Weigthed elliptic equation of Kirchhoff type with exponential non linear growth

Rached Jaidane

Abstract


This work is concerned with the existence of a positive ground state solution for the following non local weighted problem
\begin{equation*}
\displaystyle \left\{
\begin{array}{rclll}
L_{(\sigma,V)}u &= & \displaystyle f(x,u)& \mbox{in} \ B \\
u &>&0 &\mbox{in }B\\
u&=&0 &\mbox{on } \partial B,
\end{array}
\right.
\end{equation*}
where $$L_{(\sigma,V)}u:=g(\int_{B}(\sigma(x)|\nabla u|^{N}+V(x)|u|^{N})dx)\big[-\textmd{div} (\sigma(x)|\nabla u|^{N-2} \nabla u)+V(x)|u|^{N-2}u\big],$$ B is the unit ball of $\mathbb{R}^{N}$, $ N>2$, $\sigma(x)=\Big(\log(\frac{e}{|x|})\Big)^{\beta(N-1)}$, $\beta \in[0,1)$ the singular logarithm weight , $V(x)$ is a positif continuous potential.The Kirchhoff function $g$ is positive and continuous on $(0,+\infty)$.
The nonlinearities are critical or subcritical growth in view of Trudinger-Moser inequalities of
exponential type. We prove the existence of a positive ground state solution by using Mountain Pass theorem .
In the critical case, the Euler-Lagrange function loses compactness except for a certain level. We dodge this problem by using adapted test functions to identify this level of compactness.


Full Text:

PDF

References


A. Adimurthi and K. Sandeep, A Singular Moser-Trudinger Embedding and Its Applications, Nonlinear Differential Equations and Applications 13 (2007), no. 5-6, 585-603. DOI:10.1007/s00030-006-4025-9

F. Albuquerque, A. Bahrouni, and U. Severo, Existence of solutions for a nonhomogeneous Kirchhoff-Schrödinger type equation in R2 involving unbounded or decaying potentials, Topol. Methods Nonlinear Anal. 56 (2020), no. 1, 263-281. DOI: 10.12775/TMNA.2020.013

C.O. Alves, F.J.S.A. CorrĂȘa, and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.

C.O. Alves and F.J.S.A. Corr^ea, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal. 8 (2001), 43-56.

A. Ambrosetti and P. H. Rabionowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349-381.

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581-597.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.

E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description, Communications in Mathematical Physics 143 (1992), no. 3, 501-525. DOI: 10.1007/BF02099262

E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description. II, Communications in Mathematical Physics 174 (1995), no. 2, 229-260. DOI: 10.1007/BF02099602

M. Calanchi and B. Ruf, On a Trudinger-Moser type inequalities with logarithmic weights, Journal of Differential Equations 258 (2015), no. 6, 1967-1989. DOI: 10.1016/j.jde.2014.11.019

M. Calanchi and B. Ruf, Trudinger-Moser type inequalities with logarithmic weights in dimension N, Nonlinear Analysis: Theory Methods and Applications 121 (2015), 403-411. DOI: 10.1016/j.na.2015.02.001

M. Calanchi and B. Ruf, Weighted Trudinger-Moser inequalities and Applications, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming and Computer Software vol. 8 (2015), no. 3, 42-55. DOI: 10.14529/mmp150303

M. Calanchi, B. Ruf, and F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDea Nonlinear Differ. Equ. Appl. 24 (2017), Art. 29. DOI: 10.1007/s00030-017-0453-y

M. Calanchi and E. Terraneo, Non-radial Maximizers For Functionals With Exponential Nonlinearity in R2, Advanced Nonlinear Studies 5 (2005), 337-350. DOI: 10.1515/ans-2005-0302

S. Chanillo and M. Kiessling, Rotational Symmetry of Solutions of Some Nonlinear Problems in Statistical Mechanics and in Geometry, Communications in Mathematical Physics 160 (1994), no. 2, 217-238. DOI: 10.1007/BF02103274

S. Chen, X. Tang, and J. Wei, Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys. 72 (2021), Art. 38. DOI: 10.1007/s00033-020-01455-w

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. 30 (1997), 4619-4627.

M. Chipot and J.F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO, Modllelisation Mathematique et Analyse Numerique 26 (1992), 447-467.

P. Drabek, A. Kufner, and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin, 1997. DOI: 10.1515/9783110804775

D.G. de Figueiredo, J.M. do O, and B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math. LV (2002), 135-152.

D.G. de Figueiredo, O.H. Miyagaki, and B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139-153. DOI: 10.1007/BF01205003

G.M. Figueiredo and U.B. Severo, Ground State Solution for a Kirchhoff Problem with Exponential Critical Growth, Milan J. Math. 84 (2016), 23-39. DOI: 10.1007/s00032-015-0248-8

M.K.-H. Kiessling, Statistical Mechanics of Classical Particles with Logarithmic Interactions, Communications on Pure and Applied Mathematics 46 (1993), 27-56. DOI:10.1002/cpa.3160460103

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1876.

A. Kufner, Weighted Sobolev spaces, John Wiley and Sons Ltd, 1985. DOI:10.1112/blms/18.2.220

J. Liouville, Sur l'equation aux derivees partielles, Journal de Mathematiques Pures et Apppliquees 18 (1853), 71-72.

J.-L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud. 30, North-Holland, Amsterdam-New York, 1978.

P.L. Lions, The Concentration-compactness principle in the Calculus of Variations, Part 1, Revista Iberoamericana 11 (1985), 185-201.

G. Tarantello, Condensate Solutions for the Chern - Simons - Higgs Theory, Journal of Mathematical Physics 37 (1996), 3769-3796. DOI: 10.1063/1.531601

G. Tarantello, Analytical Aspects of Liouville-Type Equations with Singular Sources, Handbook of Differential Equations, Elsevier, North Holland, 2004, 491-592.




DOI: https://doi.org/10.52846/ami.v49i2.1572