Approximation behaviour of generalized Baskakov-Durrmeyer-Schurer operators

Nadeem Rao, Mohd Raiz, Vishnu Narayan Mishra

Abstract


The goal of this manuscript is to introduce a new sequence of generalized-Baskakov Durrmeyer-Schurer Operators. Further, basic estimates are calculated. In the subsection sequence, rapidity of convergence and order of approximation are studied in terms of first and second-order modulus of continuity. We prove a Korovkin-type approximation theorem and obtain the rate of convergence of these operators. Moreover, local and global approximation properties are discussed in different functional spaces. Lastly, A-statistical approximation results are presented.


Full Text:

PDF

References


A. Wafi, S. Khatoon, Approximation by generalized Baskakov operators for functions of one and two variables in exponential and polynomials weight spaces, Thai. J. Math. 2 (2004), no. 2, 203-216.

A. Wafi, S. Khatoon, Convergence and Voronovskaja-type theorem for derivatives of generalized Baskakov operators, Cent. Eur. J. Math. 6 (2008), no. 2, 325-3334.

A. Wafi, S. Khatoon, On the order of approximation of functions by generalized Baskakov operators, Ind. J.P. Appl. Math. 35 (2004), no. 3, 347-358.

A. Erencin, G. Bascanbaz-Tunca, Approximation properties of a class of linear positive operators in weighted spaces, C. R. Acad. Bulgare Sci. 63 (2010), no. 10, 1397-1404.

A. Erencin, Durrmeyer type modification of generalized Baskakov operators, Appl. Math. Comput. 218 (2011), no. 3, 4384-4390.

M. Raiz, A. Kumar, V.N. Mishra, N. Rao, Dunkl Analogue of Szász-Schurer-Beta operator and their approximation behaviour, Math. Found. of Comput. 5 (2022), 315-330.

V.N. Mishra, M. Raiz, N. Rao, Dunkl analouge of Szász Schurer Beta bivariate operators, Math. Found. Of Comput. 6 (2023), no. 4, 651-669.

R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer Science & Business Media, 1993.

P.N. Agarwal, V. Gupta, K.A. Satish, Generalized Baskakov-Durrmeyer type operators, Rendi. Circ. Mat. Palermo 63 (2014), no. 2, 193-209.

V. Mihesan, Uniform approximation with positive linear operators generalized Baskakov method, Automat. Appl. Math. 7 (1998), no. 1, 34-37.

F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and Its Applications, D. G. Stud. Math. 17 (1994).

O. Shisha, B. Mond, The degree of convergence of linear positive operators, Proc. Nat. Acad.Sci., 60 (1968), no. 4, 1196-1200.

H. Karsli, Rate of convergence of new gamma type operators for functions with derivatives of bounded variation, Math. Comput. Modell. 45 (2007), 617-624.

D. Stancu, Approximation functions by a new class of linear polynomial operators, Rev. Rom. Math. Pures Appl. 13 (1968), 1173-1194.

A.A. Al-Abied, M. Mursaleen Ayman, M. Mursaleen, Szász type operators involving Charlier polynomials and approximation properties, Filomat. 35 (2021), no. 15, 5149-59.

M. Heshamuddin,R. Nadeem,B.P. Lamichane, A. Kilicman, M. Ayman Mursaleen, On one and two dimensional α-Stancu Kantrovich operators an their approximation properties, Mathematics 10 (2022), no. 18, 3227.

R. Aslan, On a Stancu form Szász Mirakjan Kantorovich operators based on shape parameter λ, Adv. Stud. Euro-Tbi. Math. J. 15 (2022), no. 1, 151-66.

R. Aslan, M. Mursaleen, Approximaton by bivariate Chlodowsky type Szász operators and associated GBS operators on weighted space, J. Ineq. Appl. 23 (2022), Art. 26.

A.R. Gairola, N. Bisht, L. Rathour, L.N. Mishra,V.N. Mishra, Order of approximation by a new univariate Kantorovich Type Operator, Int. J. Anal. Appl. 21 (2023), Art. 106.

V.N. Mishra, K. Khatri, L.N. Mishra, Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, J. Inequ. Appli. 2013 (2013), Art. 586.

R.B. Gandhi, Deepmala, V.N. Mishra, Local and global results for modified Szász Mirakjan operators, Math. Method. Appl. Sci. 40 (2017), no. 7, 2491-2504.

V.N. Mishra, K. Khatri, L.N. Mishra, Statistical approximation by Kantorovich type Discrete q-Beta operators, Adv. Dif. Equations 2013 (2013), Art. 345.

Raiz M., Rajawat R.S., Mishra V.N., α-Schurer Durrmeyer operators and their approximation properties, An. Uni. Cra.-Math. Compu. Sci. Series, 50(1), 189-204, (2023).

A.S. Kumar, T. Acar, Approximation by generalized Baskakov Durrmeyer Stancu type operators, Rend. Circ. Mat. Palermo, II. Ser 65 (2016), 411-424.

A.D. Gadjiev, On P.P. Korovkin type theorems, Math. Zametki 20 (1976), no. 5, 781-786.

B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. akad.Weternsch. Indag. Math. 50 (1988), no. 1, 53-63.

T. Khan, N. Rao, S.A. Khan, M. Pardeep, On α-Baskakov-Gamma operators with two shifted nodes, Pale. J. Math. 11 (2022), no. 2.

A.M. Ozarslan, O. Duman, H.M. Srivastava, Statistical approximation results for Kantorovich type operators involving some special polynomials, Comput. Modell. 48 (2008), no. 3-4, 388-401.

O. Agratini, statistical convergence of integral operators generated by a single kernel, Nonlinear Anal. 75 (2012), 3465-3469.

O. Dogru, M. Orkcu, Statistical approximation by a modification of q-Meyer-Kning and Zeller operators, Appl.Math. Lett. 23 (2010), no. 3, 261-266.

A. Erkus, O. Duman, H.M. Srivastava, Statistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput. 182 (2006), 213-222.

A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky.Mountain. J. Math. 32 (2002), no. 1, 129-138.

O. Duman, A statistical convergence of sequences of convolution operators, Taiwanese J. math. 12 (2008), 523-536.

N. Rao, A. Wafi, Szász operators involving Charlier polynomials based on two parameters, Tha. J. Mathematics (19) (2021), no. 1, 131-144.

N. Rao, A. Wafi, S. Khatoon, Better rate of convergence by modified integral type operators, Spri. Proce. Math. Statistics 327 (2020), 246-259.

N. Rao, A.Wafi, Bivariate-Schurer-Stancu operators based on (p;q)-integers, Filomat 32 (2018), no. 4, 1251-1258.

S.A. Mohiuddine, F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 114:70 (2020).

M. Mursaleen, K.J. Ansari, A. Khan, Approximation by a Kantorovich type q -Bernstein- Stancu operators, Comp. Anal. Oper. Theory 11 (2017), 85-107.

M. Nasiruzzaman, A. Mukheimer A, M. Mursaleen, A Dunkl type Generalization of Szász-Kantrovich operators via post-quantum calculus, Symmetry 11 (2019), Art. 232.

K.J. Ansari, On Kantorovich variant of Baskakov type operators preserving some functions, Filomat 36 (2022), no. 3, 1049-1060.

A. Devdhara, L. Rathour, L.N. Mishra, V.N. Mishra, Modified Szász-Mirakjan operators fixing exponentials, Math. Eng. Sci. Aero. 15 (2024), no. 1, 225-234.

N. Rao, M. Raiz, M. Ayman-Mursaleen, V.N. Mishra, Approximation properties of extended beta-type Szász-Mirakjan operators, Iranian Journal of Science 47 (2023), 1771-1781.




DOI: https://doi.org/10.52846/ami.v51i1.1747