Viability for functional differential inclusions without convexity

Myelkebir Aitalioubrahim

Abstract


The aim of this paper is to prove the existence result of viable solutions for the differential inclusion $\dot{x}(t) \in F(t,T(t)x)$ where $F$ is a set-valued map with closed graph. We consider the case when the constraint is moving.


Full Text:

PDF

References


M. Aitalioubrahim and S. Sajid, Viability problem with perturbation in Hilbert space, Electron. J. Qual. Theory Differ. Equ. 7 (2007), 1-14.

M. Aitalioubrahim, A viabillity result for functional differential inclusions in Banach spaces, Miskolc Math. Notes 13 (2012), no. 1, 3-22.

M. Aitalioubrahim, Viability for upper semicontinuous differential inclusions without convexity, Topol. Methods Nonlinear Anal. 42 (2013), no. 1, 77-90.

F. Ancona and G. Colombo, Existence of solutions for a class of nonconvex differential inclusions, Rend. Sem. Mat. Univ. Padova 83 (1990).

J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, Heidelberg, 1984.

J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhauser, Boston, 1990.

A. Bressan, A. Cellina, and G. Colombo, Upper semicontinuous differential inclusions without convexity, Proc. Am. Math. Soc. 106 (1989), 771-775.

H. Brézis and F.E. Brouder, A general principle on ordered sets in nonlinear functional analysis, Adv. Math. 21 (1976), no. 3, 355-364.

O. Cârjă and C. Ursescu, The characteristics method for a first order partial differential equation, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. 39 (1993), 367-396.

A. Cernea, On the existence of viable solutions for a class of nonautonomous nonconvex differential inclusion, Studia Univ. Babes-Bolyai Math. L (2005), no. 2, 15-20.

A. Cernea and V. Lupulescu, Viable solutions for a class of nonconvex functional differential inclusions, Math. Reports 7(57) (2005), no. 2, 91-103.

F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley and Sons, 1983.

F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.

K. Deimling, Multivalued Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter, Berlin, New York, 1992.

Z. Kannai and P. Tallos, Viable solutions to nonautonomous inclusions without convexity, Central European J. Operational Research 11 (2003), 47-55.

R.T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 39 (1980), 257-280.

M. Yarou, Discretization methods for nonconvex differential inclusions, Electron. J. Qual. Theory Differ. Equ. 12 (2009), 1-10.




DOI: https://doi.org/10.52846/ami.v49i1.1516