1 > 0 we denote the principal eigenvalue of (−�, H 1

0 (�)) and by û1 the corresponding 
positive L2-normalized (that is, ||û1||2 = 1) eigenfunction. Standard regularity theory and the 
Hopf maximum principle imply that û1 ∈ intC+.

Finally, by 2∗ we denote the critical Sobolev exponent, 2∗ =
⎧⎨
⎩

2N

N − 2
if N � 3

+∞ if N = 2
.

Now we will introduce our hypotheses on the perturbation f (z, x).
H(f ) : f : � ×R → R is a Carathéodory function such that f (z, 0) = 0 for almost all z ∈ �

and

(i) f (z, x) � a(z)(1 + xr−1) for almost all z ∈ � and all x � 0, with a ∈ L∞(�), 2 < r < 2∗;

(ii) if F(z, x) =
x∫

0

f (z, s)ds, then lim
x→+∞

F(z, x)

x2 = +∞ uniformly for almost all z ∈ �;

(iii) there exists τ ∈ (r − 2, 2∗) such that

0 < β0 � lim inf
x→∞

f (z, x)x − 2F(z, x)

xτ
uniformly for almost all z ∈ �;

(iv) for every ρ > 0 and every λ > 0, there exists ξ̂ λ
ρ > 0 such that for almost all z ∈ �, the 

function

x �→ λf (z, x) + ξ̂ λ
ρ x

is nondecreasing on [0, ρ] and for every s > 0 we have

inf{f (z, x) : x � s} = ms > 0 for almost all z ∈ �;
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(v) there exist q > 2, δ0 > 0, ĉ > 0 such that

ĉxq−1 � f (z, x) for almost all z ∈ � and all 0 � x � δ0,

lim
x→0+

F(z, x)

x2 = 0 uniformly for almost all z ∈ �.

Remark 1. Since we are looking for positive solutions and all of the above hypotheses concern 
the positive semiaxis R+ = [0, +∞), we may assume without any loss of generality that

f (z, x) = 0 for almost all z ∈ � and all x � 0. (1)

Hypotheses H(f)(ii), (iii) imply that

lim
x→+∞

f (z, x)

x
= +∞ uniformly for almost all z ∈ �.

So, the perturbation f (z, ·) is superlinear. However, we do not express this superlinearity of 
f (z, ·) by using the traditional (for superlinear problems) AR-condition. We recall that the AR-
condition (the unilateral version due to (1)) says that there exist ϑ > 2 and M > 0 such that

0 < ϑF(z, x) � f (z, x)x for almost all z ∈ � and all x � M (2a)

0 < ess inf
�

F(·,M). (2b)

Integrating (2a) and using (2b), we obtain the following weaker condition

c1x
ϑ � F(z, x) for almost all z ∈ �, all x � M, and some c1 > 0,

⇒ c1x
ϑ−1 � f (z, x) for almost all z ∈ � and all x � M (see (2a)).

So, the AR-condition dictates at least (ϑ − 1)-polynomial growth for f (z, ·). Here, instead of 
the AR-condition, we employ hypothesis H(f )(iii) which is less restrictive and incorporates in 
our framework superlinear nonlinearities with “slower” growth near +∞. Consider the following 
function (for the sake of simplicity we drop the z-dependence)

f (x) =
{

cxq−1 if 0 � x � 1

x lnx + cxϑ−1 if 1 < x

with c > 0, q > 2 > ϑ > 1 (see (1)). Then f (·) satisfies hypotheses H(f ) but it fails to satisfy 
the AR-condition.

Finally, we mention that for u ∈ H 1
0 (�) we have

cud̂ � u for some cu > 0 if and only if ĉuû1 � u for some ĉu > 0. (3)

For δ > 0 let �δ = {z ∈ � : d(z, ∂�) < δ} and let C̃1(�δ) = {u ∈ C1(�δ) : u|∂� = 0} with 
order cone
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C̃1(�δ)+ = {u ∈ C̃1(�δ) : u(z) � 0 for all z ∈ �δ},
which has nonempty interior given by

int C̃1(�δ)+ =
{
u ∈ C̃1(�δ)+ : u(z) > 0 for all z ∈ �δ and

∂u

∂n
|∂� < 0

}
.

According to Lemma 14.16 of Gilbarg & Trudinger [6, p. 355], for δ > 0 small enough we have 
d̂ ∈ int C̃1(�δ)+. Also, we have d̂ ∈ D+(�\�δ), with the latter being the interior of the order 
cone of C1(�\�δ). So, using Proposition 1 we can find 0 < ĉ1 < ĉ2 such that ĉ1d̂ � û1 � ĉ2d̂

(recall that û1 ∈ intC+). This implies (3).

3. Positive solutions

Let η > 0. We start by considering the following auxiliary purely singular Dirichlet problem

−�u(z) + u(z)−γ = ηû1(z) in �, u|∂� = 0. (Au)η

By Theorem 1 of Diaz, Morel & Oswald [3] we know that for η > 0 big Problem (Au)η has a 
solution vη ∈ H 1

0 (�) ∩ C0(�) and v−γ
η ∈ L1(�), cηû1 � vη for some cη > 0.

Also, we consider the following Dirichlet problem

−�u(z) = λf (z,u(z)) in �, u|∂�, u > 0, λ > 0. (Qλ)

Proposition 2. If hypotheses H(f ) hold and λ > 0, then problem (Qλ) has a solution ûλ ∈
intC+.

Proof. Let �λ : H 1
0 (�) → R be the C1- functional defined by

�λ(u) = 1

2
||Du||22 −

∫
�

λF(z,u)dz for all u ∈ H 1
0 (�).

Hypotheses H(f )(ii), (iii) imply that

�λ(·) satisfies the C-condition (4)

(see Papageorgiou & Rădulescu [11, Proposition 9]).
Combining hypotheses H(f )(i), (v), given ε > 0, we can find cε > 0 such that

F(z, x) � ε

2
x2 + cεx

r for almost all z ∈ �, all x � 0.

Then we have

�λ(u) � 1

2
||Du||22 − λε

2
||u||22 − λĉε ||u||r for some ĉε > 0

� c2||u||2 − λĉε ||u||r for some c2 = c2(λ) > 0 (choose ε > 0 small enough),

⇒ u = 0 is a local minimizer of � (·) (recall that r > 2).

(5)
λ
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We can easily see that if u ∈ K�λ , then u � 0. Hence we assume that K�λ is finite. On 
account of (5) and Theorem 5.7.6 of Papageorgiou, Rădulescu & Repovš [12, p. 367], we can 
find ρ ∈ (0, 1) so small that

0 = �λ(0) < inf{�λ(u) : ||u|| = ρ} = mλ. (6)

Hypothesis H(f )(ii) implies that

�λ(tû1) → −∞ as t → +∞. (7)

Then (4), (6), (7) permit the use of the mountain pass theorem. So, we can find ûλ ∈ H 1
0 (�)

such that

ûλ ∈ K�λ and mλ � �λ(ûλ),

⇒ ûλ � 0, ûλ 	= 0 (see (6)).

We have

∫
�

(Dûλ,Dh)RN dz = λ

∫
�

f (z,uλ)hdz for all h ∈ H 1
0 (�),

⇒ − �uλ(z) = λf (z,uλ(z)) � 0 for almost all z ∈ �.

Then the semilinear regularity theory (see Gilbarg & Trudinger [6]) and the Hopf maximum 
principle (see Gasinski & Papageorgiou [4]), imply that ûλ ∈ intC+. �

Hypotheses H(f ) imply that we can find c2 > 0 such that

f (z, x) � c2min{x, xq−1} for almost all z ∈ � and all x � 0. (8)

We have ûλ ∈ intC+ and ûq−1
λ ∈ intK+. So, we can find c3 > 0 such that

ηû1 � c3ûλ and ηû1 � c3û
q−1
λ ,

⇒ ηû1 � c3 min{ûλ, û
q−1
λ }.

(9)

From (8) and (9) we see that we can find λ0 � 0 big such that for λ � λ0

λf (z, ûλ(z)) � λ0c2 min{ûλ(z), ûλ(z)
q−1}

� ηû1(z) for almost all z ∈ �.
(10)

Recall that cηû1 � vη for some cη > 0. Hence by (3), ĉηd̂ � vη for some ĉη > 0. Therefore

v−γ
η � 1

γ d̂−γ .

ĉη
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For every h ∈ H 1
0 (�), we have

∫
�

|h|
v

γ
η

dz � 1

ĉ
γ
η

∫
�

|h|
d̂γ

dz

= 1

ĉ
γ
η

∫
�

|h|
d̂

d̂1−γ dz � c4

∫
�

|h|
d̂

dz for some c4 > 0.

Invoking Hardy’s inequality (see Brezis [1, p. 313]), we infer that 
|h|
d̂

∈ L2(�). Therefore

c4

∫
�

|h|
d̂

dz � c5

⎛
⎝∫

�

|h|2
d̂2

dz

⎞
⎠

1
2

< ∞ for some c5 > 0,

⇒ |
∫
�

v−γ
η hdz| < ∞ for all h ∈ H 1

0 (�).

Therefore we have

−�vη(z) + vη(z)
−γ = ηû1(z) for almost all z ∈ �. (11)

If λ � λ0, from (10) and (11) we have

−�ûλ(z) = λf (z, ûλ(z)) � ηû1(z) = −�vη(z) + vη(z)
−γ � −�vη(z)

for almost all z ∈ �.
(12)

Since vη|∂� = ûλ|∂� = 0, from (12) and the weak comparison principle (see Tolksdorf [14, 
Lemma 3.1]), we have

vη � ûλ (λ � λ0). (13)

Now we introduce the following two sets

L = {λ > 0 : problem (Pλ) has a positive solution},
Sλ = the set of positive solutions of (Pλ).

Here by a solution of (Pλ), following [9], we understand a function u ∈ H 1
0 (�) such that

(a) u ∈ L∞(�), u(z) > 0 for almost all z ∈ �, and u−γ ∈ L1(�);
(b) there exists cu > 0 such that cud̂ � u;

(c)
∫

(Du, Dh)RN dz +
∫

u−γ hdz = λ 
∫

f (z, u)hdz for all h ∈ H 1
0 (�).
� � �
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From (3) we know that (b) is equivalent to saying that ĉuû1 � u for some ĉu > 0. Also the pre-
vious discussion reveals that (c) makes sense. Regularity theory will provide additional structure 
for the solutions of (Pλ).

Proposition 3. If hypotheses H(f ) hold, then L 	= ∅ and Sλ ⊆ intC+.

Proof. Let λ � λ0. Using (13) we can introduce the Carathéodory function gλ(z, x) defined by

gλ(z, x) =

⎧⎪⎨
⎪⎩

λf (z, vη(z)) − vη(z)
−γ if x < vη(z)

λf (z, x) − x−γ if vη(z) � x � ûλ(z)

λf (z, ûλ(z)) − ûλ(z)
−γ if ûλ(z) < x.

(14)

We set Gλ(z, x) =
x∫

0

gλ(z, s)ds and consider the functional ϕλ : H 1
0 (�) → R defined by

ϕλ(u) = 1

2
||Du||22 −

∫
�

Gλ(z,u)dz for all u ∈ H 1
0 (�).

From Papageorgiou & Rădulescu [9] (see Claim 1 in the proof of Proposition 6), we have that 
ϕλ ∈ C1(H 1

0 (�)). It is clear from (14) that ϕλ(·) is coercive. Also, it is sequentially weakly lower 
semicontinuous. Therefore we can find uλ ∈ H 1

0 (�) such that

ϕλ(uλ) = inf
{
ϕλ(u) : u ∈ H 1

0 (�)
}

,

⇒ ϕ′
λ(uλ) = 0,

⇒
∫
�

(Duλ,Dh)RN dz =
∫
�

gλ(z,uλ)hdz for all h ∈ H 1
0 (�).

(15)

In (15) first we choose h = (uλ − ûλ)
+ ∈ H 1

0 (�). We have

∫
�

(Duλ,D(uλ − ûλ)
+)RN dz =

∫
�

[λf (z, ûλ) − û
−γ
λ ](uλ − ûλ)

+dz (see (14))

�
∫
�

λf (z, ûλ)(uλ − ûλ)
+dz

=
∫
�

(Dûλ,D(uλ − ûλ)
+)RN dz (see Proposition 2),

⇒ ||D(uλ − ûλ)
+||22 � 0,

⇒ u � û .
λ λ
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Next, in (15) we choose h = (vη − uλ)
+ ∈ H 1

0 (�). Then we have

∫
�

(Duλ,D(vη − uλ)
+)RN dz =

∫
�

[λf (z, vη) − v−γ
η ](vη − uλ)

+dz. (16)

As we proved (10), using (8), (9), we see that by taking λ � λ0 even bigger if necessary, we 
can have

λf (z, vη(z)) � ηû1(z) for almost all z ∈ �. (17)

Hence from (16) and (17) we have∫
�

(Duλ,D(vη − uλ)
+)RN dz �

∫
�

[ηû1 − v−γ
η ](vη − uλ)

+dz

=
∫
�

(Dvη,D(vη − uλ)
+)RN dz

⇒ ||D(vη − uλ)
+||22 � 0,

⇒ vη � uλ.

So, we have proved that

uλ ∈ [vη, ûλ]. (18)

It follows from (14), (15) and (18) that∫
�

(Duλ,Dh)RN dz +
∫
�

u
−γ
λ hdz =

∫
�

f (z,uλ)hdz for all h ∈ H 1
0 (�).

Recall that

cηd̂ � vη � uλ

and u
−γ
λ � v−γ

η ∈ L1(�) (see (18)).

Therefore uλ is a solution of (Pλ). We have proved that for λ � λ0 big enough, we have λ ∈L
and so L 	= ∅.

Now let u ∈ Sλ. Then by definition we have

ĉuû1 � u for some ĉu > 0,

⇒ u ∈ intL∞(�)+.
(19)

Let s > N . Since û1/s
1 ∈ K+, we can find c6 > 0 such that

û
1/s

1 � c6u (see Proposition 1),

⇒ u−γ � c û
− γ

s for some c > 0.
7 1 7
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However, by Lemma in Lazer & McKenna [8], we have that û
− γ

s

1 ∈ Ls(�) (recall that 0 <
γ < 1). So, it follows that u−γ ∈ Ls(�). Then Theorem 9.15 of Gilbarg & Trudinger [6, p. 
241] implies that u ∈ W 2,s(�). Since s > N , from the Sobolev embedding theorem, we have 

u ∈ C1,α(�) with α = 1 − N

s
. We conclude that u ∈ intC+ (see (19)) and so Sλ ⊆ intC+. �

Next, we prove a structural property for the set L and a kind of monotonicity property for the 
set Sλ with respect to λ ∈L.

Proposition 4. If hypotheses H(f ) hold, λ ∈ L, μ > λ, and uλ ∈ Sλ ⊆ intC+, then μ ∈ L and 
we can find uμ ∈ Sμ ⊆ intC+.

Proof. Let ρ = ||uλ||∞. Hypotheses H(f ) imply that we can find cρ > 0 such that

0 � f (z, x) � cρx for almost all z ∈ � and all 0 � x � ρ. (20)

Also from (8) we know that

f (z, x) � c2 min{x, xq−1} for almost all z ∈ � and all x � 0. (21)

Recall that for ϑ � λ0 we have ûθ � vη (see (13)) and vη ∈ intK+. So, for ϑ � λ0 big enough 
we have

ϑc2 min{ûθ , û
q−1
θ } � λcρuλ. (22)

It follows that

−�ûθ = ϑf (z, ûθ ) � ϑc2 min{ûθ , û
q−1
θ } (see (21))

� λcρuλ (see (22))

� λf (z,uλ) (see (20))

= −�uλ + u
−γ
λ (since uλ ∈ Sλ)

� −�uλ for almost all z ∈ �,

⇒ ûθ � uλ (by the weak comparison principle, see Tolksdorf [14]).

Therefore we can introduce the Carathéodory function kμ(z, x) defined by

kμ(z, x) =

⎧⎪⎨
⎪⎩

μf (z,uλ(z)) − uλ(z)
−γ if x < uλ(z)

μf (z, x) − x−γ if uλ(z) � x � ûθ (z)

μf (z, ûθ (z)) − ûθ (z)
−γ if ûθ (z) < x.

(23)

We set Kμ(z, x) =
x∫

0

kμ(z, s)ds and consider the functional σμ : H 1
0 (�) → R defined by

σμ(u) = 1

2
||Du||22 −

∫
kμ(z,u)dz for all u ∈ H 1

0 (�).
�
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Again we have σμ ∈ C1(H 1
0 (�)) (see Papageorgiou & Rădulescu [9]). From (23) it is clear 

that σμ(·) is coercive. Also, by the Sobolev embedding theorem we see that σμ(·) is sequentially 
weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find uμ ∈ H 1

0 (�)

such that

σμ(uμ) = inf
{
σμ(u) : u ∈ H 1

0 (�)
}

,

⇒ σ ′
μ(uμ) = 0,

⇒
∫
�

(Duλ,Dh)RN dz =
∫
�

kμ(z,uλ)hdz for all h ∈ H 1
0 (�).

Choosing first h = (uμ − ûθ )
+ ∈ H 1

0 (�) and then h = (uλ − uμ)+ ∈ H 1
0 (�) as in the proof 

of Proposition 3, we can show that

uμ ∈ [uλ, ûθ ],
⇒ uμ ∈ Sμ ⊆ intC+ (see (23)).

(24)

Let ρ = ||ûθ ||∞ and let ξ̂0 = max{ξ̂ λ
ρ , ξ̂ μ

ρ } (see hypothesis H(f )(iv)). We have

−�uλ + ξ̂0uλ = λf (z,uλ) + ξ̂0uλ − u
−γ
λ

� μf (z,uμ) + ξ̂0uμ − u−γ
μ

(see hypothesis H(f )(iv) and (24))

= −�uμ + ξ̂0uμ (since uμ ∈ Sμ),

⇒ �(uμ − uλ) � ξ̂0(uμ − uλ),

⇒ uμ − uλ ∈ intC+ (by Hopf’s maximum principle).

The proof is now complete. �
This proposition implies that L is a half-line. More precisely, let λ∗ = infL. We have

(λ∗,+∞) ⊆ L ⊆ [λ∗,+∞). (25)

Proposition 5. If hypotheses H(f ) hold, then λ∗ > 0.

Proof. Arguing by contradiction, suppose that λ∗ = 0. Let {λn}n�1 ⊆ L such that λn ↓ 0 and let 
un ∈ Sλn ⊆ intC+ for all n ∈N . We know that

0 � un � ûθ for ϑ � λ0 big enough, for all n ∈ N

(see the proof of Proposition 4),
(26)

−�un + u
−γ
n = λnf (z,un) for almost all z ∈ � and all n ∈N. (27)
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Let η > 0. With ρ = ||ûθ ||∞ (see (26)), we have

−�un + u
−γ
n = λnf (z,un)

� λncρun (see (20))

� λncρûθ (see (26))

� ηû1 for all n � n0 (recall that û1 ∈ intC+).

(28)

By (28) and Theorem 1(i) of Diaz, Morel & Oswald [3] it follows that Problem (Au)η has a 
positive solution. Since η > 0 is arbitrary, we contradict Theorem 1(ii) of Diaz, Morel & Oswald 
[3]. This proves that λ∗ > 0. �
Proposition 6. If hypotheses H(f ) hold and λ∗ < λ, then problem (Pλ) has at least two positive 
solutions u0, û ∈ intC+, u0 	= û.

Proof. Let λ∗ < σ < λ < μ. On account of Proposition 4, we can find uσ ∈ Sσ ⊆ intC+, u0 ∈
Sλ ⊆ intC+ and uμ ∈ Sλ ⊆ intC+ such that

u0 − uσ ∈ intC+ and uμ − u0 ∈ intC+,

⇒ u0 ∈ intC1
0 (�)[uσ ,uμ]. (29)

We introduce the Carathéodory functions eλ(z, x) and êλ(z, x) defined by

eλ(z, x) =
{

λf (z,uσ (z)) − uσ (z)−γ if x � uσ (z)

λf (z, x) − x−γ if uσ (z) < x
(30)

and êλ(z, x) =
{

eλ(z, x) if x � uμ(z)

eλ(z,uμ(z)) if uμ(z) < x.
(31)

We set Eλ(z, x) =
x∫

0

eλ(z, s)ds and Êλ(z, x) =
x∫

0

êλ(z, s)ds and consider the C1-functionals 

βλ, β̂λ : H 1
0 (�) → R defined by

βλ(u) = 1

2
||Du||22 −

∫
�

Eλ(z,u)dz,

β̂λ(u) = 1

2
||Du||22 −

∫
�

Êλ(z,u)dz for all u ∈ H 1
0 (�).

Using (30), (31), as before (see the proof of Proposition 3), we can check that

Kβλ ⊆ [uσ ) ∩ intC+ and K ˆ ⊆ [uσ ,uμ] ∩ intC+. (32)

βλ
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Using (32), (30) and (29), we see that we may assume that

Kβλ is finite and Kβλ ∩ [uσ ,uμ] = {u0}. (33)

Otherwise, we already have additional positive solutions and so we are done.
Evidently β̂λ(·) is coercive (see (30)). Also, it is sequentially weakly lower semicontinuous. 

Thus we can find û0 ∈ H 1
0 (�) such that

β̂λ(û0) = inf
{
β̂λ(u) : u ∈ H 1

0 (�)
}

,

⇒ û0 ∈ K
β̂λ

⊆ [uσ ,uμ] ∩ intC+ (see (32)).
(34)

From (30) and (31) we see that (see [10])

β ′
λ|[uσ ,uμ] = β̂ ′

λ|[uσ ,uμ],
⇒ û0 ∈ Kβλ ∩ [uσ ,uμ] (see (34))

⇒ û0 = u0 (see (33)),

⇒ u0 is a local C1
0(�)-minimizer of βλ(·),

⇒ u0 is a local H 1
0 (�)-minimizer of βλ(·) (see [10]).

Then from (33) and Theorem 5.7.6 of Papageorgiou, Rădulescu & Repovš [12, p. 367], we 
know that we can find ρ ∈ (0, 1) so small that

βλ(u0) < inf {βλ(u) : ||u − u0|| = ρ} = mλ. (35)

Hypothesis H(f )(ii) implies that

βλ(tû1) → −∞ as t → +∞. (36)

Finally, recall that hypothesis H(f )(iii) implies that

βλ(·) satisfies the C-condition (37)

(see Papageorgiou & Rădulescu [11]).
Then (35), (36), (37) permit the use of the mountain pass theorem. So, we can find û ∈ H 1

0 (�)

such that

û ∈ Kβλ and mλ � βλ(û),

⇒ û ∈ Sλ ⊆ intC+, û 	= u0 (see (32), (31) and (35)).

The proof is now complete. �
Summarizing, we can state the following theorem for the set of positive solutions of problem 

(Pλ).

Theorem 7. If hypotheses H(f ) hold, then there exists λ∗ > 0 such that
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(a) for all λ > λ∗ problem (Pλ) has at least two positive solutions

u0, û ∈ intC+, u0 	= û;
(b) for all λ ∈ (0, λ∗) problem (Pλ) has no positive solutions.

Remark 2. From the above Theorem is missing what happens at the critical case λ = λ∗. We 
were unable to resolve this case.

If λn ↓ λ∗, then we can show that there exist un ∈ Sλn ⊆ intC+ (n ∈ N) such that

un
w−→ u∗ in H 1

0 (�),u∗ 	= 0.

As before (see the proof of Proposition 3), we have

u
−γ
n ∈ Ls(�) (s > N) and u

−γ
n → u

−γ∗ for almost all z ∈ �.

However, we can not show that {u−γ
n }n�1 ⊆ Ls(�) is bounded and therefore have that

∫
�

u
−γ
n hdz →

∫
�

u
−γ∗ hdz for all h ∈ H 1

0 (�)

(Vitali’s theorem, see Gasinski & Papageorgiou [4, p. 901]).

In addition, we can not show that there exists c∗ > 0 such that

u∗ � c∗d̂.

It seems that λ∗ > 0 is not admissible (that is, λ∗ /∈ L, hence L = (λ∗, +∞), see (25)), but 
this needs a proof.

Another open problem is the possibility of extending this work to equations driven by the 
p-Laplacian. This extension requires a corresponding generalization of the work of Diaz, Morel 
& Oswald [3] to the case of the p-Laplacian. However, the tools of [3] are particular for the 
Laplacian. So, it is not clear how this generalization can be achieved. Hence new techniques are 
needed.
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[11] N.S. Papageorgiou, V.D. Rădulescu, Coercive and noncoercive nonlinear Neumann problems with indefinite poten-

tial, Forum Math. 28 (2016) 545–571.
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