Predicting future community intrusions using a novel type and encryption mechanism architecture for attack node mitigation
Abstract
Full Text:
PDFReferences
M. Aamir and S.M.A. Zaidi, Clustering-based semi-supervised machine learning for DDoS attack classification, Journal of King Saud University - Computer and Information Sciences 7 (2019), no. 2, 1-11. https://doi.org/10.1016/j.jksuci.2019.02.003
A. Al-Abassi, H. Karimipour, A. Dehghantanha, and R. M. Parizi, An ensemble deep learning-based cyber-attack detection in the industrial control system, IEEE Access 8 (2020), no. 5, 83965-83973. https://doi.org/10.1109/ACCESS.2020.2992249
M. Marsaline Beno, I.R. Valarmathi, S.M. Swamy, and B. R. Rajakumar, Threshold prediction for segmenting tumors from brain MRI scans, International Journal of Imaging Systems and Technology 24 (2014), no. 2, 129-137https://doi.org/10.1002/ima.22087
X. Fang, M. Xu, S. Xu, and P. Zhao, A deep learning framework for predicting cyberattacks rates, Eurasip Journal on Information Security 2019 (2019), no. 1, 1-11. https://doi.org/10.1186/s13635-019-0090-6
T. Gopalakrishnan, D. Ruby, F. Al-Turjman, D. Gupta, I.V. Pustokhina, D.A. Pustokhin, and K. Shankar, Deep learning enabled data offloading with a cyber-attack detection model in mobile edge computing systems, IEEE Access 8 (2020), no. 1, 185938-185949. https://doi.org/10.1109/ACCESS.2020.3030726
B. Hussain, Q. Du, B. Sun, and Z. Han, Deep Learning-Based DDoS-Attack Detection for Cyber-Physical System over 5G Network, IEEE Transactions on Industrial Informatics 17 (2021), no. 2, 860-870. https://doi.org/10.1109/TII.2020.2974520
A.E. Ibor, F.A. Oladeji, O.B. Okunoye, and , O.O. Ekabua, The conceptualization of Cyberattack prediction with deep learning, Cybersecurity 3 (2020), no. 1, 1-13. https://doi.org/10.1186/s42400-020-00053-7
K. Jiang, W. Wang, A. Wang, and H. Wu, Network Intrusion Detection Combined Hybrid Sampling with Deep Hierarchical Network, IEEE Access 8 (2020), no. 3, 32464-32476. https://doi.org/10.1109/ACCESS.2020.2973730
V. Kanimozhi, and T.P. Jacob, Artificial Intelligence outflanks all other machine learning classifiers in Network Intrusion Detection System on the realistic cyber dataset CSE-CIC-IDS 2018 using cloud computing, ICT Express 8 (2020), no. 1, 1-8. https://doi.org/10.1016/j.icte.2020.12.004
N.M. Karie, V.R. Kebande, and H.S. Venter, Diverging deep learning cognitive computing techniques into cyber forensics, Forensic Science International: Synergy 17 (2019), no. 1, 61-67. https://doi.org/10.1016/j.fsisyn.2019.03.006
M. Elnour, N. Meskin, K. Khan, and R. Jain, A dual-isolation-forests-based attack detection framework for industrial control systems, IEEE Access 8 (2020), no. 3, 36639-36651. https://doi.org/10.1109/ACCESS.2020.2975066
U. Noor, Z. Anwar, T. Amjad, and K.K.R. Choo, A machine learning-based FinTech cyber threat attribution framework using high-level indicators of compromise, Future Generation Computer Systems 9 (2019), no. 6, 227-242. https://doi.org/10.1016/j.future.2019.02.013
Y. Pan, F. Sun, Z. Teng, J. White, D. C. Schmidt, J. Staples, and L. Krause, Detecting web attacks with end-to-end deep learning, Journal of Internet Services and Applications 10 (2019), no. 1, 2-22. https://doi.org/10.1186/s13174-019-0115-x
D.T. Ramotsoela, G.P. Hancke, and A.M. Abu-Mahfouz, Attack detection in water distribution systems using machine learning, Human-Centric Computing and Information Science 9 (2019), no. 1, 1-26. https://doi.org/10.1186/s13673-019-0175-8
M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.K.R. Choo, and R.M. Parizi, An Ensemble of Deep Recurrent Neural Networks for Detecting IoT Cyber Attacks Using Network Traffic, IEEE Internet of Things Journal 7 (2020), no. 9, 8852-8859. https://doi.org/10.1109/JIOT.2020.2996425
A. Samy, H. Yu, and H. Zhang, Fog-Based Attack Detection Framework for Internet of Things Using Deep Learning., IEEE Access 8 (2020), no. Dl, 74571-74585. https://doi.org/10.1109/ACCESS.2020.2988854
M. Shafiq, Z. Tian, Y. Sun, X. Du, and M. Guizani, Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for the internet of things in a smart city, Future Generation Computer Systems 10 (2020), no. 7, 443-442. https://doi.org/10.1016/j.future.2020.02.017
A. Subroto and A. Apriyana, Cyber risk prediction through social media big data analytics and statistical machine learning, Journal of Big Data 6 (2019), no. 1, 1-19. https://doi.org/10.1186/s40537-019-0216-1
D. Wang, X. Wang, Y. Zhang, and L. Jin, Detection of power grid disturbances and cyber-attacks based on machine learning, Journal of Information Security and Applications 46 (2019), no. 1, 42-52. https://doi.org/10.1016/j.jisa.2019.02.008
H. Wang, J. Ruan, Z. Ma, B. Zhou, X. Fu, and G. Cao, Deep learning aided interval state prediction for improving cybersecurity in the energy internet, Energy 17 (2019), no. 4, 1292-1304. https://doi.org/10.1016/j.energy.2019.03.009
H. Wang, J. Ruan, G. Wang, B. Zhou, Y. Liu, X. Fu, and J. Peng, Deep Learning-Based Interval State Estimation of AC Smart Grids Against Sparse Cyber Attacks, IEEE Transactions on Industrial Informatics 14 (2018), no. 11, 4766-4778. https://doi.org/10.1109/TII.2018.2804669
Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang, Machine Learning and Deep Learning Methods for Cybersecurity, IEEE Access 6 (2018), no. 1, 35365-35381. https://doi.org/10.1109/ACCESS.2018.2836950
DOI: https://doi.org/10.52846/ami.v49i1.1623