The complex-type Fibonacci p-Sequences

Ömür Deveci, Anthony G. Shannon, Erdal Karaduman

Abstract


In this paper, we define a new sequence which is called the complex-type Fibonacci p-sequence and we obtain the generating matrix of this complex-type Fibonacci p-sequence. We also derive the determinantal and the permanental representations. Then, using the roots of the characteristic polynomial of the complex-type Fibonacci p-sequence, we produce the Binet formula for this defined sequence. In addition, we give the combinatorial representations, the generating function, the exponential representation and the sums of the complex-type Fibonacci p-numbers.


Full Text:

PDF

References


G. Berzsenyi, Sums of products of generalized Fibonacci numbers, Fibonacci Quart. 13 (1975), 343-344.

R.A. Brualdi and P.M. Gibson, Convex polyhedra of doubly stochastic matrices I: Applications of permanent function, J. Combin. Theory, Series A 22 (1977), no. 2, 194-230.

W.Y.C. Chen and J.D. Louck, The combinatorial power of the companion matrix, Linear Algebra Appl. 232 (1996), 261-278. DOI: 10.1016/0024-3795(95)90163-9

O. Deveci and A.G. Shannon, The complex-type k-Fibonacci sequences and their applications, Comm. Algebra 49 (2021), no. 3, 1352-1367. DOI: 10.1080/00927872.2020.1834573

O. Deveci and A.G. Shannon, The quaternion-Pell sequence, Comm. Algebra 46 (2018), no. 12, 5403-5409.

O. Deveci and A.G. Shannon, Matrix manipulations for properties of Fibonacci p-numbers and their generalizations, An. Știint. Univ. Al. I. Cuza Iași. Mat. (N.S.) 67 (2021), no. 1, 85-95.

G.B. Djordjevic, Generalizations of the Fibonacci and Lucas polynomials, Filomat 23 (2009), no. 3, 291-301.

D.D. Frey and J.A. Sellers, Jacobsthal numbers and alternating sign matrices, J. Integer Seq. 3 (2000), Article 00.2.3.

A.F. Horadam, A generalized Fibonacci sequence, American Math. Monthly 68 (1961), no. 5, 455-459.

A.F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, American Math. Monthly 70 (1963), no. 3, 289-291.

A.F. Horadam and A.G. Shannon, Ward's Staudt-Clausen problem, Mathematica Scandinavica 29 (1976), no. 4, 239-250.

D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20 (1982), no. 1, 73-76.

E. Kilic and D. Tasci, On the generalized order-k Fibonacci and Lucas numbers, Rocky Mountain J. Math. 36 (2006), no. 6, 1915-1926.

E. Ozkan, On truncated Fibonacci sequences, Indian J. Pure Appl. Math. 38 (2007), no. 4, 241-251.

A.G. Shannon, A method of Carlitz applied to the k-th power generating function for Fibonacci numbers, Fibonacci Quart. 12 (1974), no. 3, 293-299.

A.G. Shannon, Explicit expressions for powers of arbitrary order linear recursive sequences, Fibonacci Quart. 12 (1974), no. 3, 281-287.

A.G. Shannon, Fibonacci and Lucas numbers and the complexity of a graph, Fibonacci Quart. 16} (1978), 1-4.

A.G. Shannon and A. F. Horadam, Some combinatorial aspects of complex logarithms, Bull. Number Th. 7 (1982), 1-16.

A.P. Stakhov, A generalization of the Fibonacci Q-matrix, Rep. Natl. Acad. Sci., Ukraine,9(1999), 46-49.

A. Stakhov and B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos, Solitons Fractals 27 (2006), no. 5, 1162-1177.

B. Stephen, Matrices methods and applications, Oxford University Press, New York, 1990.

D. Tasci and M. C. Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modell. 52 (2010), no. 9-10, 1763-1770.

S. Tas, A new family of k-Gaussian Fibonacci numbers, J. BAUN Inst. Sci. Technol. 21 (2019), no. 1, 184-189.

S. Vajda, Fibonacci and Lucas numbers, and the Golden section theory and applications, New York, John Wiley&Sons, 1989.




DOI: https://doi.org/10.52846/ami.v49i2.1534