On the adaptivity analysis of the wave equation
Abstract
Full Text:
PDFReferences
M. Abdelwahed, N. Chorfi, The spectral discretization of the second-order wave equation, An. St. Univ. Ovidius Constant. 30 (2022), no. 3, 5-20.
M. Abdelwahed, N. Chorfi, resolution of the wave equation using the spectral method, Boundary Value Problem 2022 (2022), no. 1, Article Number 15.
M. Abdelwahed, N. Chorfi, A posteriori analysis of the spectral element discretization of a non linear heat equation, Adv. Nonlinear Anal. 10 (2021), 477-490.
M. Abdelwahed, N. Chorfi, On the convergence analysis of a time dependent elliptic equation with discontinuous coefficients, Adv. Nonlinear Anal. 9 (2020), 1145-1160.
S. Adjerid, A posteriori nite element error estimation for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 191, (2002), 4699-4719.
M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, J. Wiley and Sons, New York, 2000.
A. Bergam, C. Bernardi, Z. Mghazli, A posteriori analysis of the nite element discretization of some parabolic equations, Math. Comp. 74 (2005), no. 251, 1117-1138.
C. Bernardi, Y. Maday, Spectral Methods, in Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions, eds., North Holland, Amsterdam, 1997, pp. 209-485.
C. Bernardi, Y. Maday, F. Rapetti, Discretisations variationnelles de problemes aux limites elliptiques, Collection Mathematiques et Application, 45, Springer-Verlag, Paris, 2004.
W. Bangerth, R. Rannacher, Finite element approximation of the acoustic wave equation: error control and mesh adaptation, East-West J. Numer. Math. 7 (1999), 263-282.
W. Bangerth, R. Rannacher, Adaptive finite element techniques for the acoustic wave equation, J. Comput. Acoust. 9 (2001), 575-591.
I. Babuska, T. Strouboulis, The Finite Element Method and Its Reliability, Oxford University Press, Oxford, 2001.
M. Bieterman, I. Babuska, The finite element method for parabolic equations. I. A posteriori error estimation, Numer. Math. 40 (1992), 339-371.
M. Bieterman, I. Babuska, The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach, Numer. Math. 40 (1982), 373-406.
C. Bernardi, E. Suli, Time and space adaptivity for the second-order wave equation, Math. Models Methods Appl. Sci. 15 (2005), 199-225.
A. Chaoui, F. Ellaggoune, A. Guezane-Lakoud, Full discretization of wave equation, Boundary Value Problems 2015 (2015), Article Number 133. DOI 10.1186/s13661-015-0396-3.
Y. Daikh, W. Chikouche, Spectral element discretization of the heat equation with variable diusion coefficient, HAL Id: hal-01143558, https://hal.archives-ouvertes.fr/hal-01143558, Apr 2015.
K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal. 28 (1991), 43-77.
K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal. 32 (1995), 1729-1749.
C. Johnson, V. Thomee, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem, SIAM J. Numer. Anal. 27 (1990), 277-291.
J.L. Lions, E. Magenes, Problemes aux limites non homogenes et applications, Dunod, 1968.
N.S. Papageorgiou, V.D. Radulescu, D.D. Repovs, Nonlinear analysis-theory and methods, Springer Monographs in Mathematics, Springer, 2019.
A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 54 (1984), 468-488.
E. Suli, A posteriori error analysis and global error control for adaptive nite volume approximations of hyperbolic problems, Numerical Analysis 1995 (Dundee 1995), 169-190, Pitman Res. Notes Math. Ser. 344. Longman, Harlow, 1996.
E. Suli, A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems, In: D. Kroner, M. Ohlberger and C. Rohde (Eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering Volume 5, 123 -194, Springer-Verlag, 1998.
K.P. Jin, L. Wang, Uniform decay estimates for the semi-linear wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic versus frictional dissipative effects, Adv. Nonlinear Anal. 12 (2023). https://doi.org/10.1515/anona-2022-0285.
R. Verfurth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Renement Techniques, Wiley et Teubner, 1996.
R. Verfurth, A posteriori error estimation techniques for non-linear elliptic and parabolic pdes, Revue europeenne des element finis 9 (2000), 377-402.
Y. Yang, B.F Zhong, On a strongly damped semilinear wave equation with time-varying source and singular dissipation, Adv. Nonlinear Anal. 12 (2023). https://doi.org/10.1515/anona-2022-0267.
J. Zhang, W. Zhang, V.D. Radulescu, Double phase problems with competing potentials concentration and multiplication of ground states, Math. Z. 301 (2022), 4037-4078.
W. Zhang, J. Zhang, V.D. Radulescu, Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction, J. Differ. Equ. 347 (2023), 56-103.
DOI: https://doi.org/10.52846/ami.v50i2.1831