A study of triple sequences statistical convergence in neutrosophic normed spaces

Hari Shankar, Ayaz Ahmad, Ayhan Esi

Abstract


Neutrosophic logic, probability, and sets are all included in this discipline. A generalisation of conventional sets, fuzzy sets, intuitionistic fuzzy sets, and other related ideas is the neutrosophic set theory. It is a mathematical concept that deals with situations involving inconsistent, ambiguous, and imprecise data. To fully understand sequence spaces, statistical convergence is a crucial concept. In this particular scientific work, we introduce the notion of statistical convergence for triple sequences in a neutrosophic normed space. In this neutrosophic normed space, we also explore the statistical properties of triple completeness and triple Cauchy sequences.

Full Text:

PDF

References


M. Ali, I. Deli, F. Smarandache, The theory of neutrosophic cubic sets and their applications in pattern recognition, Journal of Intelligent & Fuzzy Systems 30 (2016), no. 4, 1957-1963.

K.T. Atanassov, On intuitionistic fuzzy sets theory, vol. 283, Springer, 2012.

T. Bera, N.K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosohic Sets and Systems 23 (2018), no. 1, 1-6.

A. Esi, B. Hazarika, Lacunary summable sequence spaces of fuzzy numbers defined by ideal convergence and an Orlicz function, Afrika Matematika 25 (2014), 331-343.

H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2 (1951), no. 3-4, 241-244.

A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), no. 3, 395-399.

A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), no. 3, 365-368.

C. Granados, A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets and Systems 42 (2021), 333-344.

M. Inuiguchi, H. Ichihashi, H. Tanaka, Fuzzy programming: A survey of recent developments. Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, In: (R. Slowinski and J. Teglem (Eds.)) Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, Kluwer Academic Publishers, Dordrecht, 1990.

O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), no. 3, 215-229.

M. Kirișçi and N. Șimșek, Neutrosophic normed spaces and statistical convergence, The Journal of Analysis 28 (2020), 1059-1073.

J. Madore, Fuzzy physics, Annals of Physics 219 (1992), no. 1, 187-198.

F. Móricz, Tauberian theorems for Cesaro summable double sequences, Studia Mathematica 110 (1994), no. 1, 83-96.

M. Mursaleen, S.A. Mohiuddine, Statistical convergence of double sequences, In: Convergence Methods for Double Sequences and Applications, Springer, 2014 , 117-132.

S. Pandit, A. Ahmad, On asymptotically I-equivalent sequences in intuitionistic fuzzy normed spaces, NeuroQuantology 20 (2022), no. 19, 502-512.

S. Pandit, A. Ahmad, A study on statistical convergence of triple sequences in intuitionistic fuzzy normed space, Sahand Communications in Mathematical Analysis 19 (2022), no. 3, 1-12.

S. Pandit, A. Ahmad, A. Esi, On intuitionistic fuzzy metric space and ideal convergence of triple sequence space, Sahand Communications in Mathematical Analysis 20 (2023), no. 1, 35-44.

J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22 (2004), no. 5, 1039-1046.

A.U. Rahman, M. Saeed, A. Dhital, Decision making application based on neutrosophic parameterized hypersoft set theory, Neutrosophic Sets and Systems 41 (2021).

A. Șahiner, M. Gürdal, F.K. Düden, Triple sequences and their statistical convergence, Selcuk Journal of Applied Mathematics 8 (2007), no. 2, 49-55.

F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics 24 (2005), no. 3, 287.

L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), no. 3, 338-353.

L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences 3 (1971), no. 2, 177-200.




DOI: https://doi.org/10.52846/ami.v51i2.1798