Existence results for a class of perturbed impulsive Hamiltonian systems

Hamed Faghan Nomali, Ghasem A. Afrouzi, Hadi Haghshenas

Abstract


In this paper, we study the multiplicity results for a second-order Hamiltonian system generated by impulsive effects. Our approach is based on variational methods and critical point theory.

Full Text:

PDF

References


L. Bai, B. Dai, Existence of nonzero solutions for a class of damped vibration problems with impulsive effects, Appl. Math. 59 (2014), 145–165.

L. Bao, B. Dai, Periodic solutions for second order Hamiltonian systems with impulses via the local linking theorem, Abstr. Appl. Anal. 2014 (2014), Art. 250870.

L. Bai, B. Dai, Existence and multiplicity of solutions for impulsive boundary value problem with parameter via critical point theory, Math. Comput. Model. 53 (2011), 1844–1855.

L. Bai, B. Dai, Three solutions for a p-Laplacian boundary value problem with impulsive effects, Appl. Math. Comput. 217 (2011), 9895–9904.

L. Bai, B. Dai, F. Li, Solvability of second-order Hamiltonian systems with impulses via variational method, Appl. Math. Comput. 219 (2013), 7542–7555.

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. TMA 75 (2012), 2992–3007.

G. Bonanno, R. Livrea, Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. Math. Anal. Appl. 363 (2010), 627–638.

G. Bonanno, R. Livrea, Periodic solutions for a class of second-order Hamiltonian systems, Electron. J. Differential Equations 2005 (2005), no. 115, 1–13.

G. Bonanno, S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), 1–10.

G. Bonanno, G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), 1–20.

D. Chen, B. Dai, Periodic solutions of some impulsive Hamiltonian systems with convexity potentials, Abstr. Appl. Anal. 2012 (2012), Art. 616427.

H. Chen, Z. He, New results for perturbed Hamiltonian systems with impulses, Appl. Math. Comput. 218 (2012), no. 18, 9489–9497.

G. Chen, S. Ma, Periodic solutions for Hamiltonian systems without Ambrosetti-Rabinowitz condition and spectrum 0, J. Math. Anal. Appl. 379 (2011), 842–851.

G. Cordaro, Three periodic solutions to an eigenvalue problem for a class of second order Hamiltonian systems, Abstr. Appl. Anal. 18 (2003), 1037–1045.

G. Cordaro, G. Rao, Three periodic solutions for perturbed second order Hamiltonian systems, J. Math. Anal. Appl. 359 (2009), 780–785.

V. Coti-Zelati, I. Ekeland, E. Sere, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 133–160.

Y. Ding, C. Lef, Periodic solutions for Hamiltonian systems, SIAM J. Math. Anal. 32 (2000), 555–571.

F. Faraci, Multiple periodic solutions for second order systems with changing sign potential, J.Math. Anal. Appl. 319 (2006), 567–578.

M. Ferrara, S. Heidarkhani, Multiple solutions for perturbed p-Laplacian boundary value problem with impulsive effects, Electron. J. Diff. Equ. 2014 (2014), no. 106, 1–14.

J. Graef, S. Heidarkhani, L. Kong, Infinitely many periodic slutions to a class of perturbed second-order impulsive Hamiltonian systems, Differential Equations Applications 2017 (2017), 195–212.

H. Gu, T. An, Existence of infinitely many periodic solutions for second-order Hamiltonian systems, Electron. J. Differential Equations 2013 (2013), no. 251, 1–10.

X. He, X. Wu, Periodic solutions for a class of nonautonomous second-order Hamiltonian systems, J. Math. Anal. Appl. 341 (2008), 1354–1364.

S. Heidarkhani, G.A. Afrouzi, M. Ferrara, G. Caristi, S. Moradi, Existence Results for Impulsive Damped Vibration Systems, Bull. Malays. Math. Sci. Soc. 41 (2018), 1409–1428.

S. Heidarkhani, L.A. Anderson, De Araujo, G.A. Afrouzi, S. Moradi, A variational approach for a perturbed second-order impulsive Hamiltonian systems, An. Științ. Univ. Al. I. Cuza Iași. Mat. (N.S.) LXV (2019), 47–63.

S. Heidarkhani, M. Ferrara, A. Salari, Infinitely many periodic solutions for a class of perturbed second-order differential equations with impulses, Acta. Appl. Math. 139 (2015), 81–94.

M. Izydorek, J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems, J. Differential Equations 219 (2005), 375–389.

Y. Long, Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials, Nonlinear Anal. 25 (1995), 1665–1671.

J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.

P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh 114 (1990), 33–38.

P.H. Rabinowitz, Variational methods for Hamiltonian systems, in: (B. Hasselblatt, A. Katok (Eds.)) Handbook of Dynamical Systems, vol. 1, North-Holland, 2002, Part 1, Chapter 14, 1091–1127.

B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410.

J. Sun, H. Chen, J.J. Nieto, M. Otero-Novoa, The multiplicity of solutions for perturbed second294 order Hamiltonian systems with impulsive effects, Nonlinear Anal. TMA 72 (2010), no. 12, 4575–4586.

J. Sun, H. Chen, J.J. Nieto, Infinitely many solutions for second-order Hamiltonian system with impulsive effects, Math. Comput. Modelling 54 (2011), no. 1–2, 544–555.

C. Tang, Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (1998), 3263–3270.

X.H. Tang, X. Lin, Homoclinic solutions for a class of second-order Hamiltonian systems, J. Math. Anal. Appl. 354 (2009), 539–549.

C.L. Tang, X.P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems, J. Math. Anal. Appl. 275 (2002), 870–882.

X.H. Tang, L. Xiao, Homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal. 71 (2009), 1140–1152.

Y. Tian, W. Ge, Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc. 51 (2008), 509–527.

Z. Wang, J. Zhang, Periodic solutions of a class of second order non-autonomous Hamiltonian systems, Nonlinear Anal. 72 (2010), 4480–4487.

J. Xie, J. Li, Z. Luo, Periodic and subharmonic solutions for a class of the second-order Hamiltonian systems with impulsive effects, Bound. Value Probl. 2015 (2015), no. 52.

D. Zhang, Q. Wu, B. Dai, Existence and multiplicity of periodic solutions generated by impulses for second-order Hamiltonian system, Electron. J. Differential Equations 2014 (2014), no. 121.

Q. Zhang, C. Liu, Infinitely many periodic solutions for second order Hamiltonian systems, J. Differential Equations 251 (2011), 816–833.

J. Zhou, Y. Li, Existence of solutions for a class of second order Hamiltonian systems with impulsive effects, Nonlinear Anal. TMA 72 (2010), no. 3–4, 1594–1603.

W. Zou, S. Li, Infinitely many solutions for Hamiltonian systems, J. Differential Equations 186 (2002), 141–164.

Z. Zhang, R. Yuan, An application of variational methods to Dirichlet boundary value problem with impulses, Nonlinear Anal. RWA 11 (2010), 155–162.

Z. Wang, J. Zhang, Z. Zhang, Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential, Nonlinear Anal. 70 (2009), 3672–3681.

X. Zhang, Y. Zhou, Periodic solutions of non-autonomous second order Hamiltonian systems, J. Math. Anal. Appl. 345 (2008), 929–933.




DOI: https://doi.org/10.52846/ami.v51i2.1821