Some harmonic and biharmonic problems on the tangent bundle with a Berger-type deformed Sasaki metric

Abdallah Medjadj, Hichem El Hendi, Lakehal Belarbi

Abstract


Let $\psi:(M_{2k},\phi, g)\longrightarrow (N_{2k'},\phi', h)$ be a smooth map between almost anti-paraHermitian manifolds. The  map $\psi$ induces the tangent map $\Psi:(TM,g^{BS})\longrightarrow (TN,h^{BS})$. In this paper, we deal with the  harmonicity  of a tangent map $\Psi$ and the  biharmonicity of the identity map  in the case where the tangent bundles $TM,TN$ are endowed with the Berger type deformed Sasaki metric $g^{BS}, h^{BS}$.


Full Text:

PDF

References


M. Altunbas, R. Simsek, A. Gezer, A study concerning Berger type deformed Sasaki metric on the tangent bundle, Journal of Math. Physics, Analysis, Geometry 15 (2019), no. 4, 435-447.

M. Altunbas, R. Simsek, A. Gezer, Some harmonic problems on the tangent bundle with a berger-type deformed Sasaki metric, U.P.B. Sci. Bull., Series A 82 (2020), no. 2, 37-42.

Y. Bahous, L. Belarbi, M. Belarbi, H. Elhendi, f-Biharmonic curves in three dimensional generalized symmetric spaces, J. Appl. Math. Inform. 42 (2024), no. 1, 85-92.

C.L. Bejan, M. Benyounes, Harmonic φ morphisms, Beitrge zur Algebra und Geometry 44 (2003), no. 2, 309-321.

L. Belarbi, M. Belarbi, H. Elhendi, Legendre curves on Lorentzian Heisenberg Space, Bull. Transilv. Univ. Brasov SER. III 13(62) (2020), 41-50.

L. Belarbi, H. Elhendi, F. Latti, On the geometry of the tangent bundle with vertical rescaled generalized Cheeger-Gromoll metric, Bull. Transilv. Univ. Brasov SER. III 12(61) (2019), no. 2, 247-264.

L. Belarbi, H. El Hendi, Harmonic and biharmonic maps between tangent bundles, Acta Math. Univ. Comenianae 88 (2019), no. 2, 187-199.

L. Belarbi, H.Elhendi, Harmonic vector fields on gradient Sasaki metric, Afr. Mat. 34 (2023), no. 1, 1-13.

L. Belarbi, H. El hendi, Geometry of twisted Sasaki metric, J. Geom. Symmetry Phys. 53 (2019), 1-19.

N. Cengiz, A.A. Salimov, Diagonal lift in the tensor bundle and its applications, Appl. Math. Comput. 142 (2003), no. 2-3, 309-319.

M. Djaa, H. EL Hendi, S. Ouakkas, On the Biharmonic vector field, Turkish J. Math. 36 (2012), 463-474.

M. Djaa, J. Gancarzewicz, The geometry of tangent bundles of order r, Boletin Academia, Galega de Ciencias, Espagne 4 (1985), 147-165.

N.E.H. Djaa, S. Ouakkas, M. Djaa, Harmonic sections on the tangent bundle of order two, Ann. Math. Inform. 38 (2011), 15-25.

H. Elhendi, L. Belarbi, Deformed diagonal metrics on tangent bundle of order two and harmonicity, Panamer. Math. J. 27 (2017), no. 2, 90-106.

H. Elhendi, L. Belarbi, Naturally harmonic maps between tangent bundles, Balkan J. Geom. Appl. 25 (2020), no. 1, 34-46.

H. Elhendi, L. Belarbi, On paraquaternionic submersions of tangent bundle of order two, Non-linear Studies 25 (2018), no. 3, 65-664.

H. Elhendi, L. Belarbi, On the geometry of the tangent bundle with gradient Sasaki metric, Arab J. Math. Sci. 29 (2023), no. 1, 14-28.

H. Elhendi, M. Terbeche, M. Djaa, Tangent bundle of order two and biharmonicity, Acta Math. Univ. Comenianae 83 (2014), no. 2, 165-179.

J. Eells, J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-60.

S. Gudmundsson, E. Kappos, On the geometry of the tangent bundles, Expo. Math. 20 (2002), no. 1, 1-41.

T. Ishihara, Harmonic sections of tangent bundles, J. Math. Univ. Tokushima 13 (1979), 23-27.

G.Y. Jiang, Harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), no. 3, 89-402.

J.J. Konderak, On harmonic vector fields, Publications Matmatiques 36 (1992), 217-288.

H. Mazouzi, H. Elhendi, L. Belarbi, On the generalized bi-f-harmonic map equations on singly warped product manifolds, Comm. Appl. Nonlinear Anal. 25 (2018), no. 3, 52-76.

V. Oproiu, On harmonic maps between tangent bundles, Rend. Sem. Mat. 47 (1989), 47-55.

A.A. Salimov, A. Gezer, K. Akbulut, Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math. 6 (2009), no. 2, 135-147.

A. Sanini, Applicazioni armoniche tra i fibrati tangenti di varieta riemanniane, Boll. U.M.I. 6(2A) (1983), 55-63.

A.A. Salimov, M. Iscan, F. Etayo, Paraholomorphic B-manifold and its properties, Topology Appl. 154 (2007), no. 4, 925-933.

K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker INC, New York, 1973.




DOI: https://doi.org/10.52846/ami.v51i2.1870