Geometric properties of the generalized Wright-Bessel functions
Abstract
Full Text:
PDFReferences
R.S. Pathak, Certain convergence theorems and asymptotic properties of a generalization of Lommel and Maitland transformations, Proc. Natl. Acad. Sci. India A 36 (1966), no. 1, 81-86.
V. Kiryakova, A Guide to Special Functions in Fractional Calculus, Mathematics 9 (2021), 106. DOI:10.3390/math9010106
R. Goreno, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Le_er Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer Verlag, Berlin-Heidelberg, 2014.
G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, UK, 1995.
P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer Verlag, New York, NY, USA, 1983.
A.W. Goodman, Univalent Functions, Mariner Publishing Company, New York, USA, 1983.
F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Am. Math. Soc. 118 (1993), 189-196.
S. Ozaki, On the theory of multivalent functions, Science Reports of the Tokyo Bunrika Daigaku, Section A 2 (1935), no. 40, 167-188.
T.H. MacGregor, The radius of univalence of certain analytic functions II, Proc. Amer. Math. Soc. 14 (1963), no. 3, 521-524.
T.H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc. 15 (1964), 311-317.
V. Ravichandran, On uniformly convex functions, Ganita 53 (2002), 117-124.
D. Răducanu,Geometric properties of Mittag-Le_er functions, In: (C. Flaut, Š. Hošková-Mayerová, D. Flaut (Eds.)), Models and Theories in Social Systems, Studies in Systems, Decision and Control 179, Springer, Cham, (2019), 403-415. DOI:10.1007/978-3-030-00084-4 22
D. Bansal, J.K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ. 61 (2016), no. 3, 338-350.
J.K. Prajapat, Certain geometric properties of the Wright functions, Integral Transforms Spec. Funct. 26 (2015), no. 3, 203-212.
D. Bansal, A. Soni, M.K. Soni, Geometric properties of τ-conuent hypergeometric function, Anal.Math.Phys. 10 (2020), 73. DOI:10.1007/s13324-020-00426-8
S. Ponnusamy, A. Baricz, Starlikeness and convexity of generalized Bessel functions, Integral Transform Spec Funct. 21 (2010), no. 9, 641-653.
S. Sümer Eker, S. Ece, Geometric Properties of the Miller-Ross Functions, Iran J. Sci. Technol. Trans. Sci. 46 (2022), 631-636. DOI:10.1007/s40995-022-01268-8
S. Sümer Eker, S. Ece, Geometric Properties of Normalized Rabotnov Function, Hacet. J. Math. Stat. 51, (2022), no. 5, 1248-1259. DOI:10.15672/hujms.980307
DOI: https://doi.org/10.52846/ami.v50i2.1720