Heteroclinic solutions for damped p-Laplacian difference equations
Abstract
In this paper, we investigate the existence of heteroclinic solutions for a class of p-Laplacian difference equations with a parameter.
The proof of the main theorem is variational and based on the use of the Mountain Pass Theorem. Our results successfully improve recent ones in the literature and partially answer an open problem proposed by Cabada and Tersian in [7].
Full Text:
PDFReferences
R.P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications (Second Edition), Marcel Dekker, New York, 2000. DOI: 10.1201/9781420027020
R.P. Agarwal, K.Perera, and D.O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Analysis: Theory, Methods and Applications 58 (2004), no. 1-2, 69-73. DOI:10.1016/j.na.2003.11.012
R.P. Agarwal and P.J.Y.Wong, Advanced Topics in Difference Equations, Kluwer, Dordrecht, 1997.
M. Aprahmian, D.Souroujon and S.Tersian, Decreasing and fast solutions for a second-order difference equation related to Fisher-Kolmogorov's equation, Journal of Mathematical Analysis and Applications 363 (2010), no. 1, 97-110. DOI: DOI:10.1016/J.JMAA.2009.08.009
M. Arias, J. Campus, A.M. Robles-Peres, and L. Sanchez, Fast and heteroclinic solutions for a second order ODE related to Fisher-Kolmogorov's equation, Calculus of Variations and Partial Differential Equations volume 21 (2004), no. 3, 319-334. DOI: 10.1007/s00526-004-0264-y
A. Cabada, D.Souroujon, and S. Tersian, Heteroclinic solutions of a second-order difference equation related to the Fisher-Kolmogorov's equation, Applied Mathematics and Computation 218 (2012), no. 18, 9442-9450. DOI: 10.1016/j.amc.2012.03.032
A. Cabada and S. Tersian, Existence of heteroclinic solutions for discrete p-Laplacian problems with a parameter, Nonlinear Analysis: Real World Applications 12 (2011), no. 4, 2429-2434.DOI: 10.1016/j.nonrwa.2011.02.022
J.B. Conway, A Course in Functional Analysis, Springer, New York, 2013.
A. Daouas and A. Guefrej, On Fast Homoclinic Solutions for Second-Order Damped Difference Equations, Bulletin of the Malaysian Mathematical Sciences Society 43 (2020), no. 4, 3125-3142. DOI: 10.1007/s40840-019-00858-x
S.N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 1996. DOI:10.1007/978-1-4757-9168-6
J. R. Graef, L. Kong, and M. Wang, Existence of homoclinic solutions for second order difference equations with p-Laplacian, Dynamical Systems, Proceedings of the 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, (2015), 533-539. DOI:10.3934/proc.2015.0533
J.R. Graef, L. Kong, and M. Wang, Infinity many homoclinic solutions for second order difference equations with p-Laplacian, Communications in Applied Analysis 19 (2015), 95-102.
Z. Guo and J. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc. 68 (2003), no. 2, 419-430. DOI: 10.1112/S0024610703004563
P. Hartman, Difference equations: Disconjugacy, principal solutions, Green's functions, complete monotonicity, Transactions of the American Mathematical Society 246 (1978), 1-30. DOI:10.2307/1997963
A. Iannizzotto and S.A. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, Journal of Mathematical Analysis and Applications 403 (2013), no. 1, 173-183. DOI: 10.1016/j.jmaa.2013.02.011
W.G. Kelley and A.C. Peterson, Difference Equations, An Introduction with Applications (Second Edition), Academic Press, 2001.
L. Kong, Homoclinic solutions for a second order difference equation with p-Laplacian, Applied Mathematics and Computation 247 (2014), 1113-1121.DOI: 10.1016/j.amc.2014.09.069
J. Kuang and Z. Guo, Heteroclinic solution for a class of p-Laplacian difference equations with a parameter, Applied Mathematics Letters 100 (2020), 106034. DOI: 10.1016/j.aml.2019.106034
X. Lin and X.H. Tang, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems, Journal of Mathematical Analysis and Applications 373 (2011), no. 1, 59-72. DOI:10.1016/j.jmaa.2010.06.008
P. Lindqvist, On the equation div… = 0, Proceedings of the American Mathematical Society 109 (1990), 157-164. DOI: 10.2307/2159772
X. Liu, T. Zhou, and H. Shi, Existence of homoclinic orbits for a class of nonlinear functional difference equations, Electronic Journal of Differential Equations 2016 (2016), no. 315, 1-10.
P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. Soc., Providence, RI, 1986. DOI:10.1112/blms/19.3.282
P.H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Annales de l'Institut Henri Poincaré C, Analyse non lineaire 6 (1989), no. 5, 331-346. DOI: 10.1016/S0294-1449(16)30314-6
H. Shi, X. Liu, and T. Zhou, Heteroclinic Orbits of a Second Order Nonlinear Difference Equation, Electronic Journal of Di_erential Equations 2017 (2017), no. 260, 1-9.
R. Steglinski, On homoclinic solutions for a second order difference equation with p-Laplacian, Discrete and Continuous Dynamical Systems - Series B 23 (2018), no. 1, 487-492. DOI:10.3934/dcdsb.2018033
H. Xiao, Y. Long, and H.P. Shi, Heteroclinic orbits for discrete Hamiltonian systems, Communications in Mathematical Analysis 9 (2010), no. 1, 1-14. DOI: DOI: 10.3934/cpaa.2019021
H. Xiao and J. Yu, Heteroclinic Orbits for Discrete Pendulum Equation, Journal of Difference Equations and Applications 17 (2011), no. 9, 1267-1280. DOI: 10.1080/10236190903167991
H. Zhang and Z.X. Li, Heteroclinic orbits and heteroclinic chains for a discrete Hamiltonian system, Science China Mathematics 53 (2010), no. 6, 1555-1564. DOI: 10.1007/s11425-010-4009-4
DOI: https://doi.org/10.52846/ami.v49i2.1585