Existence and asymptotic behavior of a nonlinear axially moving string with variable tension and subject to disturbances
Abstract
Full Text:
PDFReferences
R. Datko, J. Lagness, M.P. Poilis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), 152-156.
B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Mathematical Problems in Engineering 2015 (2015), Article ID 585021. http://dx.doi.org/10.1155/2015/585021
B. Feng, G. Liu, Well-posedness and Stability of Two Classes of Plate Equations with Memory and Strong Time-dependent Delay, Taiwanese journal of Mathematics 23 (2019), no. 1, 159-192.
R.F. Fung, C.C. Tseng, Boundary control of an axially moving string via Lyapunov method, J. Dyn. Syst. Meas. Control 121(1999), 105-110.
F.R. Fung, J.W. Wu, S.L. Wu, Stabilization of an Axially Moving String by Nonlinear Boundary Feedback, ASME J. Dyn. Syst. Meas. Control 121 (1999), 117-121.
S. Gerbi, B. Said-Houari, Existence and exponential stability of a damped wave equation with dynamic boundary conditions and a delay term, Appl. Math. and Comp. 218 (2008), no. 24, 11900-11910.
A. Kelleche, N.-E. Tatar, A. Khemmoudj, Uniform stabilization of an axially moving Kirchhoff string by a boundary control of memory type, J. Dyn. Control Syst. 23 (2016), no. 2, 237-247.
A. Kelleche, N.-E. Tatar, Control of an axially moving viscoelastic Kirchhoff string, Applicable Analysis 97 (2018), no. 4, 592-609.
A. Kelleche, N.-E. Tatar, Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback, Evolution equation and control theory 7 (2018), no. 4.
A. Kelleche, F. Saedpanah, Stabilization of an axially moving viscoelastic string under a spatiotemporally varying tension, Math. Meth. Appl. Sci. 41 (2018), no. 17, 7852-7868. https://doi.org/10.1002/mma.5247
A. Kelleche, N.-E. Tatar, Existence and stabilization of a Kirchho_ moving string with a distributed delay in the boundary feedback, Math. Model. Nat. Phenom. 12 (2017), no. 6, 106-117.
A. Kelleche, N.-E. Tatar, Adaptive boundary stabilization of a nonlinear axially moving string, J. Appl. Math. Mech. (ZAMM) 101 (2022), no. 11, e202000227.
A. Kelleche, F. Saedpanah, On stabilization of an axially moving string with a tip mass subject to an unbounded disturbance, Math. Methods Appl. Sci. 46 (2023), no. 14, 15564-15580.
A. Kelleche, F. Saedpanah, A. Abdallaoui, Stabilization of an axially moving Euler Bernoulli beam by 371 an adaptive boundary control, J. Dyn. Control Syst. 29 (2023), 1037-1054.
A. Kelleche,, N.-E. Tatar, Existence and stabilization of a Kirchhoff moving string with a delay in the 381 boundary or in the internal feedback, Evol. Equ. Control Theory 7 (2018), no. 4, 599-616.
A. Kelleche, Boundary control and stabilization of an axially moving viscoelastic string under a boundary 394 disturbance, Math. Model. Anal. 22 (2017), no. 6, 763-784.
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969.
J.-L. Lions, Exact controllability, stabilization and perturbations for distributed parameter system, SIAM. Rev. 30 (1988), 1-68.
L. Meirovitch, Fundamentals of Vibrations, McGraw-Hill, New York, 2001.
S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006), no. 5, 1561-1585.
O. Reynolds, Papers on Mechanical and Physical studies. vol. 3, The sub-Mechanics of the universe, Cambridge University Press, 1903.
S.M. Shahruz, Boundary control of the axially moving Kirchhoff string, Automatica 34 (1998), no. 10, 1273-1277.
S.M. Shahruz, Boundary control of a nonlinear axially moving string, Inter. J. Robust. Nonl. Control 10 (2000), no. 1, 17-25.
S.M. Shahruz, D.A. Kurmaji, Vibration suppression of a non-linear axially moving string by boundary control, J. Sound. Vib. 201 (1997), no. 1, 145-152.
Shubov, M.A. The Riesz basis property of the system of root vectors for the equation of a nonhomogeneous damped string: transformation operators method, Methods Appl. Anal. 6 (1999), 571-591.
R. Temam, Innite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997.
K.S. Yang, F. Matsuno, Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension, J. Sound. Vib. 273 (2004), 1007-1029.
K.S. Yang, F. Matsuno, The rate of change of an energy functional for axially moving continua, IFAC Proceedings Volumes 38 (2005), no. 1, 610-615.
G.Q. Xu, B.Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM J. Control Optim. 42 (2003), 966-984.
G.Q. Xu, S.P. Yung, L.K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM: COCV 12 (2006), no. 4, 770-785.
DOI: https://doi.org/10.52846/ami.v51i1.1774