Common fixed point result for multivalued mappings with applications to systems of integral and functional equations
Abstract
Full Text:
PDFReferences
S. Alizadeh, F. Moradlou, and P. Salimi, Some fixed point results for (α–β) –(ᴪ-ϕ)-contractive mappings, Filomat 28 (2014), no. 3, 635-647. DOI: 10.2298/FIL1403635A
S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund Math. 3(1922), 133-181.
V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9 (2004), 43-53.
S. K. Chatterjea, Fixed-point theorems, C.R. Acad. Bulgare Sci. 25 (1972), 727-730.
B. S. Choudhury, N. Metiya, and S. Kundu, Existence and stability results for coincidence points of nonlinear contractions, Facta Universitatis (NIŠ) Ser. Math. Inform. 32 (4) (2017), 469-483. DOI: 10.22190/FUMI1704469C
B. S. Choudhury, N. Metiya, and S. Kundu, Fixed point sets of multivalued contractions and stability analysis, Commun. Math. Sci. 2 (2018), 163-171. DOI: 10.33434/cams.454820
B. S. Choudhury, N. Metiya, and S. Kundu, End point theorems of multivalued operators without continuity satisfying hybrid inequality under two different sets of conditions, Rend. Circ. Mat. Palermo, II. Ser 68 (2019), no. 2, 65-81. DOI: 10.1007/s12215-018-0344-z
B. S. Choudhury, N. Metiya, S. Kundu, and D. Khatua, Fixed point of multivalued mappings in metric spaces, Surv. Math. Appl. 14 (2019), 1-16.
B. S. Choudhury, N. Metiya, and S. Kundu, Existence, data-dependence and stability of coupled fixed point sets of some multivalued operators, Chaos, Solitons and Fractals 133 (2020), Article 109678. DOI: 10.1016/j.chaos.2020.109678
B. S. Choudhury, N. Metiya, and S. Kundu, Existence, uniqueness and well-posedness results for relation theoretic coupled fixed points problem using C-class function with some consequences and an application, The Journal of Analysis 29 (2021), no. 1, 227-245. DOI: 10.1007/s41478-020-00258-6
L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Am. Math. Soc. 45 (1974), 267-273. DOI: 10.2307/2040075
B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure Appl. Math. 6 (1975), 1455-1458.
B. Fisher, Common fixed points of mappings and setvalued mappings, Rostock Math. Colloq. 18 (1981), 69-77.
J. Harjani and K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009),
-3410. DOI: 10.1016/j.na.2009.01.240
J. Harjani, B. López, and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011), 1749-1760. DOI: 10.1016/j.na.2010.10.047
D. S. Jaggi and B. K. Das, An extension of Banach's fixed point theorem through rational expression, Bull. Cal. Math. Soc. 72 (1980), 261-264.
R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc. 60 (1968), 71-76.
S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488. DOI: 10.2140/pjm.1969.30.475
J. J. Nieto and R. Rodrguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239. DOI: 10.1007/s11083-005-9018-5
A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443. DOI: 10.1090/S0002-9939-03-07220-4
B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for α-ᴪ-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165. DOI: 10.1016/j.na.2011.10.014
T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Mat. (Basel) 23 (1972), 292-298. DOI: 10.1007/BF01304884
DOI: https://doi.org/10.52846/ami.v50i1.1604