Location of zeros of a Lacunary type polynomial

Subhasis Das

Abstract


For a given polynomial p(z) of degree n with real or complex coefficients, our basic aim has been to determine the smallest region in which all the zeros of p(z) lie. In the present paper, we have obtained a result by using Lacunary type polynomial which gives the region of zeros neither circular nor annular except in some particular cases. Our result plays an important role to reduce the region of polynomial zeros.

Full Text:

PDF

References


P. Batra, M. Mignotte, and D. Stefanescu, Improvements of Lagrange's bound for polynomial roots, Journal of Symbolic Computation 82 (2017), 19-25. DOI: 10.1016/j.jsc.2016.10.001

A.L. Cauchy, Exercise de Mathematiques: Iv Annee de Bure Freres, Paris, 1829.

S. Das, Annular bounds for the zeros of polynomials, Bull. Math. Soc. Sci. Math. Roumanie 63 (2020), no. 4, 335-347.

B. Datt and N.K. Govil, On the location of the zeros of a polynomial, J. Approx. Theory 24 (1978), 78-82.

M. Dehmer and A. Mowshowitz, Bounds on the moduli of polynomial zeros, Appl. Maths. Comp. 218 (2011), 4128-4137. DOI: 10.1016/j.amc.2011.09.043

V.K. Jain, On Cauchy's bound for zeros of a polynomial, Approx. Theory Appl. 6 (1990), 18-24.

V.K. Jain, On Cauchy's bound for zeros of a polynomial, Glasnik Mathematicki 31 (1996), no. 2, 245-252.

V.K. Jain, On Cauchy's bound for zeros of a polynomial, Turk. J. Math. 30 (2006), 95-100.

J.L. Lagrange, Sur la resolution des équations numeriques, Mémoires de l'Academie royale des Sciences et Belles-lettres de Berlin XXIII (1769), 539-578.

M. Marden, The Geometry of polynomial, AMS Math Surveys 3, New York, 1966.

A. Melman, Improved Cauchy radius for scalar and matrix polynomials, Proc. Amer. Math. Soc. 146 (2018), no. 2, 613-624. DOI: 10.1090/proc/13826

Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford Univ. Press, 2002.

Y.J. Sun and J.G. Hsieh, A note on circular bound of polynomial zeros, IEEE Trans. Circuits Syst. 43 (1996), no. 1, 476-478.




DOI: https://doi.org/10.52846/ami.v49i2.1614