Integral inequalities for mappings whose derivatives are (h,m,s)-convex modied of second type via Katugampola integrals

Bahtiyar Bayraktar, Juan Eduardo Nápoles-Valdés

Abstract


In this paper, using the definition of functions (h,m,s)-convex modified of second type, various extensions of the classic Hermite-Hadamard Inequality are obtained using Katugampola integrals. In addition, we show that several results known are particular cases of ours.

Full Text:

PDF

References


P. Agarwal, M. Jleli, and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, Journal of Inequalities and Applications 2017 (2017), 55. DOI: 10.1186/s13660-017-1318-y

A. O. Akdemir, E. Deniz, and E. Yukse, On some integral inequalities via conformable fractionals integrals, Applied Mathematics and Nonlinear Sciences 6 (2021), no. 1, 489-498. DOI: 10.1186/s13660-017-1318-y

M.A. Ali, J. N_apoles, A. Kashuri, and Z. Zhang, Fractional non conformable Hermite-Hadamard inequalities for generalized φ-convex functions, Fasciculi Mathematici 64 (2020), 5-16. DOI: 10.21008/j.0044-4413.2020.0007

M. Alomari and M. Darus, Some ostrowsky type inequalities for convex functions with applications, RGMIA Res. Rep. Coll. 13 (2010), Article 2.

M.U. Awan, M.A. Noor, F. Safdar, A. Islam, M. Mihai, and K.I. Noor, Hermite-Hadamard type inequalities with applications, Miskolc Mathematical Notes 21 (2020), no. 2, 593-614.

B. Bayraktar, Some integral inequalities of Hermite - Hadamard type for differentiable (s;m)-convex functions via fractional integrals, TWMS J. App. Eng. Math 10 (2020), no. 3, 625-637.

B. Bayraktar, Some new generalizations of Hadamard-type midpoint inequalities involving fractional integrals, Probl. Anal. Issues Anal.9 (2020), no. 27-3, 66-82. DOI: 10.15393/j3.art.2020.8270

W.W. Bruckner and E. Ostrow, Some function classes related to the class of convex functions, Paci_c J. Math 12 (1978), 13-20.

A.M. Bruckner, E. Ostrow, Stetigkeitsaussagen fur eine klasse verallgemeinerter konvexer funktionen in topologischen linearen raumen, Pupl.Inst. Math 23 (1962), 1203-1215.

H. Chen and U.N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl. 446 (2017), 1274-1291.

R. Diaz and E. Pariguan, On hypergeometric functions and pochhammer k-symbol, Divulg. Mat. 15 (2007), no. 2, 179-192.

S.S. Dragomir and R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett. 11 (1995), no. 5, 91-95.

M.R. Delavar, S.S. Dragomir, and M. De La Sen, Estimation type results related to Fejér inequality with applications, Journal of Inequalities and Applications 2018 (2018), Article 85. DOI: 10.1186/s13660-018-1677-z

G. Farid, U.N. Katugampola, and M. Usman, Ostrowski-type fractional integral inequalities for mappings whose derivatives are h-convex via Katugampola fractional integrals, Stud. Univ. Babes-Bolyai Math 63 (2018), 465-474. DOI: 10.24193/subbmath.2018.4.04

G. Farid, A. Rehman, and M. Zahra, On Hadamard inequalities for k-fractional integrals, Nonlinear Functional Analysis and Application 21 (2016), no. 3, 463-478.

E.K. Godunova and V.I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numerical mathematics and mathematical physics 166 (1985), 138-142.

P.M. Guzmán, J. Nápoles, and Y. Gasimov, Integral inequalities within the framework of generalized fractional integrals, Fractional Differential Calculus, to appear (2021).

J. Hadamard, Etude sur les propriétés des fonctions entiéres et en particulier d'une function considérée par Riemann, J. Math. Pures App. 9 (1893), 171-216.

C. Hermite, Sur deux limites d'une intégrale définie, Mathesis 3 (1883).

J. Hernández, On some new integral inequalities related with the Hermite-Hadamard inequality via h-convex functions, MAYFEB Journal of Mathematics 4 (2017), 1-12.

C.J. Huang, G. Rahman, K.S. Nisar, A. Ghaffa, and F. Qi, Some inequalities of the Hermite-Hadamard type for k-fractional conformable integrals, AJMAA 16 (2019), no. 1, 1-9.

H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), no. 1, 100-111.

R. Hussain, A. Ali, G. Gulshani, A. Latif, and K. Rauf, Hermite-Hadamard type inequalities for k-Riemann-Liouville fractional integrals via two kinds of convexity, Australian Journal of Mathematical Analysis and Applications 13 (2016), no. 1, 1-12.

D.A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser. 34 (2007), 82-87.

H. Kadakal, On refinements of some integral inequalities using improved power-mean integral inequalities, Numer. Methods Partial Differential Eq. 36 (2020), no. 6, 1555-1565. DOI:10.1002/num.22491

M.A. Khan and Y. Khurshid, Hermite-Hadamar's inequalities for η-convex functions via conformable fractional integrals and related inequalities, Acta Mathematica Universitatis Comenianae 90 (2021), no. 2, 157-169. DOI: 10.1002/num.22491

U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Applied Mathematics and Computation 147 (2004), 137-146.

N. Mehreen and M. Anwar, Integral inequalities for some convex functions via generalized fractional integrals, Journal of Inequalities and Applications 2018 (2018), Article 208. DOI:10.1186/s13660-018-1807-7

V.G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca (Romania), 1998.

S. Mubeen and G.M. Habibullah, k-fractional integrals and application, Int.J. Contemp. Math. Sciences 7 (2012), no. 2, 89-94.

M. Muddassar, M.I. Bhatti, and W. Irshad, Generalisation of integral inequalities of Hermite-Hadamard type through convexity, Bull. Aust. Math. Soc. 88 (2013), no. 2, 320-330.

J. Nápoles, F. Rabossi, and A.D. Samaniego, Convex functions: Ariadne's thread or Charlotte's spiderweb?, Advanced Mathematical Models & Applications5 (2020), no. 2, 176-191.

J. Nápoles, J.M. Rodríguez, and J.M. Sigarreta, On Hermite-Hadamard type inequalities for non-conformable integral operators, Symmetry 11 ( 2019), 1108.

M.A. Noor, K.I. Noor, and M.U. Awan, Generalized fractional Hermite-Hadamard inequalties, Miskolc Mathematical Notes 21 (2020), no. 2, 1001-1011. DOI: 10.18514/MMN.2020.1143

M.E. Özdemir, A.O. Akdemir, and E. Set, On (h-m)-convexity and Hadamard-type inequalities, arXiv:1103.6163v1 (2016).

M. E. Özdemir, M. Avci, and H. Kavurmaci, Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals, arxiv:1202,0380v1, 2012.

M.E. Özdemir, M. Avci, and H. Kavurmaci, Ostrowski type inequalities for convex functions, Tamkang Journal Of Mathematics 45 (2014), no. 4, 335-340. DOI: 10.5556/j.tkjm.45.2014.1143

M.E. Özdemir, S.S. Dragomir, and Ç . S. Yıldız, The Hadamard's inequality for convex function via fractional integrals, Acta Math. Sci. 33B (2013), no. 5, 1293-1299.

J. Park, Some Hermite-Hadamard type inequalities for mt-convex functions via classical and Riemann-Liouville fractional integrals, Appl. Math. Sci. 9 (2015), no. 101, 5011-5026.

F. Qi, T.Y. Zhang, and B.Y. Xi, Hermite-Hadamard type integral inequalities for functions whose first derivatives are of convexity, Ukrainian Mathematical Journal 67 (2015), no. 4, 555-567. DOI: 10.1007/s11253-015-1103-3

M. Z. Sarikaya and H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, RGMIA Research Report Collection, 17 (2014), 98.

M.Z. Sarikaya, On new Hermite-Hadamard-Fejer type integral inequalities, Studia Universitatis Babes-Bolyai Mathematica 57 (2012), no. 3, 377-386.

M.Z. Sarikaya, H. Yaldiz, E. Set, and N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling 57 (2013), no. 9-10, 2403-2407.

M.Z. Sarikaya and H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Mathematical Notes 17 (2017), no. 2, 1049-1059. DOI:10.18514/MMN.2017.1197

E. Set, J. Choi, and A. Gözpinar, Hermite-Hadamard type inequalities involving nonlocal conformable fractional integrals, Malaysian Journal of Mathematical Sciences 15 (2021), no. 1, 33-43.

E. Set and A. Gözpinar, A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional integrals, Stud. Univ. Babes-Bolyai Math. 62 (2017), no. 3, 309-323. DOI: 10.24193/subbmath.2017.3.04

E. Set, A. Gözpinar, and A. Ekinci, Hermite-Hadamard type inequalities via conformable fractional integrals, Acta Mathematica Universitatis Comenianae LXXXVI (2017), no. 2, 309-320.

E. Set, M.E. Özdemir, M.Z. Sarikaya, and F. Karakoc, Hermite-Hadamard type inequalities for (α;m)-convex functions via fractional integrals,Moroccan J. Pure Appl. Anal. 3 (2017), no. 1, 15-21. DOI: 10.1515/mjpaa-2017-0002

G. Toader, Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization 1985, 329-338.

M. Tunç and S. Balgeçti, Integral inequalities for mappings whose derivatives are s-convex in the second sense and applications to special means for positive real numbers, Turkish Journal of Analysis and Number Theory 4 (2016), no. 2, 48-53. DOI: 10.12691/tjant-4-2-5

M. Tunç and S. Balgeçti, Some inequalities for differentiable convex functions with applications, http://arxiv.org/pdf/1406.7217.pdf, 2021.

E.D. Rainville, Special functions, Macmillan Co., New York, 1960.

S.Wu, S. Iqbal, M. Aamir, M. Samraiz, and A. Younus, On some Hermite-Hadamard inequalities involving k-fractional operators, Journal of Inequalities and Applications 2021 (2021), Article 32. DOI: 10.1186/s13660-020-02527-1

H. Wang, T. Du, and Y. Zhang, k-fractional integral trapezium-like inequalities through (h;m)-convex and (α;m)-convex mappings, Journal of Inequalities and Applications 2017 (2017), Article 311. DOI: 10.1186/s13660-017-1586-6

B.Y. Xi and F. Qi, Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex. Anal. 16 (2015), no. 5, 873-890.

B.Y. Xi, D. Gao, and F. Qi, Integral inequalities of Hermite-Hadamard type for (α; s)-convex and (α; s;m)-convex functions, Journal Of Pure And Applied Mathematics 44 (2020), 499-510.

B.-Y. Xi, Y.Wang, and F. Qi, Some integral inequalities of Hermite-Hadamard type for extended (s;m)-convex functions, Transylv. J. Math. Mech 5 (2013), no. 1, 69-84.

H. Yaldiz and A.O. Akdemir, Katugampola fractional integrals within the class of convex functions, Turkish Journal Of Science 3 (2018), no. 1, 40-50.

C. Zhu, M. Feckan, and J.Wangi, Factional integral inequalities for differential convex mappings and applications to special means and a midpoint formula, J. Appl. Math. Stat. Inform. 8 (2012), no. 2, 21-28.




DOI: https://doi.org/10.52846/ami.v49i2.1596