Infinitely many weak solutions for a fourth-order Kirchhoff type elliptic equation

Karimeh Bahari Ardeshiri, Somayeh Khademloo, Ghasem Alizadeh Afrouzi

Abstract


In this article, by using critical point theory, we prove the existence
of infinitely many weak solutions for a fourth-order Kirchhoff type elliptic
equation involving multi-singular inverse square potentials.
Precisely this work is devoted to consider a fourth order elliptic equation
involving multi-singular inverse square potentials on the smooth
bounded domain $\Omega{\subset}\mathbb{R}^N(N\geq 5)$
\begin{equation*}
\left\{
\begin{array}{cc}
\Delta^2{u} &- M \left(\int_{\Omega} \left( \vert \nabla{ u}
\vert^2- \displaystyle \sum_{i=1}^k\frac{\mu_i}{|x-a_i|^2} \vert u
\vert ^2 \right) dx \right) \left( \Delta{ u} - \displaystyle
\sum_{i=1}^k\frac{\mu_i}{|x-a_i|^2}u\right) \textrm{ for } x \in{\Omega{\backslash}}\{a_1,...,a_k\}\\
&= \lambda f \left( x,u \right) + u \vert u \vert ^{2^{**} -2}\\
&u= \Delta u=0 \textrm{ for } x \in \partial \Omega,
\end{array}
\right.
\end{equation*}
where $ \Delta^2 $ is the biharmonic operator and $2^{**}$ is the
critical Sobolev exponent,
$a_i\in{\Omega},i=1,2,...,k,$ for $k\geq1$ are
different points, $0\leq{\mu_i} \in \mathbb{R}$ and $ \sum_{i=1}^k
\mu _ i < \bar{\mu}:=\left(\dfrac{N-2}{2} \right)^2 $ which $
\bar{\mu} $ is the best constant in the Hardy inequality, $ f:
\Omega \times \mathbb{R}\longrightarrow \mathbb{R} $
is $ L^1- $Carath\'{e}odory function and $ M \in C^1 \left( \left[0, + \infty \right[ , \mathbb{R} \right) $.


Full Text:

PDF


DOI: https://doi.org/10.52846/ami.v47i1.1118