Paired Hayman conjecture of some delay-differential polynomials that share a small function

Pulak Sahoo, Soniya Sultana

Abstract


In this paper, we investigate the uniqueness problems of P(f)L(g) and P(g)L(f) when they share a nonzero small function α(z) with finite weights. Here L(h) may take the derivatives h(k)(z) or the shift h(z+c) or the difference h(z+c)-h(z) or the delay-differential h(k)(z+c), k>=1, and c is a nonzero constant and P(z) is a polynomial of degree n. Also, f(z) and g(z) are transcendental meromorphic (or entire) functions and α(z) is a small function with respect to both f(z) and g(z). The results of the paper improve and supplement the recent results of Sahoo and Pal [17].

Full Text:

PDF

References


T.T.H. An, N.V Phuong, A lemma about meromorphic functions sharing a small function, Comput. Methods Funct. Theory 22 (2022), no. 2, 1-10. https://doi.org/10.1007/340315-021-00388-3.

A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Math. Sci. 22 (2005), 3587-3598.

W. Bergweiler, A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355-373.

H.H. Chen, M.L. Fang, The value distribution of fnf0; Sci. China Ser. A 38 (1995), 789-798.

J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389-392.

Y. Gao, K. Liu, Paired Hayman conjecture and uniqueness of complex delay-differential polynomials, Bull. Korean Math. Soc. 59 (2022), 155-166.

R. Halburd, R. Korhonen, K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), 4267-4298.

W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42.

W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.

I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193-206.

I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl. 46 (2001), 241-253.

I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics. 15, Walter De Gruyter and Co., Berlin, 1993.

I. Laine, Z. Latreuch, Zero distribution of some delay-differential polynomials, Bull. Korean Math. Soc. 57 (2020), 1541-1565.

I. Laine, C.C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 148-151.

K. Liu, I. Laine, L.Z. Yang, Complex Delay-Differential Equations, Berlin, Boston: De Gruyter, 2021.

E. Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), 239-259.

P. Sahoo, S. Pal, Hayman conjecture and uniqueness of some delay-differential polynomials sharing a small function, Acta Univ. Sapientiae Math. (Accepted for publication).

C.C. Yang, H.X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications 557, Kluwer Academic Publishers Group, Dordrecht, 2003.

L. Zalcman, On some problems of Hayman, Bar-Ilan University, 1995.




DOI: https://doi.org/10.52846/ami.v51i2.1801