Edge resolving number of pentagonal circular ladder

Sunny Kumar Sharma, Vijay Kumar Bhat, Sohan Lal

Abstract


Let $G=G(V,E)$ be a non-trivial simple connected graph. The length of the shortest path between two vertices $p$ and $q$, represented by $d(p, q)$, is called the distance between the vertices $p$ and $q$. The distance between an edge $\varepsilon=pq$ and a vertex $r$ in $G$ is defined as $d(\varepsilon, r)=\mbox{min}\{d(p, r), d(q, r)\}$. If $d(r, p)\neq d(r, q)$, then the vertex $r$ is said to distinguish (resolve or recognize) two elements (edges or vertices) $p, q\in V\cup E$. The minimum cardinality of a subset $R$ ($R_e$) of vertices such that all other vertices (edges) of the graph $G$ are uniquely determined by their distances to the vertices in $R$ ($R_e$) is the metric dimension (edge metric dimension) of a graph $G$. In this article, we consider a family of pentagonal circular ladder $(P_m)$ and investigate its edge metric dimension. We show that, for $P_m$ the edge metric dimension is strictly greater than its metric dimension. Additionally, we answer a problem raised in the recent past, regarding the edge metric dimension of a family of a planar graph $R_m$ (exists in the literature).

Full Text:

PDF

References


Z. Beerloiva, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, and L. Ram, Network discovery and verification, IEEE J. Sel. Area Commun. 24 (2006) 2168–2181. https://doi.org/10.1109/JSAC.2006.884015

J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, and D. R. Wood, On the metric dimension of cartesian products of graphs, SIAM J. Discret. Math. 21(2) (2007) 423–441. https://doi.org/10.1137/050641867

G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0

F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Comb. 2 (1976) 191-195.

M. Imran, S. A. Bokhary, A. Q. Baig, Families of rotationally-symmetric plane graphs with constant metric dimension, Southeast Asian Bull. Math. 36 (2012) 663-675.

I. Javaid, M. T. Rahim, and K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 75 (2008) 21-34.

A. Kelenc, N. Tratnik and I. G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension, Discrete Appl. Math. 31 (2018) 204-220. https://doi.org/10.1016/j.dam.2018.05.052

S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217-229. https://doi.org/10.1016/0166-218X(95)00106-2

R. A. Melter and I. Tomescu, Metric bases in digital geometry, Comput. Gr. Image Process. 25 (1984) 113-121. https://doi.org/10.1016/0734-189X(84)90051-3

M. Rafiullah, H. M. Siddiqu, and S. Ahmad, Resolvability of some convex polytopes, Util. Math. 111, (2019) 309-323.

H. Raza, J. B. Liu, and S. Qu, On mixed metric dimension of rotationally symmetric graphs, IEEE Access 20(8) (2019) 11560-69. https://doi.org/10.1109/ACCESS.2019.2961191

A. Sebo and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29(2) (2004) 383-393. https://doi.org/10.1287/moor.1030.0070

S. K. Sharma and V. K. Bhat, Metric dimension of heptagonal circular ladder, Discrete Math. Algorithms Appl. 13(1), (2021) (2050095). https://doi.org/10.1142/S1793830920500950

S. K. Sharma and V. K. Bhat, Fault-tolerant metric dimension of two-fold heptagonal nonagonal circular ladder, Discrete Math. Algorithms Appl. 14(3) 2150132. https://doi.org/10.1142/S1793830921501329

S. K. Sharma, H. Raza, and V. K. Bhat, Computing edge metric dimension of one-pentagonal 409 carbon nanocone, Front. Phys. 9 (2021). https://doi.org/10.3389/fphy.2021.749166

P. J. Slater, Leaves of trees, Congr. Numer 14 (1975) 549-559.

I. Tomescu and M. Imran, Metric dimension and R-Sets of a connected graph, Graphs Comb. 27 (2011) 585-591. https://doi.org/10.1007/s00373-010-0988-8

N. Zubrilina, On the edge dimension of a graph, Discrete Math. 341 (2018) 2083–2088. https://doi.org/10.1016/j.disc.2018.04.010




DOI: https://doi.org/10.52846/ami.v50i1.1644