Direct approximations of Szász-Beta-Schurer operators using Hermite polynomial

Anshul Srivastava, Avinash Kumar Yadav, Brijesh Kumar Sinha, Md. Heshamuddine, Nadeem Rao

Abstract


The aim of present article is to introduce the Szász-Beta-Schurer operators in terms of Hermite Polynomial. We calculate some estimates and then discuss convergence theorems and order of approximation in terms of Korovkin theorem and first order modulus of smoothness respectively. Next, we study pointwise approximation results in terms of Peetre’s K-functional, second order modulus of smoothness, Lipschitz type space and rth order Lipschitz type maximal function.
Lastly, weighted approximation results and statistical approximation theorems are proved.


Full Text:

PDF

References


A.M. Acu, H. Gonska, I. Rașa, Grüss-type and Ostrowski-type inequalities in approximation theory, Ukr. Math. J. 63 (2011), no. 6, 843-864.

A.M. Acu, T. Acar, V.A. Radu, Approximation by modified U^ρ_n operators, Rev. R. Acad. Ciene. Exactas Fis. Nat. Ser. A Math. RACSAM 113 (2019), 2715-2729.

P. Appell, J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques: polynomes d'Hermite, Gauthier-Villars, Paris, 1926.

S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow. 13 (1912/1913), no. 2, 1-2.

R.A. DeVore, G.G. Lorentz, Constructive Approximation, Grudlehren der Mathematischen Wissenschaften Fundamental principales of Mathematical Sciences, Springer-Verlag, Berlin, 1993.

A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2007), no. 1, 129-138.

A.D. Gadjiev, The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR 218 (1974), no. 5.

A.D. Gadjiev, On P. P. Korovkin type theorems, Mat. Zametki 20 (1976), 781-786; Transl. in Math. Notes 5-6 (1978), 995-998.

K. Graźyna, A note on some positive linear operators associated with the Hermite polynomials, CARPATHIAN J. 32 (2016), no. 1, 71-77.

A. Khan, M. Mansoori, K. Khan, M. Mursaleen, Phillips-type q-Bernstein operators on triangles, J. Funct. Spaces 2021 (2021), 1-13.

B. Lenze, On Lipschitz type maximal functions and their smoothness spaces, Nederl Akad Indag Math. 50 (1988), 53-63.

S.A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Methods Appl. Sci. 40 (2017), 7749-7759.

S.A. Mohiuddine, N. Ahmad, F. Özger, A. Alotaibi, B. Hazarika, Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators, Iran. J. Sci. Technol. Trans. 45 (2021), no. (2), 593-605.

M. Mursaleen, K.J. Ansari, A. Khan, Approximation properties and error estimation of q-Bernstein shifted operators, Numer. Algorithms 84 (2020), 207-227.

M. Mursaleen, A. Naaz, A. Khan, Improved approximation and error estimations by King type (p, q)-Szász-Mirakjan Kantorovich operators, Appl. Math. Comput. 348 (2019), 2175-185.

Md. Nasiruzzaman, Approximation properties by Szász-Mirakjan operators to bivariate functions via Dunkl analogue, Iran. J. Sci. Technol. Trans. 45 (2021), 259-269.

M.A. Özarslan, H. Aktu_glu, Local approximation for certain King type operators, Filomat 27 (2013), 173-181.

M. Raiz, A. Kumar, V.N. Mishra, N. Rao, Dunkl Analouge of Szász Schurer Beta operator and their approximation behaviour, Math. Found. Comput. 5 (2022), 315-330.

M. Raiz, V.N. Mishra, N. Rao, Sz_asz-Type Operators Involving q-Appell Polynomials, In: (Mohiuddine, S.A., Hazarika, B., Nashine, H.K. (eds)) Approximation Theory, Sequence Spaces and Applications, Industrial and Applied Mathematics, Springer, Singapore, 2022.

N. Rao, A.K. Yadav, M. Mursaleen, B.K. Sinha, N.K. Jha, Sz_asz-Beta operators via Hermite polynomial, J. King Saud Univ. Sci. 36 (2024), 103120.

N. Rao, P. Malik, M. Rani, Blending type Approximations by Kantorovich variant of a-Baskakov operators, Palestine Journal of Mathematics 11 (2022), no. 3, 402-413.

O. Shisha, B. Mond, The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. USA 60 (1968), 1196-1200.

O. Szász, Generalization of Bernstein's polynomials to the in_nite interval, J. Res. Nat. Bur. Stds. 45 (1950), 239-245.

A. Wafi, N. Rao, A generalization of Szász-type operators which preserves constant and quadratic test functions, Cogent Mathematics 3 (2016), no. 1. https://doi.org/10.1080/23311835.2016.1227023.

A. Wafi, N. Rao, Kantorovich form of generalized Szász-type operators using Charlier polynomials, Korean J. Math. 25 (2017), no. 1, 99-116.

E.T. Whittaker, G.N. Watson, A Course in Modern Analysis, Cambridge University Press, Cambridge, England, 1990.

K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 2 (1885), 633-639.




DOI: https://doi.org/10.52846/ami.v51i2.1837