Existence of solutions for a class of superlinear anisotropic Robin problems with variable exponent
Abstract
In this work we study the following nonlinear anisotropic elliptic equations
$$ (P)\left\{ \begin{array}{lr}
-\sum_{i=1}^{N}\partial_{x_{i}}(|\partial_{x_{i}}u|^{p_{i}(x)-2}\partial_{x_{i}}u)+ |u|^{p_M(x)-2}u = f(x,u) & \quad in \quad \Omega\\
\sum_{i=1}^{N}|\partial_{x_{i}}u|^{p_{i}(x)-2}\partial_{x_{i}}u.\nu_i + \beta(x) |u|^{p_m(x)-2}u = 0 & \quad on \quad \partial\Omega.
\end{array} \right.$$
We set up that the problem $(P)$ admits a sequence of weak solutions and multiplicity result under suitable conditions.
Full Text:
PDFReferences
M.M. Boureanu, F. Preda, Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions, Nonlinear Differ. Equ. Appl. 19 (2012), 235-251.
M.M. Boureanu, V. Rădulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. 75 (2012), 4471-4482.
M. M. Boureanu, D. Udrea, Existence and multiplicity results for elliptic problems with p(.)-growth conditions, Nonlinear Anal: RWA 14 (2013), 1829-1844.
M.M. Boureanu, A. Vélez-Santiago, Fine regularity for elliptic and parabolic anisotropic Robin problems with variable exponent, J. Differential Equations 266 (2019), 8164-8232.
L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017, Springer-Verlag, Heidelberg, 2011.
D.E. Edmunds, J. Rákosník, Sobolev embedding with variable exponent, Studia Math. 143 (2000), 267-293.
A. EL Amrouss, A. El Mahraoui, Infinitely many solutions for anisotropic elliptic equations with variable exponent, Proyecciones Journal of Mathematics 40 (2021), 1071-1096.
X.L. Fan, X.Y. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in RN, Nonlinear Anal. 59 (2004), 173-188.
X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x), J. Math. Anal. Appl. 262 (2001), 749-760.
X.L. Fan, D. Zhao, On the spaces Lp(x) and Wm,p(x), J. Math. Anal. Appl. 263 (2001), 424-446.
I. Fragala, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 5, 715-734.
H.P. Heinz, Free Ljusternik-Schnirelman theory and bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations 66 (1987), no. 2, 263-300.
B. Kone, S. Ouaro, S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Differ. Equ. 2009 (2009), 1-11.
S. N. Kruzhkov, I. M. Kolodi, On the theory of embedding of anisotropic Sobolev spaces, Russian Math. Surveys. 38 (1983), 188-189.
M. Mihăilescu, G. Moroșanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Applicable Analysis 89 (2010), 257-271.
M. Mihăilescu, P. Pucci, V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687-698.
J. Rakosnik, Some remarks to anisotropic Sobolev space I,Beitrage zur Analysis 13 (1979), 55-68.
Z.Tan, F.Fang, On superlinear p(x)−Laplacien problems without Ambrosetti and Rabinowitz condition, Nonlinear analysis 75 (2012), 3902-3915.
Z.Q.Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equation Appl. 8 (2001), no. 1, 15-33.
DOI: https://doi.org/10.52846/ami.v51i2.1828