Some new integral inequalities for exponential type P-functions

Mahir Kadakal, İmdat İşcan, Huriye Kadakal

Abstract


In this paper, by using an identity we obtain some new Hermite-Hadamard type inequalities for functions whose first derivative in absolute value is exponential type P-function by using Hölder and power-mean integral inequalities. Then, the aouthors compare the results obtained with both Hölder, Hölder-İşcan integral inequalities and prove that the Hölder-İşcan integral inequality gives a better approximation than the Hölder integral inequality. Also, some applications to special means of real numbers are also given.

Full Text:

PDF

References


M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl. 58 (2009), 1869-1877.

A. Barani, S. Barani, Hermite-Hadamard type inequalities for functions when a power of the absolute value of the first derivative is Pconvex, Bull. Aust. Math. Soc. 86 (2012), no. 1, 129-134.

K. Bekar, Hermite-Hadamard Type Inequalities for Trigonometrically P-functions, Comptes rendus de l'Académie bulgare des Sciences 72 (2019), no. 11, 1449-1457.

S.S. Dragomir, R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), 91-95.

S.S. Dragomir, J. Pečarić, L.E. Persson, Some inequalities of Hadamard Type, Soochow Journal of Mathematics 21 (1995), no. 3, 335-341.

J. Hadamard, Etude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.

I. Işcan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, International Journal of Pure and Applied Mathematics 86 (2013), no. 4, 727-746.

I. Işcan, New refinements for integral and sum forms of Hölder inequality, Journal of inequalities and applications 2019 (2019), no. 1, 1-11.

I. Işcan, E. Set, M.E. Özdemir, Some new general integral inequalities for P-functions, Malaya J. Mat. 2 (2014), no. 4, 510-516.

I. Işcan, V. Olucak, Multiplicatively harmonically P-functions and some related Inequalities, Sigma J. Eng. & Nat. Sci. 37 (2019), no. 2, 521-528.

M. Kadakal, I. Işcan, H. Kadakal, On new Simpson type inequalities for the p-quasi convex functions, Turkish J. Ineq. 2 (2018), no. 1, 30-37.

M. Kadakal, H. Karaca, I. Işcan, Hermite-Hadamard type inequalities for multiplicatively geometrically P-functions, Poincare Journal of Analysis & Application 2 (2018), no. 1, 77-85.

M. Kadakal, I. Işcan, Exponential type convexity and some related inequalities, J. Inequal. Appl. 2020 (82) (2020), 1-9.

M.A. Latif, T. Du, Some generalized Hermite-Hadamard and Simpson type inequalities by using the p-convexity of differentiable mappings, Turkish J. Ineq. 2 (2018), no. 2, 23-36.

S. Numan, I. Işcan, On exponential type P-functions, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 (2021), no. 1, 497-509.

E. Set, M.A. Ardiç, Inequalities for log-convex and P-functions, Miskolc Math. Notes 18 (2017), 1033-1041.

S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.




DOI: https://doi.org/10.52846/ami.v51i2.1745